Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
TH1.cxx
Go to the documentation of this file.
1// @(#)root/hist:$Id$
2// Author: Rene Brun 26/12/94
3
4/*************************************************************************
5 * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
6 * All rights reserved. *
7 * *
8 * For the licensing terms see $ROOTSYS/LICENSE. *
9 * For the list of contributors see $ROOTSYS/README/CREDITS. *
10 *************************************************************************/
11
12#include <cstdlib>
13#include <cstring>
14#include <cstdio>
15#include <cctype>
16#include <climits>
17#include <sstream>
18#include <cmath>
19#include <iostream>
20
21#include "TROOT.h"
22#include "TBuffer.h"
23#include "TEnv.h"
24#include "TClass.h"
25#include "TMath.h"
26#include "THashList.h"
27#include "TH1.h"
28#include "TH2.h"
29#include "TH3.h"
30#include "TF2.h"
31#include "TF3.h"
32#include "TPluginManager.h"
33#include "TVirtualPad.h"
34#include "TRandom.h"
35#include "TVirtualFitter.h"
36#include "THLimitsFinder.h"
37#include "TProfile.h"
38#include "TStyle.h"
39#include "TVectorF.h"
40#include "TVectorD.h"
41#include "TBrowser.h"
42#include "TError.h"
43#include "TVirtualHistPainter.h"
44#include "TVirtualFFT.h"
45#include "TVirtualPaveStats.h"
46
47#include "HFitInterface.h"
48#include "Fit/DataRange.h"
49#include "Fit/BinData.h"
50#include "Math/GoFTest.h"
53
54#include "TH1Merger.h"
55
56/** \addtogroup Histograms
57@{
58\class TH1C
59\brief 1-D histogram with a byte per channel (see TH1 documentation)
60\class TH1S
61\brief 1-D histogram with a short per channel (see TH1 documentation)
62\class TH1I
63\brief 1-D histogram with an int per channel (see TH1 documentation)}
64\class TH1F
65\brief 1-D histogram with a float per channel (see TH1 documentation)}
66\class TH1D
67\brief 1-D histogram with a double per channel (see TH1 documentation)}
68@}
69*/
70
71/** \class TH1
72 \ingroup Histograms
73TH1 is the base class of all histogram classes in %ROOT.
74
75It provides the common interface for operations such as binning, filling, drawing, which
76will be detailed below.
77
78-# [Creating histograms](\ref creating-histograms)
79 - [Labelling axes](\ref labelling-axis)
80-# [Binning](\ref binning)
81 - [Fix or variable bin size](\ref fix-var)
82 - [Convention for numbering bins](\ref convention)
83 - [Alphanumeric Bin Labels](\ref alpha)
84 - [Histograms with automatic bins](\ref auto-bin)
85 - [Rebinning](\ref rebinning)
86-# [Filling histograms](\ref filling-histograms)
87 - [Associated errors](\ref associated-errors)
88 - [Associated functions](\ref associated-functions)
89 - [Projections of histograms](\ref prof-hist)
90 - [Random Numbers and histograms](\ref random-numbers)
91 - [Making a copy of a histogram](\ref making-a-copy)
92 - [Normalizing histograms](\ref normalizing)
93-# [Drawing histograms](\ref drawing-histograms)
94 - [Setting Drawing histogram contour levels (2-D hists only)](\ref cont-level)
95 - [Setting histogram graphics attributes](\ref graph-att)
96 - [Customising how axes are drawn](\ref axis-drawing)
97-# [Fitting histograms](\ref fitting-histograms)
98-# [Saving/reading histograms to/from a ROOT file](\ref saving-histograms)
99-# [Operations on histograms](\ref operations-on-histograms)
100-# [Miscellaneous operations](\ref misc)
101
102ROOT supports the following histogram types:
103
104 - 1-D histograms:
105 - TH1C : histograms with one byte per channel. Maximum bin content = 127
106 - TH1S : histograms with one short per channel. Maximum bin content = 32767
107 - TH1I : histograms with one int per channel. Maximum bin content = INT_MAX (\ref intmax "*")
108 - TH1F : histograms with one float per channel. Maximum precision 7 digits
109 - TH1D : histograms with one double per channel. Maximum precision 14 digits
110 - 2-D histograms:
111 - TH2C : histograms with one byte per channel. Maximum bin content = 127
112 - TH2S : histograms with one short per channel. Maximum bin content = 32767
113 - TH2I : histograms with one int per channel. Maximum bin content = INT_MAX (\ref intmax "*")
114 - TH2F : histograms with one float per channel. Maximum precision 7 digits
115 - TH2D : histograms with one double per channel. Maximum precision 14 digits
116 - 3-D histograms:
117 - TH3C : histograms with one byte per channel. Maximum bin content = 127
118 - TH3S : histograms with one short per channel. Maximum bin content = 32767
119 - TH3I : histograms with one int per channel. Maximum bin content = INT_MAX (\ref intmax "*")
120 - TH3F : histograms with one float per channel. Maximum precision 7 digits
121 - TH3D : histograms with one double per channel. Maximum precision 14 digits
122 - Profile histograms: See classes TProfile, TProfile2D and TProfile3D.
123 Profile histograms are used to display the mean value of Y and its standard deviation
124 for each bin in X. Profile histograms are in many cases an elegant
125 replacement of two-dimensional histograms : the inter-relation of two
126 measured quantities X and Y can always be visualized by a two-dimensional
127 histogram or scatter-plot; If Y is an unknown (but single-valued)
128 approximate function of X, this function is displayed by a profile
129 histogram with much better precision than by a scatter-plot.
130
131<sup>
132\anchor intmax (*) INT_MAX = 2147483647 is the [maximum value for a variable of type int.](https://docs.microsoft.com/en-us/cpp/c-language/cpp-integer-limits)
133</sup>
134
135The inheritance hierarchy looks as follows:
136
137\image html classTH1__inherit__graph_org.svg width=100%
138
139\anchor creating-histograms
140## Creating histograms
141
142Histograms are created by invoking one of the constructors, e.g.
143~~~ {.cpp}
144 TH1F *h1 = new TH1F("h1", "h1 title", 100, 0, 4.4);
145 TH2F *h2 = new TH2F("h2", "h2 title", 40, 0, 4, 30, -3, 3);
146~~~
147Histograms may also be created by:
148
149 - calling the Clone() function, see below
150 - making a projection from a 2-D or 3-D histogram, see below
151 - reading a histogram from a file
152
153 When a histogram is created, a reference to it is automatically added
154 to the list of in-memory objects for the current file or directory.
155 Then the pointer to this histogram in the current directory can be found
156 by its name, doing:
157~~~ {.cpp}
158 TH1F *h1 = (TH1F*)gDirectory->FindObject(name);
159~~~
160
161 This default behaviour can be changed by:
162~~~ {.cpp}
163 h->SetDirectory(nullptr); // for the current histogram h
164 TH1::AddDirectory(kFALSE); // sets a global switch disabling the referencing
165~~~
166 When the histogram is deleted, the reference to it is removed from
167 the list of objects in memory.
168 When a file is closed, all histograms in memory associated with this file
169 are automatically deleted.
170
171\anchor labelling-axis
172### Labelling axes
173
174 Axis titles can be specified in the title argument of the constructor.
175 They must be separated by ";":
176~~~ {.cpp}
177 TH1F* h=new TH1F("h", "Histogram title;X Axis;Y Axis", 100, 0, 1);
178~~~
179 The histogram title and the axis titles can be any TLatex string, and
180 are persisted if a histogram is written to a file.
181
182 Any title can be omitted:
183~~~ {.cpp}
184 TH1F* h=new TH1F("h", "Histogram title;;Y Axis", 100, 0, 1);
185 TH1F* h=new TH1F("h", ";;Y Axis", 100, 0, 1);
186~~~
187 The method SetTitle() has the same syntax:
188~~~ {.cpp}
189 h->SetTitle("Histogram title;Another X title Axis");
190~~~
191Alternatively, the title of each axis can be set directly:
192~~~ {.cpp}
193 h->GetXaxis()->SetTitle("X axis title");
194 h->GetYaxis()->SetTitle("Y axis title");
195~~~
196For bin labels see \ref binning.
197
198\anchor binning
199## Binning
200
201\anchor fix-var
202### Fix or variable bin size
203
204 All histogram types support either fix or variable bin sizes.
205 2-D histograms may have fix size bins along X and variable size bins
206 along Y or vice-versa. The functions to fill, manipulate, draw or access
207 histograms are identical in both cases.
208
209 Each histogram always contains 3 axis objects of type TAxis: fXaxis, fYaxis and fZaxis.
210 To access the axis parameters, use:
211~~~ {.cpp}
212 TAxis *xaxis = h->GetXaxis(); etc.
213 Double_t binCenter = xaxis->GetBinCenter(bin), etc.
214~~~
215 See class TAxis for a description of all the access functions.
216 The axis range is always stored internally in double precision.
217
218\anchor convention
219### Convention for numbering bins
220
221 For all histogram types: nbins, xlow, xup
222~~~ {.cpp}
223 bin = 0; underflow bin
224 bin = 1; first bin with low-edge xlow INCLUDED
225 bin = nbins; last bin with upper-edge xup EXCLUDED
226 bin = nbins+1; overflow bin
227~~~
228 In case of 2-D or 3-D histograms, a "global bin" number is defined.
229 For example, assuming a 3-D histogram with (binx, biny, binz), the function
230~~~ {.cpp}
231 Int_t gbin = h->GetBin(binx, biny, binz);
232~~~
233 returns a global/linearized gbin number. This global gbin is useful
234 to access the bin content/error information independently of the dimension.
235 Note that to access the information other than bin content and errors
236 one should use the TAxis object directly with e.g.:
237~~~ {.cpp}
238 Double_t xcenter = h3->GetZaxis()->GetBinCenter(27);
239~~~
240 returns the center along z of bin number 27 (not the global bin)
241 in the 3-D histogram h3.
242
243\anchor alpha
244### Alphanumeric Bin Labels
245
246 By default, a histogram axis is drawn with its numeric bin labels.
247 One can specify alphanumeric labels instead with:
248
249 - call TAxis::SetBinLabel(bin, label);
250 This can always be done before or after filling.
251 When the histogram is drawn, bin labels will be automatically drawn.
252 See examples labels1.C and labels2.C
253 - call to a Fill function with one of the arguments being a string, e.g.
254~~~ {.cpp}
255 hist1->Fill(somename, weight);
256 hist2->Fill(x, somename, weight);
257 hist2->Fill(somename, y, weight);
258 hist2->Fill(somenamex, somenamey, weight);
259~~~
260 See examples hlabels1.C and hlabels2.C
261 - via TTree::Draw. see for example cernstaff.C
262~~~ {.cpp}
263 tree.Draw("Nation::Division");
264~~~
265 where "Nation" and "Division" are two branches of a Tree.
266
267When using the options 2 or 3 above, the labels are automatically
268 added to the list (THashList) of labels for a given axis.
