Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
peaks.C File Reference

Detailed Description

View in nbviewer Open in SWAN
Illustrates how to find peaks in histograms.

This script generates a random number of gaussian peaks on top of a linear background. The position of the peaks is found via TSpectrum and injected as initial values of parameters to make a global fit. The background is computed and drawn on top of the original histogram.

This script can fit "peaks' heights" or "peaks' areas" (comment out or uncomment the line which defines __PEAKS_C_FIT_AREAS__).

To execute this example, do (in ROOT 5 or ROOT 6):

root > .x peaks.C (generate 10 peaks by default)
root > .x peaks.C++ (use the compiler)
root > .x peaks.C++(30) (generates 30 peaks)
Double_t x[n]
Definition legend1.C:17

To execute only the first part of the script (without fitting) specify a negative value for the number of peaks, eg

root > .x peaks.C(-20)
Found 9 candidate peaks to fit
Found 9 useful peaks to fit
Now fitting: Be patient
****************************************
Minimizer is Minuit2 / Migrad
Chi2 = 596.686
NDf = 471
Edm = 1.7299e-05
NCalls = 1747
p0 = 527.684 +/- 2.02282
p1 = -0.395029 +/- 0.00304651
p2 = 634.668 +/- 20.672
p3 = 519.331 +/- 0.111412
p4 = 3.49861 +/- 0.109353
p5 = 664.735 +/- 18.7022
p6 = 319.147 +/- 0.131874
p7 = 4.69145 +/- 0.126752
p8 = 670.916 +/- 17.6455
p9 = 754.806 +/- 0.108202
p10 = 4.29739 +/- 0.101204
p11 = 669.613 +/- 20.0806
p12 = 475.964 +/- 0.113649
p13 = 3.89314 +/- 0.110985
p14 = 648.09 +/- 18.199
p15 = 989.666 +/- 0.0884478
p16 = 3.34535 +/- 0.0786714
p17 = 662.552 +/- 17.8619
p18 = 539.268 +/- 0.122694
p19 = 4.56069 +/- 0.113882
p20 = 659.417 +/- 16.1804
p21 = 948.476 +/- 0.101982
p22 = 4.41156 +/- 0.091998
p23 = 753.529 +/- 15.2593
p24 = 232.585 +/- 0.151403
p25 = 6.95019 +/- 0.122555
p26 = 645.477 +/- 17.9858
p27 = 286.947 +/- 0.140814
p28 = 4.98705 +/- 0.133049
#include "TCanvas.h"
#include "TMath.h"
#include "TH1.h"
#include "TF1.h"
#include "TRandom.h"
#include "TSpectrum.h"
#include "TVirtualFitter.h"
//
// Comment out the line below, if you want "peaks' heights".
// Uncomment the line below, if you want "peaks' areas".
//
// #define __PEAKS_C_FIT_AREAS__ 1 /* fit peaks' areas */
Int_t npeaks = 30;
Double_t fpeaks(Double_t *x, Double_t *par) {
Double_t result = par[0] + par[1]*x[0];
for (Int_t p=0;p<npeaks;p++) {
Double_t norm = par[3*p+2]; // "height" or "area"
Double_t mean = par[3*p+3];
Double_t sigma = par[3*p+4];
#if defined(__PEAKS_C_FIT_AREAS__)
norm /= sigma * (TMath::Sqrt(TMath::TwoPi())); // "area"
#endif /* defined(__PEAKS_C_FIT_AREAS__) */
result += norm*TMath::Gaus(x[0],mean,sigma);
}
return result;
}
void peaks(Int_t np=10) {
npeaks = TMath::Abs(np);
TH1F *h = new TH1F("h","test",500,0,1000);
// Generate n peaks at random
Double_t par[3000];
par[0] = 0.8;
par[1] = -0.6/1000;
for (p=0;p<npeaks;p++) {
par[3*p+2] = 1; // "height"
par[3*p+3] = 10+gRandom->Rndm()*980; // "mean"
par[3*p+4] = 3+2*gRandom->Rndm(); // "sigma"
#if defined(__PEAKS_C_FIT_AREAS__)
par[3*p+2] *= par[3*p+4] * (TMath::Sqrt(TMath::TwoPi())); // "area"
#endif /* defined(__PEAKS_C_FIT_AREAS__) */
}
TF1 *f = new TF1("f",fpeaks,0,1000,2+3*npeaks);
f->SetNpx(1000);
f->SetParameters(par);
TCanvas *c1 = new TCanvas("c1","c1",10,10,1000,900);
c1->Divide(1,2);
c1->cd(1);
h->FillRandom("f",200000);
h->Draw();
TH1F *h2 = (TH1F*)h->Clone("h2");
