created -9.7 11.9683 3
created -9.1 35.9048 9
created -8.5 39.8942 10
created -7.9 11.9683 3
created -7.3 27.926 7
created -6.7 7.97885 2
created -6.1 11.9683 3
created -5.5 3.98942 1
created -4.9 7.97885 2
created -4.3 19.9471 5
created -3.7 15.9577 4
created -3.1 39.8942 10
created -2.5 3.98942 1
created -1.9 7.97885 2
created -1.3 23.9365 6
created -0.7 15.9577 4
created -0.1 11.9683 3
created 0.5 3.98942 1
created 1.1 35.9048 9
created 1.7 3.98942 1
created 2.3 35.9048 9
created 2.9 7.97885 2
created 3.5 27.926 7
created 4.1 3.98942 1
created 4.7 35.9048 9
created 5.3 15.9577 4
created 5.9 15.9577 4
created 6.5 11.9683 3
created 7.1 11.9683 3
created 7.7 23.9365 6
created 8.3 19.9471 5
created 8.9 19.9471 5
created 9.5 19.9471 5
the total number of created peaks = 33 with sigma = 0.1
the total number of found peaks = 33 with sigma = 0.100002 (+-3.88063e-05)
fit chi^2 = 3.5385e-06
found -8.5 (+-0.000260854) 39.8941 (+-0.102669) 10.0002 (+-0.000842552)
found -3.1 (+-0.000259546) 39.8937 (+-0.102609) 10.0001 (+-0.000842058)
found -9.1 (+-0.000275276) 35.9048 (+-0.0974141) 9.00017 (+-0.000799428)
found 1.1 (+-0.000272844) 35.9042 (+-0.0973136) 9.00002 (+-0.000798603)
found 2.3 (+-0.000273221) 35.9043 (+-0.0973282) 9.00004 (+-0.000798722)
found 4.7 (+-0.000273719) 35.9044 (+-0.0973486) 9.00006 (+-0.00079889)
found -7.3 (+-0.000310955) 27.9257 (+-0.085871) 7.00006 (+-0.0007047)
found 3.5 (+-0.000310133) 27.9256 (+-0.0858454) 7.00004 (+-0.000704489)
found -1.3 (+-0.000336483) 23.9364 (+-0.0795185) 6.00008 (+-0.000652568)
found 7.7 (+-0.000337156) 23.9365 (+-0.0795377) 6.0001 (+-0.000652725)
found -4.3 (+-0.00036903) 19.947 (+-0.0726004) 5.00008 (+-0.000595794)
found 8.3 (+-0.000370807) 19.9473 (+-0.0726439) 5.00014 (+-0.000596151)
found 8.9 (+-0.000370523) 19.9473 (+-0.0726367) 5.00013 (+-0.000596092)
found 9.5 (+-0.000366904) 19.9472 (+-0.0725611) 5.00013 (+-0.000595472)
found -3.7 (+-0.000416472) 15.9582 (+-0.0650146) 4.00019 (+-0.000533541)
found -0.700002 (+-0.000414529) 15.9579 (+-0.0649742) 4.00012 (+-0.00053321)
found 5.3 (+-0.000415837) 15.9581 (+-0.0650014) 4.00017 (+-0.000533433)
found 5.9 (+-0.000413797) 15.9578 (+-0.0649591) 4.00009 (+-0.000533086)
found -7.9 (+-0.000483202) 11.9689 (+-0.0563412) 3.00022 (+-0.000462363)
found -9.69999 (+-0.000479798) 11.9685 (+-0.0562846) 3.00012 (+-0.000461899)
found -6.1 (+-0.000475859) 11.9682 (+-0.0562281) 3.00004 (+-0.000461435)
found -0.100002 (+-0.000477167) 11.9683 (+-0.0562479) 3.00007 (+-0.000461598)
found 6.5 (+-0.000478932) 11.9684 (+-0.0562731) 3.00009 (+-0.000461805)
found 7.1 (+-0.000479869) 11.9685 (+-0.056288) 3.00012 (+-0.000461927)
found -6.7 (+-0.000590642) 7.97921 (+-0.0459903) 2.00013 (+-0.000377419)
found 2.9 (+-0.000594363) 7.97952 (+-0.046031) 2.00021 (+-0.000377753)
found -4.9 (+-0.000586942) 7.97901 (+-0.0459524) 2.00008 (+-0.000377108)
found -1.89999 (+-0.000587551) 7.97906 (+-0.0459592) 2.00009 (+-0.000377164)
found -2.50002 (+-0.000842964) 3.98998 (+-0.0325652) 1.00016 (+-0.000267246)
found 1.7 (+-0.00085086) 3.99028 (+-0.0326095) 1.00023 (+-0.000267609)
found 4.1 (+-0.00084912) 3.99018 (+-0.032599) 1.00021 (+-0.000267524)
found 0.500013 (+-0.000844154) 3.98997 (+-0.0325708) 1.00016 (+-0.000267292)
found -5.5 (+-0.000835708) 3.98961 (+-0.0325219) 1.00007 (+-0.000266891)
#include <iostream>
delete gROOT->FindObject(
"h");
std::cout << "created "
}
std::cout <<
"the total number of created peaks = " <<
npeaks
<<
" with sigma = " <<
sigma << std::endl;
}
void FitAwmi(void) {
for (i = 0; i < nbins; i++)
source[i] =
h->GetBinContent(i + 1);
for (i = 0; i <
nfound; i++) {
Amp[i] =
h->GetBinContent(bin);
}
pfit->SetFitParameters(0, (nbins - 1), 1000, 0.1,
pfit->kFitOptimChiCounts,
pfit->kFitAlphaHalving,
pfit->kFitPower2,
pfit->kFitTaylorOrderFirst);
delete gROOT->FindObject(
"d");
TH1F *
d =
new TH1F(*
h);
d->SetNameTitle(
"d",
"");
d->Reset(
"M");
for (i = 0; i < nbins; i++)
d->SetBinContent(i + 1,
source[i]);
std::cout <<
"the total number of found peaks = " <<
nfound
<< std::endl;
std::cout <<
"fit chi^2 = " <<
pfit->GetChi() << std::endl;
for (i = 0; i <
nfound; i++) {
Pos[i] =
d->GetBinCenter(bin);
Amp[i] =
d->GetBinContent(bin);
std::cout << "found "
<< std::endl;
}
d->SetLineColor(
kRed);
d->SetLineWidth(1);
h->GetListOfFunctions()->Remove(
pm);
}
h->GetListOfFunctions()->Add(
pm);
delete s;
return;
}
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t dest
Option_t Option_t TPoint TPoint const char x1
R__EXTERN TRandom * gRandom
1-D histogram with a float per channel (see TH1 documentation)
A PolyMarker is defined by an array on N points in a 2-D space.
virtual void SetSeed(ULong_t seed=0)
Set the random generator seed.
virtual Double_t Uniform(Double_t x1=1)
Returns a uniform deviate on the interval (0, x1).
Advanced 1-dimensional spectra fitting functions.
Advanced Spectra Processing.
Int_t SearchHighRes(Double_t *source, Double_t *destVector, Int_t ssize, Double_t sigma, Double_t threshold, bool backgroundRemove, Int_t deconIterations, bool markov, Int_t averWindow)
One-dimensional high-resolution peak search function.
Double_t * GetPositionX() const
constexpr Double_t Sqrt2()
Double_t Sqrt(Double_t x)
Returns the square root of x.
constexpr Double_t TwoPi()