269 By default, an axis is drawn with the order of bins corresponding
270 to the filling sequence. It is possible to reorder the axis
271
272 - alphabetically
273 - by increasing or decreasing values
274
275 The reordering can be triggered via the TAxis context menu by selecting
276 the menu item "LabelsOption" or by calling directly
277 TH1::LabelsOption(option, axis) where
278
279 - axis may be "X", "Y" or "Z"
280 - option may be:
281 - "a" sort by alphabetic order
282 - ">" sort by decreasing values
283 - "<" sort by increasing values
284 - "h" draw labels horizontal
285 - "v" draw labels vertical
286 - "u" draw labels up (end of label right adjusted)
287 - "d" draw labels down (start of label left adjusted)
288
289 When using the option 2 above, new labels are added by doubling the current
290 number of bins in case one label does not exist yet.
291 When the Filling is terminated, it is possible to trim the number
292 of bins to match the number of active labels by calling
293~~~ {.cpp}
294 TH1::LabelsDeflate(axis) with axis = "X", "Y" or "Z"
295~~~
296 This operation is automatic when using TTree::Draw.
297 Once bin labels have been created, they become persistent if the histogram
298 is written to a file or when generating the C++ code via SavePrimitive.
299
300\anchor auto-bin
301### Histograms with automatic bins
302
303 When a histogram is created with an axis lower limit greater or equal
304 to its upper limit, the SetBuffer is automatically called with an
305 argument fBufferSize equal to fgBufferSize (default value=1000).
306 fgBufferSize may be reset via the static function TH1::SetDefaultBufferSize.
307 The axis limits will be automatically computed when the buffer will
308 be full or when the function BufferEmpty is called.
309
310\anchor rebinning
311### Rebinning
312
313 At any time, a histogram can be rebinned via TH1::Rebin. This function
314 returns a new histogram with the rebinned contents.
315 If bin errors were stored, they are recomputed during the rebinning.
316
317
318\anchor filling-histograms
319## Filling histograms
320
321 A histogram is typically filled with statements like:
322~~~ {.cpp}
323 h1->Fill(x);
324 h1->Fill(x, w); //fill with weight
325 h2->Fill(x, y)
326 h2->Fill(x, y, w)
327 h3->Fill(x, y, z)
328 h3->Fill(x, y, z, w)
329~~~
330 or via one of the Fill functions accepting names described above.
331 The Fill functions compute the bin number corresponding to the given
332 x, y or z argument and increment this bin by the given weight.
333 The Fill functions return the bin number for 1-D histograms or global
334 bin number for 2-D and 3-D histograms.
335 If TH1::Sumw2 has been called before filling, the sum of squares of
336 weights is also stored.
337 One can also increment directly a bin number via TH1::AddBinContent
338 or replace the existing content via TH1::SetBinContent.
339 To access the bin content of a given bin, do:
340~~~ {.cpp}
341 Double_t binContent = h->GetBinContent(bin);
342~~~
343
344 By default, the bin number is computed using the current axis ranges.
345 If the automatic binning option has been set via
346~~~ {.cpp}
347 h->SetCanExtend(TH1::kAllAxes);
348~~~
349 then, the Fill Function will automatically extend the axis range to
350 accomodate the new value specified in the Fill argument. The method
351 used is to double the bin size until the new value fits in the range,
352 merging bins two by two. This automatic binning options is extensively
353 used by the TTree::Draw function when histogramming Tree variables
354 with an unknown range.
355 This automatic binning option is supported for 1-D, 2-D and 3-D histograms.
356
357 During filling, some statistics parameters are incremented to compute
358 the mean value and Root Mean Square with the maximum precision.
359
360 In case of histograms of type TH1C, TH1S, TH2C, TH2S, TH3C, TH3S
361 a check is made that the bin contents do not exceed the maximum positive
362 capacity (127 or 32767). Histograms of all types may have positive
363 or/and negative bin contents.
364
365\anchor associated-errors
366### Associated errors
367 By default, for each bin, the sum of weights is computed at fill time.
368 One can also call TH1::Sumw2 to force the storage and computation
369 of the sum of the square of weights per bin.
370 If Sumw2 has been called, the error per bin is computed as the
371 sqrt(sum of squares of weights), otherwise the error is set equal
372 to the sqrt(bin content).
373 To return the error for a given bin number, do:
374~~~ {.cpp}
375 Double_t error = h->GetBinError(bin);
376~~~
377
378\anchor associated-functions
379### Associated functions
380 One or more object (typically a TF1*) can be added to the list
381 of functions (fFunctions) associated to each histogram.
382 When TH1::Fit is invoked, the fitted function is added to this list.
383 Given a histogram h, one can retrieve an associated function
384 with:
385~~~ {.cpp}
386 TF1 *myfunc = h->GetFunction("myfunc");
387~~~
388
389
390\anchor operations-on-histograms
391## Operations on histograms
392
393 Many types of operations are supported on histograms or between histograms
394
395 - Addition of a histogram to the current histogram.
396 - Additions of two histograms with coefficients and storage into the current
397 histogram.
398 - Multiplications and Divisions are supported in the same way as additions.
399 - The Add, Divide and Multiply functions also exist to add, divide or multiply
400 a histogram by a function.
401
402 If a histogram has associated error bars (TH1::Sumw2 has been called),
403 the resulting error bars are also computed assuming independent histograms.
404 In case of divisions, Binomial errors are also supported.
405 One can mark a histogram to be an "average" histogram by setting its bit kIsAverage via
406 myhist.SetBit(TH1::kIsAverage);
407 When adding (see TH1::Add) average histograms, the histograms are averaged and not summed.
408
409
410\anchor prof-hist
411### Projections of histograms
412
413 One can:
414
415 - make a 1-D projection of a 2-D histogram or Profile
416 see functions TH2::ProjectionX,Y, TH2::ProfileX,Y, TProfile::ProjectionX
417 - make a 1-D, 2-D or profile out of a 3-D histogram
418 see functions TH3::ProjectionZ, TH3::Project3D.
419
420 One can fit these projections via:
421~~~ {.cpp}
422 TH2::FitSlicesX,Y, TH3::FitSlicesZ.
423~~~
424
425\anchor random-numbers
426### Random Numbers and histograms
427
428 TH1::FillRandom can be used to randomly fill a histogram using
429 the contents of an existing TF1 function or another
430 TH1 histogram (for all dimensions).
431 For example, the following two statements create and fill a histogram
432 10000 times with a default gaussian distribution of mean 0 and sigma 1:
433~~~ {.cpp}
434 TH1F h1("h1", "histo from a gaussian", 100, -3, 3);
435 h1.FillRandom("gaus", 10000);
436~~~
437 TH1::GetRandom can be used to return a random number distributed
438 according to the contents of a histogram.
439
440\anchor making-a-copy
441### Making a copy of a histogram
442 Like for any other ROOT object derived from TObject, one can use
443 the Clone() function. This makes an identical copy of the original
444 histogram including all associated errors and functions, e.g.:
445~~~ {.cpp}
446 TH1F *hnew = (TH1F*)h->Clone("hnew");
447~~~
448
449\anchor normalizing
450### Normalizing histograms
451
452 One can scale a histogram such that the bins integral is equal to
453 the normalization parameter via TH1::Scale(Double_t norm), where norm
454 is the desired normalization divided by the integral of the histogram.
455
456
457\anchor drawing-histograms
458## Drawing histograms
459
460 Histograms are drawn via the THistPainter class. Each histogram has
461 a pointer to its own painter (to be usable in a multithreaded program).
462 Many drawing options are supported.
463 See THistPainter::Paint() for more details.
464
465 The same histogram can be drawn with different options in different pads.
466 When a histogram drawn in a pad is deleted, the histogram is
467 automatically removed from the pad or pads where it was drawn.
468 If a histogram is drawn in a pad, then filled again, the new status
469 of the histogram will be automatically shown in the pad next time
470 the pad is updated. One does not need to redraw the histogram.
471 To draw the current version of a histogram in a pad, one can use
472~~~ {.cpp}
473 h->DrawCopy();
474~~~
475 This makes a clone (see Clone below) of the histogram. Once the clone
476 is drawn, the original histogram may be modified or deleted without
477 affecting the aspect of the clone.
478
479 One can use TH1::SetMaximum() and TH1::SetMinimum() to force a particular
480 value for the maximum or the minimum scale on the plot. (For 1-D
481 histograms this means the y-axis, while for 2-D histograms these
482 functions affect the z-axis).
483
484 TH1::UseCurrentStyle() can be used to change all histogram graphics
485 attributes to correspond to the current selected style.
486 This function must be called for each histogram.
487 In case one reads and draws many histograms from a file, one can force
488 the histograms to inherit automatically the current graphics style
489 by calling before gROOT->ForceStyle().
490
491\anchor cont-level
492### Setting Drawing histogram contour levels (2-D hists only)
493
494 By default contours are automatically generated at equidistant
495 intervals. A default value of 20 levels is used. This can be modified
496 via TH1::SetContour() or TH1::SetContourLevel().
497 the contours level info is used by the drawing options "cont", "surf",
498 and "lego".
499
500\anchor graph-att
501### Setting histogram graphics attributes
502
503 The histogram classes inherit from the attribute classes:
504 TAttLine, TAttFill, and TAttMarker.
505 See the member functions of these classes for the list of options.
506
507\anchor axis-drawing
508### Customizing how axes are drawn
509
510 Use the functions of TAxis, such as
511~~~ {.cpp}
512 histogram.GetXaxis()->SetTicks("+");
513 histogram.GetYaxis()->SetRangeUser(1., 5.);
514~~~
515
516\anchor fitting-histograms
517## Fitting histograms
518
519 Histograms (1-D, 2-D, 3-D and Profiles) can be fitted with a user
520 specified function or a pre-defined function via TH1::Fit.
521 See TH1::Fit(TF1*, Option_t *, Option_t *, Double_t, Double_t) for the fitting documentation and the possible [fitting options](\ref HFitOpt)
522
523 The FitPanel can also be used for fitting an histogram. See the [FitPanel documentation](https://root.cern/manual/fitting/#using-the-fit-panel).
524
525\anchor saving-histograms
526## Saving/reading histograms to/from a ROOT file
527
528 The following statements create a ROOT file and store a histogram
529 on the file. Because TH1 derives from TNamed, the key identifier on
530 the file is the histogram name:
531~~~ {.cpp}
532 TFile f("histos.root", "new");
533 TH1F h1("hgaus", "histo from a gaussian", 100, -3, 3);
534 h1.FillRandom("gaus", 10000);
535 h1->Write();
536~~~
537 To read this histogram in another Root session, do:
538~~~ {.cpp}
539 TFile f("histos.root");
540 TH1F *h = (TH1F*)f.Get("hgaus");
541~~~
542 One can save all histograms in memory to the file by:
543~~~ {.cpp}
544 file->Write();
545~~~
546
547
548\anchor misc
549## Miscellaneous operations
550
551~~~ {.cpp}
552 TH1::KolmogorovTest(): statistical test of compatibility in shape
553 between two histograms
554 TH1::Smooth() smooths the bin contents of a 1-d histogram
555 TH1::Integral() returns the integral of bin contents in a given bin range
556 TH1::GetMean(int axis) returns the mean value along axis
557 TH1::GetStdDev(int axis) returns the sigma distribution along axis
558 TH1::GetEntries() returns the number of entries
559 TH1::Reset() resets the bin contents and errors of a histogram
560~~~
561 IMPORTANT NOTE: The returned values for GetMean and GetStdDev depend on how the
562 histogram statistics are calculated. By default, if no range has been set, the
563 returned values are the (unbinned) ones calculated at fill time. If a range has been
564 set, however, the values are calculated using the bins in range; THIS IS TRUE EVEN
565 IF THE RANGE INCLUDES ALL BINS--use TAxis::SetRange(0, 0) to unset the range.
566 To ensure that the returned values are always those of the binned data stored in the
567 histogram, call TH1::ResetStats. See TH1::GetStats.