// Use TSpectrum to find the peak candidates
TSpectrum *s = new TSpectrum(2*npeaks);
Int_t nfound = s->Search(h,2,"",0.10);
printf("Found %d candidate peaks to fit\n",nfound);
// Estimate background using TSpectrum::Background
TH1 *hb = s->Background(h,20,"same");
if (hb) c1->Update();
if (np <0) return;
//estimate linear background using a fitting method
c1->cd(2);
TF1 *fline = new TF1("fline","pol1",0,1000);
h->Fit("fline","qn");
// Loop on all found peaks. Eliminate peaks at the background level
par[0] = fline->GetParameter(0);
par[1] = fline->GetParameter(1);
npeaks = 0;
Double_t *xpeaks;
xpeaks = s->GetPositionX();
for (p=0;p<nfound;p++) {
Double_t xp = xpeaks[p];
Int_t bin = h->GetXaxis()->FindBin(xp);
Double_t yp = h->GetBinContent(bin);
if (yp-TMath::Sqrt(yp) < fline->Eval(xp)) continue;
par[3*npeaks+2] = yp; // "height"
par[3*npeaks+3] = xp; // "mean"
par[3*npeaks+4] = 3; // "sigma"
#if defined(__PEAKS_C_FIT_AREAS__)
par[3*npeaks+2] *= par[3*npeaks+4] * (TMath::Sqrt(TMath::TwoPi())); // "area"
#endif /* defined(__PEAKS_C_FIT_AREAS__) */
npeaks++;
}
printf("Found %d useful peaks to fit\n",npeaks);
printf("Now fitting: Be patient\n");
TF1 *fit = new TF1("fit",fpeaks,0,1000,2+3*npeaks);
// We may have more than the default 25 parameters
TVirtualFitter::Fitter(h2,10+3*npeaks);
fit->SetParameters(par);
fit->SetNpx(1000);
h2->Fit("fit");
}
#define f(i)
Definition RSha256.hxx:104
#define h(i)
Definition RSha256.hxx:106
int Int_t
Definition RtypesCore.h:45
double Double_t
Definition RtypesCore.h:59
winID h TVirtualViewer3D TVirtualGLPainter p
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t np
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t result
R__EXTERN TRandom * gRandom
Definition TRandom.h:62
The Canvas class.
Definition TCanvas.h:23
1-Dim function class
Definition TF1.h:233
virtual Double_t Eval(Double_t x, Double_t y=0, Double_t z=0, Double_t t=0) const
Evaluate this function.
Definition TF1.cxx:1441
virtual Double_t GetParameter(Int_t ipar) const
Definition TF1.h:538
1-D histogram with a float per channel (see TH1 documentation)
Definition TH1.h:621
TH1 is the base class of all histogram classes in ROOT.
Definition TH1.h:59
Double_t Rndm() override
Machine independent random number generator.
Definition TRandom.cxx:559
Advanced Spectra Processing.
Definition TSpectrum.h:18
virtual TH1 * Background(const TH1 *hist, Int_t niter=20, Option_t *option="")
One-dimensional background estimation function.
virtual Int_t Search(const TH1 *hist, Double_t sigma=2, Option_t *option="", Double_t threshold=0.05)
One-dimensional peak search function.
Double_t * GetPositionX() const
Definition TSpectrum.h:58
static TVirtualFitter * Fitter(TObject *obj, Int_t maxpar=25)
Static function returning a pointer to the current fitter.
const Double_t sigma
return c1
Definition legend1.C:41
fit(model, train_loader, val_loader, num_epochs, batch_size, optimizer, criterion, save_best, scheduler)
Double_t Gaus(Double_t x, Double_t mean=0, Double_t sigma=1, Bool_t norm=kFALSE)
Calculates a gaussian function with mean and sigma.
Definition TMath.cxx:471
Double_t Sqrt(Double_t x)
Returns the square root of x.
Definition TMath.h:662
Short_t Abs(Short_t d)
Returns the absolute value of parameter Short_t d.
Definition TMathBase.h:123
constexpr Double_t TwoPi()
Definition TMath.h:44
Author
Rene Brun

Definition in file peaks.C.