568*/
569
570TF1 *gF1=0; //left for back compatibility (use TVirtualFitter::GetUserFunc instead)
571
576
577extern void H1InitGaus();
578extern void H1InitExpo();
579extern void H1InitPolynom();
580extern void H1LeastSquareFit(Int_t n, Int_t m, Double_t *a);
581extern void H1LeastSquareLinearFit(Int_t ndata, Double_t &a0, Double_t &a1, Int_t &ifail);
582extern void H1LeastSquareSeqnd(Int_t n, Double_t *a, Int_t idim, Int_t &ifail, Int_t k, Double_t *b);
583
584// Internal exceptions for the CheckConsistency method
585class DifferentDimension: public std::exception {};
586class DifferentNumberOfBins: public std::exception {};
587class DifferentAxisLimits: public std::exception {};
588class DifferentBinLimits: public std::exception {};
589class DifferentLabels: public std::exception {};
590
592
593////////////////////////////////////////////////////////////////////////////////
594/// Histogram default constructor.
595
597{
598 fDirectory = nullptr;
599 fFunctions = new TList;
600 fNcells = 0;
601 fIntegral = nullptr;
602 fPainter = nullptr;
603 fEntries = 0;
604 fNormFactor = 0;
606 fMaximum = -1111;
607 fMinimum = -1111;
608 fBufferSize = 0;
609 fBuffer = nullptr;
612 fXaxis.SetName("xaxis");
613 fYaxis.SetName("yaxis");
614 fZaxis.SetName("zaxis");
615 fXaxis.SetParent(this);
616 fYaxis.SetParent(this);
617 fZaxis.SetParent(this);
619}
620
621////////////////////////////////////////////////////////////////////////////////
622/// Histogram default destructor.
623
625{
627 return;
628 }
629 delete[] fIntegral;
630 fIntegral = nullptr;
631 delete[] fBuffer;
632 fBuffer = nullptr;
633 if (fFunctions) {
635
637 TObject* obj = nullptr;
638 //special logic to support the case where the same object is
639 //added multiple times in fFunctions.
640 //This case happens when the same object is added with different
641 //drawing modes
642 //In the loop below we must be careful with objects (eg TCutG) that may
643 // have been added to the list of functions of several histograms
644 //and may have been already deleted.
645 while ((obj = fFunctions->First())) {
646 while(fFunctions->Remove(obj)) { }
648 break;
649 }
650 delete obj;
651 obj = nullptr;
652 }
653 delete fFunctions;
654 fFunctions = nullptr;
655 }
656 if (fDirectory) {
657 fDirectory->Remove(this);
658 fDirectory = nullptr;
659 }
660 delete fPainter;
661 fPainter = nullptr;
662}
663
664////////////////////////////////////////////////////////////////////////////////
665/// Constructor for fix bin size histograms.
666/// Creates the main histogram structure.
667///
668/// \param[in] name name of histogram (avoid blanks)
669/// \param[in] title histogram title.
670/// If title is of the form `stringt;stringx;stringy;stringz`,
671/// the histogram title is set to `stringt`,
672/// the x axis title to `stringx`, the y axis title to `stringy`, etc.
673/// \param[in] nbins number of bins
674/// \param[in] xlow low edge of first bin
675/// \param[in] xup upper edge of last bin (not included in last bin)
676
677
678TH1::TH1(const char *name,const char *title,Int_t nbins,Double_t xlow,Double_t xup)
679 :TNamed(name,title), TAttLine(), TAttFill(), TAttMarker()
680{
681 Build();
682 if (nbins <= 0) {Warning("TH1","nbins is <=0 - set to nbins = 1"); nbins = 1; }
683 fXaxis.Set(nbins,xlow,xup);
684 fNcells = fXaxis.GetNbins()+2;
685}
686
687////////////////////////////////////////////////////////////////////////////////
688/// Constructor for variable bin size histograms using an input array of type float.
689/// Creates the main histogram structure.
690///
691/// \param[in] name name of histogram (avoid blanks)
692/// \param[in] title histogram title.
693/// If title is of the form `stringt;stringx;stringy;stringz`
694/// the histogram title is set to `stringt`,
695/// the x axis title to `stringx`, the y axis title to `stringy`, etc.
696/// \param[in] nbins number of bins
697/// \param[in] xbins array of low-edges for each bin.
698/// This is an array of type float and size nbins+1
699
700TH1::TH1(const char *name,const char *title,Int_t nbins,const Float_t *xbins)
701 :TNamed(name,title), TAttLine(), TAttFill(), TAttMarker()
702{
703 Build();
704 if (nbins <= 0) {Warning("TH1","nbins is <=0 - set to nbins = 1"); nbins = 1; }
705 if (xbins) fXaxis.Set(nbins,xbins);
706 else fXaxis.Set(nbins,0,1);
707 fNcells = fXaxis.GetNbins()+2;
708}
709
710////////////////////////////////////////////////////////////////////////////////
711/// Constructor for variable bin size histograms using an input array of type double.
712///
713/// \param[in] name name of histogram (avoid blanks)
714/// \param[in] title histogram title.
715/// If title is of the form `stringt;stringx;stringy;stringz`
716/// the histogram title is set to `stringt`,
717/// the x axis title to `stringx`, the y axis title to `stringy`, etc.
718/// \param[in] nbins number of bins
719/// \param[in] xbins array of low-edges for each bin.
720/// This is an array of type double and size nbins+1
721
722TH1::TH1(const char *name,const char *title,Int_t nbins,const Double_t *xbins)
723 :TNamed(name,title), TAttLine(), TAttFill(), TAttMarker()
724{
725 Build();
726 if (nbins <= 0) {Warning("TH1","nbins is <=0 - set to nbins = 1"); nbins = 1; }
727 if (xbins) fXaxis.Set(nbins,xbins);
728 else fXaxis.Set(nbins,0,1);
729 fNcells = fXaxis.GetNbins()+2;
730}
731
732////////////////////////////////////////////////////////////////////////////////
733/// Static function: cannot be inlined on Windows/NT.
734
736{
737 return fgAddDirectory;
738}
739
740////////////////////////////////////////////////////////////////////////////////
741/// Browse the Histogram object.
742
744{
745 Draw(b ? b->GetDrawOption() : "");
746 gPad->Update();
747}
748
749////////////////////////////////////////////////////////////////////////////////
750/// Creates histogram basic data structure.
751
753{
754 fDirectory = nullptr;
755 fPainter = nullptr;
756 fIntegral = nullptr;
757 fEntries = 0;
758 fNormFactor = 0;
760 fMaximum = -1111;
761 fMinimum = -1111;
762 fBufferSize = 0;
763 fBuffer = nullptr;
766 fXaxis.SetName("xaxis");
767 fYaxis.SetName("yaxis");
768 fZaxis.SetName("zaxis");
769 fYaxis.Set(1,0.,1.);
770 fZaxis.Set(1,0.,1.);
771 fXaxis.SetParent(this);
772 fYaxis.SetParent(this);
773 fZaxis.SetParent(this);
774
776
777 fFunctions = new TList;
778
780
783 if (fDirectory) {
785 fDirectory->Append(this,kTRUE);
786 }
787 }
788}
789
790////////////////////////////////////////////////////////////////////////////////
791/// Performs the operation: `this = this + c1*f1`
792/// if errors are defined (see TH1::Sumw2), errors are also recalculated.
793///
794/// By default, the function is computed at the centre of the bin.
795/// if option "I" is specified (1-d histogram only), the integral of the
796/// function in each bin is used instead of the value of the function at
797/// the centre of the bin.
798///
799/// Only bins inside the function range are recomputed.
800///
801/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
802/// you should call Sumw2 before making this operation.
803/// This is particularly important if you fit the histogram after TH1::Add
804///
805/// The function return kFALSE if the Add operation failed
806
808{
809 if (!f1) {
810 Error("Add","Attempt to add a non-existing function");
811 return kFALSE;
812 }
813
814 TString opt = option;
815 opt.ToLower();
816 Bool_t integral = kFALSE;
817 if (opt.Contains("i") && fDimension == 1) integral = kTRUE;
818
819 Int_t ncellsx = GetNbinsX() + 2; // cells = normal bins + underflow bin + overflow bin
820 Int_t ncellsy = GetNbinsY() + 2;
821 Int_t ncellsz = GetNbinsZ() + 2;
822 if (fDimension < 2) ncellsy = 1;
823 if (fDimension < 3) ncellsz = 1;
824
825 // delete buffer if it is there since it will become invalid
826 if (fBuffer) BufferEmpty(1);
827
828 // - Add statistics
829 Double_t s1[10];
830 for (Int_t i = 0; i < 10; ++i) s1[i] = 0;
831 PutStats(s1);
832 SetMinimum();
833 SetMaximum();
834
835 // - Loop on bins (including underflows/overflows)
836 Int_t bin, binx, biny, binz;
837 Double_t cu=0;
838 Double_t xx[3];
839 Double_t *params = 0;
840 f1->InitArgs(xx,params);
841 for (binz = 0; binz < ncellsz; ++binz) {
842 xx[2] = fZaxis.GetBinCenter(binz);
843 for (biny = 0; biny < ncellsy; ++biny) {
844 xx[1] = fYaxis.GetBinCenter(biny);
845 for (binx = 0; binx < ncellsx; ++binx) {
846 xx[0] = fXaxis.GetBinCenter(binx);
847 if (!f1->IsInside(xx)) continue;
849 bin = binx + ncellsx * (biny + ncellsy * binz);
850 if (integral) {
851 cu = c1*f1->Integral(fXaxis.GetBinLowEdge(binx), fXaxis.GetBinUpEdge(binx), 0.) / fXaxis.GetBinWidth(binx);
852 } else {
853 cu = c1*f1->EvalPar(xx);
854 }
855 if (TF1::RejectedPoint()) continue;
856 AddBinContent(bin,cu);
857 }
858 }
859 }
860
861 return kTRUE;
862}
863
864////////////////////////////////////////////////////////////////////////////////
865/// Performs the operation: `this = this + c1*h1`
866/// If errors are defined (see TH1::Sumw2), errors are also recalculated.
867///
868/// Note that if h1 has Sumw2 set, Sumw2 is automatically called for this
869/// if not already set.
870///
871/// Note also that adding histogram with labels is not supported, histogram will be
872/// added merging them by bin number independently of the labels.
873/// For adding histogram with labels one should use TH1::Merge
874///
875/// SPECIAL CASE (Average/Efficiency histograms)
876/// For histograms representing averages or efficiencies, one should compute the average
877/// of the two histograms and not the sum. One can mark a histogram to be an average
878/// histogram by setting its bit kIsAverage with
879/// myhist.SetBit(TH1::kIsAverage);
880/// Note that the two histograms must have their kIsAverage bit set
881///
882/// IMPORTANT NOTE1: If you intend to use the errors of this histogram later
883/// you should call Sumw2 before making this operation.
884/// This is particularly important if you fit the histogram after TH1::Add
885///
886/// IMPORTANT NOTE2: if h1 has a normalisation factor, the normalisation factor
887/// is used , ie this = this + c1*factor*h1
888/// Use the other TH1::Add function if you do not want this feature
889///
890/// IMPORTANT NOTE3: You should be careful about the statistics of the
891/// returned histogram, whose statistics may be binned or unbinned,
892/// depending on whether c1 is negative, whether TAxis::kAxisRange is true,
893/// and whether TH1::ResetStats has been called on either this or h1.
894/// See TH1::GetStats.
895///
896/// The function return kFALSE if the Add operation failed
897
899{
900 if (!h1) {
901 Error("Add","Attempt to add a non-existing histogram");
902 return kFALSE;
903 }
904
905 // delete buffer if it is there since it will become invalid
906 if (fBuffer) BufferEmpty(1);
907
908 bool useMerge = (c1 == 1. && !this->TestBit(kIsAverage) && !h1->TestBit(kIsAverage) );
909 try {
910 CheckConsistency(this,h1);
911 useMerge = kFALSE;
912 } catch(DifferentNumberOfBins&) {
913 if (useMerge)
914 Info("Add","Attempt to add histograms with different number of bins - trying to use TH1::Merge");
915 else {
916 Error("Add","Attempt to add histograms with different number of bins : nbins h1 = %d , nbins h2 = %d",GetNbinsX(), h1->GetNbinsX());
917 return kFALSE;
918 }
919 } catch(DifferentAxisLimits&) {
920 if (useMerge)
921 Info("Add","Attempt to add histograms with different axis limits - trying to use TH1::Merge");
922 else
923 Warning("Add","Attempt to add histograms with different axis limits");
924 } catch(DifferentBinLimits&) {
925 if (useMerge)
926 Info("Add","Attempt to add histograms with different bin limits - trying to use TH1::Merge");
927 else
928 Warning("Add","Attempt to add histograms with different bin limits");
929 } catch(DifferentLabels&) {
930 // in case of different labels -
931 if (useMerge)
932 Info("Add","Attempt to add histograms with different labels - trying to use TH1::Merge");
933 else
934 Info("Warning","Attempt to add histograms with different labels");
935 }
936
937 if (useMerge) {
938 TList l;
939 l.Add(const_cast<TH1*>(h1));
940 auto iret = Merge(&l);
941 return (iret >= 0);
942 }
943
944 // Create Sumw2 if h1 has Sumw2 set
945 if (fSumw2.fN == 0 && h1->GetSumw2N() != 0) Sumw2();
946
947 // - Add statistics
948 Double_t entries = TMath::Abs( GetEntries() + c1 * h1->GetEntries() );
949
950 // statistics can be preserved only in case of positive coefficients
951 // otherwise with negative c1 (histogram subtraction) one risks to get negative variances
952 Bool_t resetStats = (c1 < 0);
953 Double_t s1[kNstat] = {0};
954 Double_t s2[kNstat] = {0};
955 if (!resetStats) {
956 // need to initialize to zero s1 and s2 since
957 // GetStats fills only used elements depending on dimension and type
958 GetStats(s1);
959 h1->GetStats(s2);
960 }
961
962 SetMinimum();
963 SetMaximum();
964
965 // - Loop on bins (including underflows/overflows)
966 Double_t factor = 1;
967 if (h1->GetNormFactor() != 0) factor = h1->GetNormFactor()/h1->GetSumOfWeights();;
968 Double_t c1sq = c1 * c1;
969 Double_t factsq = factor * factor;
970
971 for (Int_t bin = 0; bin < fNcells; ++bin) {
972 //special case where histograms have the kIsAverage bit set
973 if (this->TestBit(kIsAverage) && h1->TestBit(kIsAverage)) {
975 Double_t y2 = this->RetrieveBinContent(bin);
977 Double_t e2sq = this->GetBinErrorSqUnchecked(bin);
978 Double_t w1 = 1., w2 = 1.;
979
980 // consider all special cases when bin errors are zero
981 // see http://root-forum.cern.ch/viewtopic.php?f=3&t=13299
982 if (e1sq) w1 = 1. / e1sq;
983 else if (h1->fSumw2.fN) {
984 w1 = 1.E200; // use an arbitrary huge value
985 if (y1 == 0) {
986 // use an estimated error from the global histogram scale
987 double sf = (s2[0] != 0) ? s2[1]/s2[0] : 1;
988 w1 = 1./(sf*sf);
989 }
990 }
991 if (e2sq) w2 = 1. / e2sq;
992 else if (fSumw2.fN) {
993 w2 = 1.E200; // use an arbitrary huge value
994 if (y2 == 0) {
995 // use an estimated error from the global histogram scale
996 double sf = (s1[0] != 0) ? s1[1]/s1[0] : 1;
997 w2 = 1./(sf*sf);
998 }
999 }
1000
1001 double y = (w1*y1 + w2*y2)/(w1 + w2);
1002 UpdateBinContent(bin, y);
1003 if (fSumw2.fN) {
1004 double err2 = 1./(w1 + w2);
1005 if (err2 < 1.E-200) err2 = 0; // to remove arbitrary value when e1=0 AND e2=0
1006 fSumw2.fArray[bin] = err2;
1007 }
1008 } else { // normal case of addition between histograms
1009 AddBinContent(bin, c1 * factor * h1->RetrieveBinContent(bin));
1010 if (fSumw2.fN) fSumw2.fArray[bin] += c1sq * factsq * h1->GetBinErrorSqUnchecked(bin);
1011 }
1012 }
1013
1014 // update statistics (do here to avoid changes by SetBinContent)
1015 if (resetStats) {
1016 // statistics need to be reset in case coefficient are negative
1017 ResetStats();
1018 }
1019 else {
1020 for (Int_t i=0;i<kNstat;i++) {
1021 if (i == 1) s1[i] += c1*c1*s2[i];
1022 else s1[i] += c1*s2[i];
1023 }
1024 PutStats(s1);
1025 SetEntries(entries);
1026 }
1027 return kTRUE;
1028}
1029
1030////////////////////////////////////////////////////////////////////////////////
1031/// Replace contents of this histogram by the addition of h1 and h2.
1032///
1033/// `this = c1*h1 + c2*h2`
1034/// if errors are defined (see TH1::Sumw2), errors are also recalculated
1035///
1036/// Note that if h1 or h2 have Sumw2 set, Sumw2 is automatically called for this
1037/// if not already set.
1038///
1039/// Note also that adding histogram with labels is not supported, histogram will be
1040/// added merging them by bin number independently of the labels.
1041/// For adding histogram ith labels one should use TH1::Merge
1042///
1043/// SPECIAL CASE (Average/Efficiency histograms)
1044/// For histograms representing averages or efficiencies, one should compute the average
1045/// of the two histograms and not the sum. One can mark a histogram to be an average
1046/// histogram by setting its bit kIsAverage with
1047/// myhist.SetBit(TH1::kIsAverage);
1048/// Note that the two histograms must have their kIsAverage bit set
1049///
1050/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
1051/// you should call Sumw2 before making this operation.
1052/// This is particularly important if you fit the histogram after TH1::Add
1053///
1054/// IMPORTANT NOTE2: You should be careful about the statistics of the
1055/// returned histogram, whose statistics may be binned or unbinned,
1056/// depending on whether c1 is negative, whether TAxis::kAxisRange is true,
1057/// and whether TH1::ResetStats has been called on either this or h1.
1058/// See TH1::GetStats.
1059///
1060/// ANOTHER SPECIAL CASE : h1 = h2 and c2 < 0
1061/// do a scaling this = c1 * h1 / (bin Volume)
1062///
1063/// The function returns kFALSE if the Add operation failed
1064
1066{
1067
1068 if (!h1 || !h2) {
1069 Error("Add","Attempt to add a non-existing histogram");
1070 return kFALSE;
1071 }
1072
1073 // delete buffer if it is there since it will become invalid
1074 if (fBuffer) BufferEmpty(1);
1075
1076 Bool_t normWidth = kFALSE;
1077 if (h1 == h2 && c2 < 0) {c2 = 0; normWidth = kTRUE;}
1078
1079 if (h1 != h2) {
1080 bool useMerge = (c1 == 1. && c2 == 1. && !this->TestBit(kIsAverage) && !h1->TestBit(kIsAverage) );
1081
1082 try {
1083 CheckConsistency(h1,h2);
1084 CheckConsistency(this,h1);
1085 useMerge = kFALSE;
1086 } catch(DifferentNumberOfBins&) {
1087 if (useMerge)
1088 Info("Add","Attempt to add histograms with different number of bins - trying to use TH1::Merge");
1089 else {
1090 Error("Add","Attempt to add histograms with different number of bins : nbins h1 = %d , nbins h2 = %d",GetNbinsX(), h1->GetNbinsX());
1091 return kFALSE;
1092 }
1093 } catch(DifferentAxisLimits&) {
1094 if (useMerge)
1095 Info("Add","Attempt to add histograms with different axis limits - trying to use TH1::Merge");
1096 else
1097 Warning("Add","Attempt to add histograms with different axis limits");
1098 } catch(DifferentBinLimits&) {
1099 if (useMerge)
1100 Info("Add","Attempt to add histograms with different bin limits - trying to use TH1::Merge");
1101 else
1102 Warning("Add","Attempt to add histograms with different bin limits");
1103 } catch(DifferentLabels&) {
1104 // in case of different labels -
1105 if (useMerge)
1106 Info("Add","Attempt to add histograms with different labels - trying to use TH1::Merge");
1107 else
1108 Info("Warning","Attempt to add histograms with different labels");
1109 }
1110
1111 if (useMerge) {
1112 TList l;
1113 // why TList takes non-const pointers ????
1114 l.Add(const_cast<TH1*>(h1));
1115 l.Add(const_cast<TH1*>(h2));
1116 Reset("ICE");
1117 auto iret = Merge(&l);
1118 return (iret >= 0);
1119 }
1120 }
1121
1122 // Create Sumw2 if h1 or h2 have Sumw2 set
1123 if (fSumw2.fN == 0 && (h1->GetSumw2N() != 0 || h2->GetSumw2N() != 0)) Sumw2();
1124
1125 // - Add statistics
1126 Double_t nEntries = TMath::Abs( c1*h1->GetEntries() + c2*h2->GetEntries() );
1127
1128 // TODO remove
1129 // statistics can be preserved only in case of positive coefficients
1130 // otherwise with negative c1 (histogram subtraction) one risks to get negative variances
1131 // also in case of scaling with the width we cannot preserve the statistics
1132 Double_t s1[kNstat] = {0};
1133 Double_t s2[kNstat] = {0};
1134 Double_t s3[kNstat];
1135
1136
1137 Bool_t resetStats = (c1*c2 < 0) || normWidth;
1138 if (!resetStats) {
1139 // need to initialize to zero s1 and s2 since
1140 // GetStats fills only used elements depending on dimension and type
1141 h1->GetStats(s1);
1142 h2->GetStats(s2);
1143 for (Int_t i=0;i<kNstat;i++) {
1144 if (i == 1) s3[i] = c1*c1*s1[i] + c2*c2*s2[i];
1145 //else s3[i] = TMath::Abs(c1)*s1[i] + TMath::Abs(c2)*s2[i];
1146 else s3[i] = c1*s1[i] + c2*s2[i];
1147 }
1148 }
1149
1150 SetMinimum();
1151 SetMaximum();
1152
1153 if (normWidth) { // DEPRECATED CASE: belongs to fitting / drawing modules
1154
1155 Int_t nbinsx = GetNbinsX() + 2; // normal bins + underflow, overflow
1156 Int_t nbinsy = GetNbinsY() + 2;
1157 Int_t nbinsz = GetNbinsZ() + 2;
1158
1159 if (fDimension < 2) nbinsy = 1;
1160 if (fDimension < 3) nbinsz = 1;
1161
1162 Int_t bin, binx, biny, binz;
1163 for (binz = 0; binz < nbinsz; ++binz) {
1164 Double_t wz = h1->GetZaxis()->GetBinWidth(binz);
1165 for (biny = 0; biny < nbinsy; ++biny) {
1166 Double_t wy = h1->GetYaxis()->GetBinWidth(biny);
1167 for (binx = 0; binx < nbinsx; ++binx) {
1168 Double_t wx = h1->GetXaxis()->GetBinWidth(binx);
1169 bin = GetBin(binx, biny, binz);
1170 Double_t w = wx*wy*wz;
1171 UpdateBinContent(bin, c1 * h1->RetrieveBinContent(bin) / w);
1172 if (fSumw2.fN) {
1173 Double_t e1 = h1->GetBinError(bin)/w;
1174 fSumw2.fArray[bin] = c1*c1*e1*e1;
1175 }
1176 }
1177 }
1178 }
1179 } else if (h1->TestBit(kIsAverage) && h2->TestBit(kIsAverage)) {
1180 for (Int_t i = 0; i < fNcells; ++i) { // loop on cells (bins including underflow / overflow)
1181 // special case where histograms have the kIsAverage bit set
1185 Double_t e2sq = h2->GetBinErrorSqUnchecked(i);
1186 Double_t w1 = 1., w2 = 1.;
1187
1188 // consider all special cases when bin errors are zero
1189 // see http://root-forum.cern.ch/viewtopic.php?f=3&t=13299
1190 if (e1sq) w1 = 1./ e1sq;
1191 else if (h1->fSumw2.fN) {
1192 w1 = 1.E200; // use an arbitrary huge value
1193 if (y1 == 0 ) { // use an estimated error from the global histogram scale
1194 double sf = (s1[0] != 0) ? s1[1]/s1[0] : 1;
1195 w1 = 1./(sf*sf);
1196 }
1197 }
1198 if (e2sq) w2 = 1./ e2sq;
1199 else if (h2->fSumw2.fN) {
1200 w2 = 1.E200; // use an arbitrary huge value
1201 if (y2 == 0) { // use an estimated error from the global histogram scale
1202 double sf = (s2[0] != 0) ? s2[1]/s2[0] : 1;
1203 w2 = 1./(sf*sf);
1204 }
1205 }
1206
1207 double y = (w1*y1 + w2*y2)/(w1 + w2);
1208 UpdateBinContent(i, y);
1209 if (fSumw2.fN) {
1210 double err2 = 1./(w1 + w2);
1211 if (err2 < 1.E-200) err2 = 0; // to remove arbitrary value when e1=0 AND e2=0
1212 fSumw2.fArray[i] = err2;
1213 }
1214 }
1215 } else { // case of simple histogram addition
1216 Double_t c1sq = c1 * c1;
1217 Double_t c2sq = c2 * c2;
1218 for (Int_t i = 0; i < fNcells; ++i) { // Loop on cells (bins including underflows/overflows)
1220 if (fSumw2.fN) {
1221 fSumw2.fArray[i] = c1sq * h1->GetBinErrorSqUnchecked(i) + c2sq * h2->GetBinErrorSqUnchecked(i);
1222 }
1223 }
1224 }
1225
1226 if (resetStats) {
1227 // statistics need to be reset in case coefficient are negative
1228 ResetStats();
1229 }
1230 else {
1231 // update statistics (do here to avoid changes by SetBinContent) FIXME remove???
1232 PutStats(s3);
1233 SetEntries(nEntries);
1234 }
1235
1236 return kTRUE;
1237}
1238
1239////////////////////////////////////////////////////////////////////////////////
1240/// Increment bin content by 1.
1241
1243{
1244 AbstractMethod("AddBinContent");
1245}
1246
1247////////////////////////////////////////////////////////////////////////////////
1248/// Increment bin content by a weight w.
1249
1251{
1252 AbstractMethod("AddBinContent");
1253}
1254
1255////////////////////////////////////////////////////////////////////////////////
1256/// Sets the flag controlling the automatic add of histograms in memory
1257///
1258/// By default (fAddDirectory = kTRUE), histograms are automatically added
1259/// to the list of objects in memory.
1260/// Note that one histogram can be removed from its support directory
1261/// by calling h->SetDirectory(nullptr) or h->SetDirectory(dir) to add it
1262/// to the list of objects in the directory dir.
1263///
1264/// NOTE that this is a static function. To call it, use;
1265/// TH1::AddDirectory
1266
1268{
1269 fgAddDirectory = add;
1270}
1271
1272////////////////////////////////////////////////////////////////////////////////
1273/// Auxiliary function to get the power of 2 next (larger) or previous (smaller)
1274/// a given x
1275///
1276/// next = kTRUE : next larger
1277/// next = kFALSE : previous smaller
1278///
1279/// Used by the autobin power of 2 algorithm
1280
1282{
1283 Int_t nn;
1284 Double_t f2 = std::frexp(x, &nn);
1285 return ((next && x > 0.) || (!next && x <= 0.)) ? std::ldexp(std::copysign(1., f2), nn)
1286 : std::ldexp(std::copysign(1., f2), --nn);
1287}
1288
1289////////////////////////////////////////////////////////////////////////////////
1290/// Auxiliary function to get the next power of 2 integer value larger then n
1291///
1292/// Used by the autobin power of 2 algorithm
1293
1295{
1296 Int_t nn;
1297 Double_t f2 = std::frexp(n, &nn);
1298 if (TMath::Abs(f2 - .5) > 0.001)
1299 return (Int_t)std::ldexp(1., nn);
1300 return n;
1301}
1302
1303////////////////////////////////////////////////////////////////////////////////
1304/// Buffer-based estimate of the histogram range using the power of 2 algorithm.
1305///
1306/// Used by the autobin power of 2 algorithm.
1307///
1308/// Works on arguments (min and max from fBuffer) and internal inputs: fXmin,
1309/// fXmax, NBinsX (from fXaxis), ...
1310/// Result save internally in fXaxis.
1311///
1312/// Overloaded by TH2 and TH3.
1313///
1314/// Return -1 if internal inputs are inconsistent, 0 otherwise.
1315
1317{
1318 // We need meaningful raw limits
1319 if (xmi >= xma)
1320 return -1;
1321
1323 Double_t xhmi = fXaxis.GetXmin();
1324 Double_t xhma = fXaxis.GetXmax();
1325
1326 // Now adjust
1327 if (TMath::Abs(xhma) > TMath::Abs(xhmi)) {
1328 // Start from the upper limit
1329 xhma = TH1::AutoP2GetPower2(xhma);
1330 xhmi = xhma - TH1::AutoP2GetPower2(xhma - xhmi);
1331 } else {
1332 // Start from the lower limit
1333 xhmi = TH1::AutoP2GetPower2(xhmi, kFALSE);
1334 xhma = xhmi + TH1::AutoP2GetPower2(xhma - xhmi);
1335 }
1336
1337 // Round the bins to the next power of 2; take into account the possible inflation
1338 // of the range
1339 Double_t rr = (xhma - xhmi) / (xma - xmi);
1340 Int_t nb = TH1::AutoP2GetBins((Int_t)(rr * GetNbinsX()));
1341
1342 // Adjust using the same bin width and offsets
1343 Double_t bw = (xhma - xhmi) / nb;
1344 // Bins to left free on each side
1345 Double_t autoside = gEnv->GetValue("Hist.Binning.Auto.Side", 0.05);
1346 Int_t nbside = (Int_t)(nb * autoside);
1347
1348 // Side up
1349 Int_t nbup = (xhma - xma) / bw;
1350 if (nbup % 2 != 0)
1351 nbup++; // Must be even
1352 if (nbup != nbside) {
1353 // Accounts also for both case: larger or smaller
1354 xhma -= bw * (nbup - nbside);
1355 nb -= (nbup - nbside);
1356 }
1357
1358 // Side low
1359 Int_t nblw = (xmi - xhmi) / bw;
1360 if (nblw % 2 != 0)
1361 nblw++; // Must be even
1362 if (nblw != nbside) {
1363 // Accounts also for both case: larger or smaller
1364 xhmi += bw * (nblw - nbside);
1365 nb -= (nblw - nbside);
1366 }
1367
1368 // Set everything and project
1369 SetBins(nb, xhmi, xhma);
1370
1371 // Done
1372 return 0;
1373}
1374
1375/// Fill histogram with all entries in the buffer.
1376///
1377/// - action = -1 histogram is reset and refilled from the buffer (called by THistPainter::Paint)
1378/// - action = 0 histogram is reset and filled from the buffer. When the histogram is filled from the
1379/// buffer the value fBuffer[0] is set to a negative number (= - number of entries)
1380/// When calling with action == 0 the histogram is NOT refilled when fBuffer[0] is < 0
1381/// While when calling with action = -1 the histogram is reset and ALWAYS refilled independently if
1382/// the histogram was filled before. This is needed when drawing the histogram
1383/// - action = 1 histogram is filled and buffer is deleted
1384/// The buffer is automatically deleted when filling the histogram and the entries is
1385/// larger than the buffer size
1386
1388{
1389 // do we need to compute the bin size?
1390 if (!fBuffer) return 0;
1391 Int_t nbentries = (Int_t)fBuffer[0];
1392
1393 // nbentries correspond to the number of entries of histogram
1394
1395 if (nbentries == 0) {
1396 // if action is 1 we delete the buffer
1397 // this will avoid infinite recursion
1398 if (action > 0) {
1399 delete [] fBuffer;
1400 fBuffer = nullptr;
1401 fBufferSize = 0;
1402 }
1403 return 0;
1404 }
1405 if (nbentries < 0 && action == 0) return 0; // case histogram has been already filled from the buffer
1406
1407 Double_t *buffer = fBuffer;
1408 if (nbentries < 0) {
1409 nbentries = -nbentries;
1410 // a reset might call BufferEmpty() giving an infinite recursion
1411 // Protect it by setting fBuffer = nullptr
1412 fBuffer = nullptr;
1413 //do not reset the list of functions
1414 Reset("ICES");
1415 fBuffer = buffer;
1416 }
1417 if (CanExtendAllAxes() || (fXaxis.GetXmax() <= fXaxis.GetXmin())) {
1418 //find min, max of entries in buffer
1421 for (Int_t i=0;i<nbentries;i++) {
1422 Double_t x = fBuffer[2*i+2];
1423 // skip infinity or NaN values
1424 if (!std::isfinite(x)) continue;
1425 if (x < xmin) xmin = x;
1426 if (x > xmax) xmax = x;
1427 }
1428 if (fXaxis.GetXmax() <= fXaxis.GetXmin()) {
1429 Int_t rc = -1;
1431 if ((rc = AutoP2FindLimits(xmin, xmax)) < 0)
1432 Warning("BufferEmpty",
1433 "inconsistency found by power-of-2 autobin algorithm: fallback to standard method");
1434 }
1435 if (rc < 0)
1437 } else {
1438 fBuffer = nullptr;
1439 Int_t keep = fBufferSize; fBufferSize = 0;
1441 if (xmax >= fXaxis.GetXmax()) ExtendAxis(xmax, &fXaxis);
1442 fBuffer = buffer;
1443 fBufferSize = keep;
1444 }
1445 }
1446
1447 // call DoFillN which will not put entries in the buffer as FillN does
1448 // set fBuffer to zero to avoid re-emptying the buffer from functions called
1449 // by DoFillN (e.g Sumw2)
1450 buffer = fBuffer; fBuffer = nullptr;
1451 DoFillN(nbentries,&buffer[2],&buffer[1],2);
1452 fBuffer = buffer;
1453
1454 // if action == 1 - delete the buffer
1455 if (action > 0) {
1456 delete [] fBuffer;
1457 fBuffer = nullptr;
1458 fBufferSize = 0;
1459 } else {
1460 // if number of entries is consistent with buffer - set it negative to avoid
1461 // refilling the histogram every time BufferEmpty(0) is called
1462 // In case it is not consistent, by setting fBuffer[0]=0 is like resetting the buffer
1463 // (it will not be used anymore the next time BufferEmpty is called)
1464 if (nbentries == (Int_t)fEntries)
1465 fBuffer[0] = -nbentries;
1466 else
1467 fBuffer[0] = 0;
1468 }
1469 return nbentries;
1470}
1471
1472////////////////////////////////////////////////////////////////////////////////
1473/// accumulate arguments in buffer. When buffer is full, empty the buffer
1474///
1475/// - `fBuffer[0]` = number of entries in buffer
1476/// - `fBuffer[1]` = w of first entry
1477/// - `fBuffer[2]` = x of first entry
1478
1480{
1481 if (!fBuffer) return -2;
1482 Int_t nbentries = (Int_t)fBuffer[0];
1483
1484
1485 if (nbentries < 0) {
1486 // reset nbentries to a positive value so next time BufferEmpty() is called
1487 // the histogram will be refilled
1488 nbentries = -nbentries;
1489 fBuffer[0] = nbentries;
1490 if (fEntries > 0) {
1491 // set fBuffer to zero to avoid calling BufferEmpty in Reset
1492 Double_t *buffer = fBuffer; fBuffer=0;
1493 Reset("ICES"); // do not reset list of functions
1494 fBuffer = buffer;
1495 }
1496 }
1497 if (2*nbentries+2 >= fBufferSize) {
1498 BufferEmpty(1);
1499 if (!fBuffer)
1500 // to avoid infinite recursion Fill->BufferFill->Fill
1501 return Fill(x,w);
1502 // this cannot happen
1503 R__ASSERT(0);
1504 }
1505 fBuffer[2*nbentries+1] = w;
1506 fBuffer[2*nbentries+2] = x;
1507 fBuffer[0] += 1;
1508 return -2;
1509}
1510
1511////////////////////////////////////////////////////////////////////////////////
1512/// Check bin limits.
1513
1514bool TH1::CheckBinLimits(const TAxis* a1, const TAxis * a2)
1515{
1516 const TArrayD * h1Array = a1->GetXbins();
1517 const TArrayD * h2Array = a2->GetXbins();
1518 Int_t fN = h1Array->fN;
1519 if ( fN != 0 ) {
1520 if ( h2Array->fN != fN ) {
1521 throw DifferentBinLimits();
1522 return false;
1523 }
1524 else {
1525 for ( int i = 0; i < fN; ++i ) {
1526 // for i==fN (nbin+1) a->GetBinWidth() returns last bin width
1527 // we do not need to exclude that case
1528 double binWidth = a1->GetBinWidth(i);
1529 if ( ! TMath::AreEqualAbs( h1Array->GetAt(i), h2Array->GetAt(i), binWidth*1E-10 ) ) {
1530 throw DifferentBinLimits();
1531 return false;
1532 }
1533 }
1534 }
1535 }
1536
1537 return true;
1538}
1539
1540////////////////////////////////////////////////////////////////////////////////
1541/// Check that axis have same labels.
1542
1543bool TH1::CheckBinLabels(const TAxis* a1, const TAxis * a2)
1544{
1545 THashList *l1 = a1->GetLabels();
1546 THashList *l2 = a2->GetLabels();
1547
1548 if (!l1 && !l2 )
1549 return true;
1550 if (!l1 || !l2 ) {
1551 throw DifferentLabels();
1552 return false;
1553 }
1554 // check now labels sizes are the same
1555 if (l1->GetSize() != l2->GetSize() ) {
1556 throw DifferentLabels();
1557 return false;
1558 }
1559 for (int i = 1; i <= a1->GetNbins(); ++i) {
1560 TString label1 = a1->GetBinLabel(i);
1561 TString label2 = a2->GetBinLabel(i);
1562 if (label1 != label2) {
1563 throw DifferentLabels();
1564 return false;
1565 }
1566 }
1567
1568 return true;
1569}
1570
1571////////////////////////////////////////////////////////////////////////////////
1572/// Check that the axis limits of the histograms are the same.
1573/// If a first and last bin is passed the axis is compared between the given range
1574
1575bool TH1::CheckAxisLimits(const TAxis *a1, const TAxis *a2 )
1576{
1577 double firstBin = a1->GetBinWidth(1);
1578 double lastBin = a1->GetBinWidth( a1->GetNbins() );
1579 if ( ! TMath::AreEqualAbs(a1->GetXmin(), a2->GetXmin(), firstBin* 1.E-10) ||
1580 ! TMath::AreEqualAbs(a1->GetXmax(), a2->GetXmax(), lastBin*1.E-10) ) {
1581 throw DifferentAxisLimits();
1582 return false;
1583 }
1584 return true;
1585}
1586
1587////////////////////////////////////////////////////////////////////////////////
1588/// Check that the axis are the same
1589
1590bool TH1::CheckEqualAxes(const TAxis *a1, const TAxis *a2 )
1591{
1592 if (a1->GetNbins() != a2->GetNbins() ) {
1593 //throw DifferentNumberOfBins();
1594 ::Info("CheckEqualAxes","Axes have different number of bins : nbin1 = %d nbin2 = %d",a1->GetNbins(),a2->GetNbins() );
1595 return false;
1596 }
1597 try {
1598 CheckAxisLimits(a1,a2);
1599 } catch (DifferentAxisLimits&) {
1600 ::Info("CheckEqualAxes","Axes have different limits");
1601 return false;
1602 }
1603 try {
1604 CheckBinLimits(a1,a2);
1605 } catch (DifferentBinLimits&) {
1606 ::Info("CheckEqualAxes","Axes have different bin limits");
1607 return false;
1608 }
1609
1610 // check labels
1611 try {
1612 CheckBinLabels(a1,a2);
1613 } catch (DifferentLabels&) {
1614 ::Info("CheckEqualAxes","Axes have different labels");
1615 return false;
1616 }
1617
1618 return true;
1619}
1620
1621////////////////////////////////////////////////////////////////////////////////
1622/// Check that two sub axis are the same.
1623/// The limits are defined by first bin and last bin
1624/// N.B. no check is done in this case for variable bins
1625
1626bool TH1::CheckConsistentSubAxes(const TAxis *a1, Int_t firstBin1, Int_t lastBin1, const TAxis * a2, Int_t firstBin2, Int_t lastBin2 )
1627{
1628 // By default is assumed that no bins are given for the second axis
1629 Int_t nbins1 = lastBin1-firstBin1 + 1;
1630 Double_t xmin1 = a1->GetBinLowEdge(firstBin1);
1631 Double_t xmax1 = a1->GetBinUpEdge(lastBin1);
1632
1633 Int_t nbins2 = a2->GetNbins();
1634 Double_t xmin2 = a2->GetXmin();
1635 Double_t xmax2 = a2->GetXmax();
1636
1637 if (firstBin2 < lastBin2) {
1638 // in this case assume no bins are given for the second axis
1639 nbins2 = lastBin1-firstBin1 + 1;
1640 xmin2 = a1->GetBinLowEdge(firstBin1);
1641 xmax2 = a1->GetBinUpEdge(lastBin1);
1642 }
1643
1644 if (nbins1 != nbins2 ) {
1645 ::Info("CheckConsistentSubAxes","Axes have different number of bins");
1646 return false;
1647 }
1648
1649 Double_t firstBin = a1->GetBinWidth(firstBin1);
1650 Double_t lastBin = a1->GetBinWidth(lastBin1);
1651 if ( ! TMath::AreEqualAbs(xmin1,xmin2,1.E-10 * firstBin) ||
1652 ! TMath::AreEqualAbs(xmax1,xmax2,1.E-10 * lastBin) ) {
1653 ::Info("CheckConsistentSubAxes","Axes have different limits");
1654 return false;
1655 }
1656
1657 return true;
1658}
1659
1660////////////////////////////////////////////////////////////////////////////////
1661/// Check histogram compatibility.
1662
1663bool TH1::CheckConsistency(const TH1* h1, const TH1* h2)
1664{
1665 if (h1 == h2) return true;
1666
1667 if (h1->GetDimension() != h2->GetDimension() ) {
1668 throw DifferentDimension();
1669 return false;
1670 }
1671 Int_t dim = h1->GetDimension();
1672
1673 // returns kTRUE if number of bins and bin limits are identical
1674 Int_t nbinsx = h1->GetNbinsX();
1675 Int_t nbinsy = h1->GetNbinsY();
1676 Int_t nbinsz = h1->GetNbinsZ();
1677
1678 // Check whether the histograms have the same number of bins.
1679 if (nbinsx != h2->GetNbinsX() ||
1680 (dim > 1 && nbinsy != h2->GetNbinsY()) ||
1681 (dim > 2 && nbinsz != h2->GetNbinsZ()) ) {
1682 throw DifferentNumberOfBins();
1683 return false;
1684 }
1685
1686 bool ret = true;
1687
1688 // check axis limits
1689 ret &= CheckAxisLimits(h1->GetXaxis(), h2->GetXaxis());
1690 if (dim > 1) ret &= CheckAxisLimits(h1->GetYaxis(), h2->GetYaxis());
1691 if (dim > 2) ret &= CheckAxisLimits(h1->GetZaxis(), h2->GetZaxis());
1692
1693 // check bin limits
1694 ret &= CheckBinLimits(h1->GetXaxis(), h2->GetXaxis());
1695 if (dim > 1) ret &= CheckBinLimits(h1->GetYaxis(), h2->GetYaxis());
1696 if (dim > 2) ret &= CheckBinLimits(h1->GetZaxis(), h2->GetZaxis());
1697
1698 // check labels if histograms are both not empty
1699 if ( !h1->IsEmpty() && !h2->IsEmpty() ) {
1700 ret &= CheckBinLabels(h1->GetXaxis(), h2->GetXaxis());
1701 if (dim > 1) ret &= CheckBinLabels(h1->GetYaxis(), h2->GetYaxis());
1702 if (dim > 2) ret &= CheckBinLabels(h1->GetZaxis(), h2->GetZaxis());
1703 }
1704
1705 return ret;
1706}
1707
1708////////////////////////////////////////////////////////////////////////////////
1709/// \f$ \chi^{2} \f$ test for comparing weighted and unweighted histograms
1710///
1711/// Function: Returns p-value. Other return values are specified by the 3rd parameter
1712///
1713/// \param[in] h2 the second histogram
1714/// \param[in] option
1715/// - "UU" = experiment experiment comparison (unweighted-unweighted)
1716/// - "UW" = experiment MC comparison (unweighted-weighted). Note that
1717/// the first histogram should be unweighted
1718/// - "WW" = MC MC comparison (weighted-weighted)
1719/// - "NORM" = to be used when one or both of the histograms is scaled
1720/// but the histogram originally was unweighted
1721/// - by default underflows and overflows are not included:
1722/// * "OF" = overflows included
1723/// * "UF" = underflows included
1724/// - "P" = print chi2, ndf, p_value, igood
1725/// - "CHI2" = returns chi2 instead of p-value
1726/// - "CHI2/NDF" = returns \f$ \chi^{2} \f$/ndf
1727/// \param[in] res not empty - computes normalized residuals and returns them in this array
1728///
1729/// The current implementation is based on the papers \f$ \chi^{2} \f$ test for comparison
1730/// of weighted and unweighted histograms" in Proceedings of PHYSTAT05 and
1731/// "Comparison weighted and unweighted histograms", arXiv:physics/0605123
1732/// by N.Gagunashvili. This function has been implemented by Daniel Haertl in August 2006.
1733///
1734/// #### Introduction:
1735///
1736/// A frequently used technique in data analysis is the comparison of
1737/// histograms. First suggested by Pearson [1] the \f$ \chi^{2} \f$ test of
1738/// homogeneity is used widely for comparing usual (unweighted) histograms.
1739/// This paper describes the implementation modified \f$ \chi^{2} \f$ tests
1740/// for comparison of weighted and unweighted histograms and two weighted
1741/// histograms [2] as well as usual Pearson's \f$ \chi^{2} \f$ test for
1742/// comparison two usual (unweighted) histograms.
1743///
1744/// #### Overview:
1745///
1746/// Comparison of two histograms expect hypotheses that two histograms
1747/// represent identical distributions. To make a decision p-value should
1748/// be calculated. The hypotheses of identity is rejected if the p-value is
1749/// lower then some significance level. Traditionally significance levels
1750/// 0.1, 0.05 and 0.01 are used. The comparison procedure should include an
1751/// analysis of the residuals which is often helpful in identifying the
1752/// bins of histograms responsible for a significant overall \f$ \chi^{2} \f$ value.
1753/// Residuals are the difference between bin contents and expected bin
1754/// contents. Most convenient for analysis are the normalized residuals. If
1755/// hypotheses of identity are valid then normalized residuals are
1756/// approximately independent and identically distributed random variables
1757/// having N(0,1) distribution. Analysis of residuals expect test of above
1758/// mentioned properties of residuals. Notice that indirectly the analysis
1759/// of residuals increase the power of \f$ \chi^{2} \f$ test.
1760///
1761/// #### Methods of comparison:
1762///
1763/// \f$ \chi^{2} \f$ test for comparison two (unweighted) histograms:
1764/// Let us consider two histograms with the same binning and the number
1765/// of bins equal to r. Let us denote the number of events in the ith bin
1766/// in the first histogram as ni and as mi in the second one. The total
1767/// number of events in the first histogram is equal to:
1768/// \f[
1769/// N = \sum_{i=1}^{r} n_{i}
1770/// \f]
1771/// and
1772/// \f[
1773/// M = \sum_{i=1}^{r} m_{i}
1774/// \f]
1775/// in the second histogram. The hypothesis of identity (homogeneity) [3]
1776/// is that the two histograms represent random values with identical
1777/// distributions. It is equivalent that there exist r constants p1,...,pr,
1778/// such that
1779/// \f[
1780///\sum_{i=1}^{r} p_{i}=1
1781/// \f]
1782/// and the probability of belonging to the ith bin for some measured value
1783/// in both experiments is equal to pi. The number of events in the ith
1784/// bin is a random variable with a distribution approximated by a Poisson
1785/// probability distribution
1786/// \f[
1787///\frac{e^{-Np_{i}}(Np_{i})^{n_{i}}}{n_{i}!}
1788/// \f]
1789///for the first histogram and with distribution
1790/// \f[
1791///\frac{e^{-Mp_{i}}(Mp_{i})^{m_{i}}}{m_{i}!}
1792/// \f]
1793/// for the second histogram. If the hypothesis of homogeneity is valid,
1794/// then the maximum likelihood estimator of pi, i=1,...,r, is
1795/// \f[
1796///\hat{p}_{i}= \frac{n_{i}+m_{i}}{N+M}
1797/// \f]
1798/// and then
1799/// \f[
1800/// X^{2} = \sum_{i=1}^{r}\frac{(n_{i}-N\hat{p}_{i})^{2}}{N\hat{p}_{i}} + \sum_{i=1}^{r}\frac{(m_{i}-M\hat{p}_{i})^{2}}{M\hat{p}_{i}} =\frac{1}{MN} \sum_{i=1}^{r}\frac{(Mn_{i}-Nm_{i})^{2}}{n_{i}+m_{i}}
1801/// \f]
1802/// has approximately a \f$ \chi^{2}_{(r-1)} \f$ distribution [3].
1803/// The comparison procedure can include an analysis of the residuals which
1804/// is often helpful in identifying the bins of histograms responsible for
1805/// a significant overall \f$ \chi^{2} \f$ value. Most convenient for
1806/// analysis are the adjusted (normalized) residuals [4]
1807/// \f[
1808/// r_{i} = \frac{n_{i}-N\hat{p}_{i}}{\sqrt{N\hat{p}_{i}}\sqrt{(1-N/(N+M))(1-(n_{i}+m_{i})/(N+M))}}
1809/// \f]
1810/// If hypotheses of homogeneity are valid then residuals ri are
1811/// approximately independent and identically distributed random variables
1812/// having N(0,1) distribution. The application of the \f$ \chi^{2} \f$ test has
1813/// restrictions related to the value of the expected frequencies Npi,
1814/// Mpi, i=1,...,r. A conservative rule formulated in [5] is that all the
1815/// expectations must be 1 or greater for both histograms. In practical
1816/// cases when expected frequencies are not known the estimated expected
1817/// frequencies \f$ M\hat{p}_{i}, N\hat{p}_{i}, i=1,...,r \f$ can be used.
1818///
1819/// #### Unweighted and weighted histograms comparison:
1820///
1821/// A simple modification of the ideas described above can be used for the
1822/// comparison of the usual (unweighted) and weighted histograms. Let us
1823/// denote the number of events in the ith bin in the unweighted
1824/// histogram as ni and the common weight of events in the ith bin of the
1825/// weighted histogram as wi. The total number of events in the
1826/// unweighted histogram is equal to
1827///\f[
1828/// N = \sum_{i=1}^{r} n_{i}
1829///\f]
1830/// and the total weight of events in the weighted histogram is equal to
1831///\f[
1832/// W = \sum_{i=1}^{r} w_{i}
1833///\f]
1834/// Let us formulate the hypothesis of identity of an unweighted histogram
1835/// to a weighted histogram so that there exist r constants p1,...,pr, such
1836/// that
1837///\f[
1838/// \sum_{i=1}^{r} p_{i} = 1
1839///\f]
1840/// for the unweighted histogram. The weight wi is a random variable with a
1841/// distribution approximated by the normal probability distribution
1842/// \f$ N(Wp_{i},\sigma_{i}^{2}) \f$ where \f$ \sigma_{i}^{2} \f$ is the variance of the weight wi.
1843/// If we replace the variance \f$ \sigma_{i}^{2} \f$
1844/// with estimate \f$ s_{i}^{2} \f$ (sum of squares of weights of
1845/// events in the ith bin) and the hypothesis of identity is valid, then the
1846/// maximum likelihood estimator of pi,i=1,...,r, is
1847///\f[
1848/// \hat{p}_{i} = \frac{Ww_{i}-Ns_{i}^{2}+\sqrt{(Ww_{i}-Ns_{i}^{2})^{2}+4W^{2}s_{i}^{2}n_{i}}}{2W^{2}}
1849///\f]
1850/// We may then use the test statistic
1851///\f[
1852/// X^{2} = \sum_{i=1}^{r} \frac{(n_{i}-N\hat{p}_{i})^{2}}{N\hat{p}_{i}} + \sum_{i=1}^{r} \frac{(w_{i}-W\hat{p}_{i})^{2}}{s_{i}^{2}}
1853///\f]
1854/// and it has approximately a \f$ \sigma^{2}_{(r-1)} \f$ distribution [2]. This test, as well
1855/// as the original one [3], has a restriction on the expected frequencies. The
1856/// expected frequencies recommended for the weighted histogram is more than 25.
1857/// The value of the minimal expected frequency can be decreased down to 10 for
1858/// the case when the weights of the events are close to constant. In the case
1859/// of a weighted histogram if the number of events is unknown, then we can
1860/// apply this recommendation for the equivalent number of events as
1861///\f[
1862/// n_{i}^{equiv} = \frac{ w_{i}^{2} }{ s_{i}^{2} }
1863///\f]
1864/// The minimal expected frequency for an unweighted histogram must be 1. Notice
1865/// that any usual (unweighted) histogram can be considered as a weighted
1866/// histogram with events that have constant weights equal to 1.
1867/// The variance \f$ z_{i}^{2} \f$ of the difference between the weight wi
1868/// and the estimated expectation value of the weight is approximately equal to:
1869///\f[
1870/// z_{i}^{2} = Var(w_{i}-W\hat{p}_{i}) = N\hat{p}_{i}(1-N\hat{p}_{i})\left(\frac{Ws_{i}^{2}}{\sqrt{(Ns_{i}^{2}-w_{i}W)^{2}+4W^{2}s_{i}^{2}n_{i}}}\right)^{2}+\frac{s_{i}^{2}}{4}\left(1+\frac{Ns_{i}^{2}-w_{i}W}{\sqrt{(Ns_{i}^{2}-w_{i}W)^{2}+4W^{2}s_{i}^{2}n_{i}}}\right)^{2}
1871///\f]
1872/// The residuals
1873///\f[
1874/// r_{i} = \frac{w_{i}-W\hat{p}_{i}}{z_{i}}
1875///\f]
1876/// have approximately a normal distribution with mean equal to 0 and standard
1877/// deviation equal to 1.
1878///
1879/// #### Two weighted histograms comparison:
1880///
1881/// Let us denote the common weight of events of the ith bin in the first
1882/// histogram as w1i and as w2i in the second one. The total weight of events
1883/// in the first histogram is equal to
1884///\f[
1885/// W_{1} = \sum_{i=1}^{r} w_{1i}
1886///\f]
1887/// and
1888///\f[
1889/// W_{2} = \sum_{i=1}^{r} w_{2i}
1890///\f]
1891/// in the second histogram. Let us formulate the hypothesis of identity of
1892/// weighted histograms so that there exist r constants p1,...,pr, such that
1893///\f[
1894/// \sum_{i=1}^{r} p_{i} = 1
1895///\f]
1896/// and also expectation value of weight w1i equal to W1pi and expectation value
1897/// of weight w2i equal to W2pi. Weights in both the histograms are random
1898/// variables with distributions which can be approximated by a normal
1899/// probability distribution \f$ N(W_{1}p_{i},\sigma_{1i}^{2}) \f$ for the first histogram
1900/// and by a distribution \f$ N(W_{2}p_{i},\sigma_{2i}^{2}) \f$ for the second.
1901/// Here \f$ \sigma_{1i}^{2} \f$ and \f$ \sigma_{2i}^{2} \f$ are the variances
1902/// of w1i and w2i with estimators \f$ s_{1i}^{2} \f$ and \f$ s_{2i}^{2} \f$ respectively.
1903/// If the hypothesis of identity is valid, then the maximum likelihood and
1904/// Least Square Method estimator of pi,i=1,...,r, is
1905///\f[
1906/// \hat{p}_{i} = \frac{w_{1i}W_{1}/s_{1i}^{2}+w_{2i}W_{2} /s_{2i}^{2}}{W_{1}^{2}/s_{1i}^{2}+W_{2}^{2}/s_{2i}^{2}}
1907///\f]
1908/// We may then use the test statistic
1909///\f[
1910/// X^{2} = \sum_{i=1}^{r} \frac{(w_{1i}-W_{1}\hat{p}_{i})^{2}}{s_{1i}^{2}} + \sum_{i=1}^{r} \frac{(w_{2i}-W_{2}\hat{p}_{i})^{2}}{s_{2i}^{2}} = \sum_{i=1}^{r} \frac{(W_{1}w_{2i}-W_{2}w_{1i})^{2}}{W_{1}^{2}s_{2i}^{2}+W_{2}^{2}s_{1i}^{2}}
1911///\f]
1912/// and it has approximately a \f$ \chi^{2}_{(r-1)} \f$ distribution [2].
1913/// The normalized or studentised residuals [6]
1914///\f[
1915/// r_{i} = \frac{w_{1i}-W_{1}\hat{p}_{i}}{s_{1i}\sqrt{1 - \frac{1}{(1+W_{2}^{2}s_{1i}^{2}/W_{1}^{2}s_{2i}^{2})}}}
1916///\f]
1917/// have approximately a normal distribution with mean equal to 0 and standard
1918/// deviation 1. A recommended minimal expected frequency is equal to 10 for
1919/// the proposed test.
1920///
1921/// #### Numerical examples:
1922///
1923/// The method described herein is now illustrated with an example.
1924/// We take a distribution
1925///\f[
1926/// \phi(x) = \frac{2}{(x-10)^{2}+1} + \frac{1}{(x-14)^{2}+1} (1)
1927///\f]
1928/// defined on the interval [4,16]. Events distributed according to the formula
1929/// (1) are simulated to create the unweighted histogram. Uniformly distributed
1930/// events are simulated for the weighted histogram with weights calculated by
1931/// formula (1). Each histogram has the same number of bins: 20. Fig.1 shows
1932/// the result of comparison of the unweighted histogram with 200 events
1933/// (minimal expected frequency equal to one) and the weighted histogram with
1934/// 500 events (minimal expected frequency equal to 25)
1935/// Begin_Macro
1936/// ../../../tutorials/math/chi2test.C
1937/// End_Macro
1938/// Fig 1. An example of comparison of the unweighted histogram with 200 events
1939/// and the weighted histogram with 500 events:
1940/// 1. unweighted histogram;
1941/// 2. weighted histogram;
1942/// 3. normalized residuals plot;
1943/// 4. normal Q-Q plot of residuals.
1944///
1945/// The value of the test statistic \f$ \chi^{2} \f$ is equal to
1946/// 21.09 with p-value equal to 0.33, therefore the hypothesis of identity of
1947/// the two histograms can be accepted for 0.05 significant level. The behavior
1948/// of the normalized residuals plot (see Fig. 1c) and the normal Q-Q plot
1949/// (see Fig. 1d) of residuals are regular and we cannot identify the outliers
1950/// or bins with a big influence on \f$ \chi^{2} \f$.
1951///
1952/// The second example presents the same two histograms but 17 events was added
1953/// to content of bin number 15 in unweighted histogram. Fig.2 shows the result
1954/// of comparison of the unweighted histogram with 217 events (minimal expected
1955/// frequency equal to one) and the weighted histogram with 500 events (minimal
1956/// expected frequency equal to 25)
1957/// Begin_Macro
1958/// ../../../tutorials/math/chi2test.C(17)
1959/// End_Macro
1960/// Fig 2. An example of comparison of the unweighted histogram with 217 events
1961/// and the weighted histogram with 500 events:
1962/// 1. unweighted histogram;
1963/// 2. weighted histogram;
1964/// 3. normalized residuals plot;
1965/// 4. normal Q-Q plot of residuals.
1966///
1967/// The value of the test statistic \f$ \chi^{2} \f$ is equal to
1968/// 32.33 with p-value equal to 0.029, therefore the hypothesis of identity of
1969/// the two histograms is rejected for 0.05 significant level. The behavior of
1970/// the normalized residuals plot (see Fig. 2c) and the normal Q-Q plot (see
1971/// Fig. 2d) of residuals are not regular and we can identify the outlier or
1972/// bin with a big influence on \f$ \chi^{2} \f$.
1973///
1974/// #### References:
1975///
1976/// - [1] Pearson, K., 1904. On the Theory of Contingency and Its Relation to
1977/// Association and Normal Correlation. Drapers' Co. Memoirs, Biometric
1978/// Series No. 1, London.
1979/// - [2] Gagunashvili, N., 2006. \f$ \sigma^{2} \f$ test for comparison
1980/// of weighted and unweighted histograms. Statistical Problems in Particle
1981/// Physics, Astrophysics and Cosmology, Proceedings of PHYSTAT05,
1982/// Oxford, UK, 12-15 September 2005, Imperial College Press, London, 43-44.
1983/// Gagunashvili,N., Comparison of weighted and unweighted histograms,
1984/// arXiv:physics/0605123, 2006.
1985/// - [3] Cramer, H., 1946. Mathematical methods of statistics.
1986/// Princeton University Press, Princeton.
1987/// - [4] Haberman, S.J., 1973. The analysis of residuals in cross-classified tables.
1988/// Biometrics 29, 205-220.
1989/// - [5] Lewontin, R.C. and Felsenstein, J., 1965. The robustness of homogeneity
1990/// test in 2xN tables. Biometrics 21, 19-33.
1991/// - [6] Seber, G.A.F., Lee, A.J., 2003, Linear Regression Analysis.
1992/// John Wiley & Sons Inc., New York.
1993
1994Double_t TH1::Chi2Test(const TH1* h2, Option_t *option, Double_t *res) const
1995{
1996 Double_t chi2 = 0;
1997 Int_t ndf = 0, igood = 0;
1998
1999 TString opt = option;
2000 opt.ToUpper();
2001
2002 Double_t prob = Chi2TestX(h2,chi2,ndf,igood,option,res);
2003
2004 if(opt.Contains("P")) {
2005 printf("Chi2 = %f, Prob = %g, NDF = %d, igood = %d\n", chi2,prob,ndf,igood);
2006 }
2007 if(opt.Contains("CHI2/NDF")) {
2008 if (ndf == 0) return 0;
2009 return chi2/ndf;
2010 }
2011 if(opt.Contains("CHI2")) {
2012 return chi2;
2013 }
2014
2015 return prob;
2016}
2017
2018////////////////////////////////////////////////////////////////////////////////
2019/// The computation routine of the Chisquare test. For the method description,
2020/// see Chi2Test() function.
2021///
2022/// \return p-value
2023/// \param[in] h2 the second histogram
2024/// \param[in] option
2025/// - "UU" = experiment experiment comparison (unweighted-unweighted)
2026/// - "UW" = experiment MC comparison (unweighted-weighted). Note that the first
2027/// histogram should be unweighted
2028/// - "WW" = MC MC comparison (weighted-weighted)
2029/// - "NORM" = if one or both histograms is scaled
2030/// - "OF" = overflows included
2031/// - "UF" = underflows included
2032/// by default underflows and overflows are not included
2033/// \param[out] igood test output
2034/// - igood=0 - no problems
2035/// - For unweighted unweighted comparison
2036/// - igood=1'There is a bin in the 1st histogram with less than 1 event'
2037/// - igood=2'There is a bin in the 2nd histogram with less than 1 event'
2038/// - igood=3'when the conditions for igood=1 and igood=2 are satisfied'
2039/// - For unweighted weighted comparison
2040/// - igood=1'There is a bin in the 1st histogram with less then 1 event'
2041/// - igood=2'There is a bin in the 2nd histogram with less then 10 effective number of events'
2042/// - igood=3'when the conditions for igood=1 and igood=2 are satisfied'
2043/// - For weighted weighted comparison
2044/// - igood=1'There is a bin in the 1st histogram with less then 10 effective
2045/// number of events'
2046/// - igood=2'There is a bin in the 2nd histogram with less then 10 effective
2047/// number of events'
2048/// - igood=3'when the conditions for igood=1 and igood=2 are satisfied'
2049/// \param[out] chi2 chisquare of the test
2050/// \param[out] ndf number of degrees of freedom (important, when both histograms have the same empty bins)
2051/// \param[out] res normalized residuals for further analysis
2052
2053Double_t TH1::Chi2TestX(const TH1* h2, Double_t &chi2, Int_t &ndf, Int_t &igood, Option_t *option, Double_t *res) const
2054{
2055
2056 Int_t i_start, i_end;
2057 Int_t j_start, j_end;
2058 Int_t k_start, k_end;
2059
2060 Double_t sum1 = 0.0, sumw1 = 0.0;
2061 Double_t sum2 = 0.0, sumw2 = 0.0;
2062
2063 chi2 = 0.0;
2064 ndf = 0;
2065
2066 TString opt = option;
2067 opt.ToUpper();
2068
2069 if (fBuffer) const_cast<TH1*>(this)->BufferEmpty();
2070
2071 const TAxis *xaxis1 = GetXaxis();
2072 const TAxis *xaxis2 = h2->GetXaxis();
2073 const TAxis *yaxis1 = GetYaxis();
2074 const TAxis *yaxis2 = h2->GetYaxis();
2075 const TAxis *zaxis1 = GetZaxis();
2076 const TAxis *zaxis2 = h2->GetZaxis();
2077
2078 Int_t nbinx1 = xaxis1->GetNbins();
2079 Int_t nbinx2 = xaxis2->GetNbins();
2080 Int_t nbiny1 = yaxis1->GetNbins();
2081 Int_t nbiny2 = yaxis2->GetNbins();
2082 Int_t nbinz1 = zaxis1->GetNbins();
2083 Int_t nbinz2 = zaxis2->GetNbins();
2084
2085 //check dimensions
2086 if (this->GetDimension() != h2->GetDimension() ){
2087 Error("Chi2TestX","Histograms have different dimensions.");
2088 return 0.0;
2089 }
2090
2091 //check number of channels
2092 if (nbinx1 != nbinx2) {
2093 Error("Chi2TestX","different number of x channels");
2094 }
2095 if (nbiny1 != nbiny2) {
2096 Error("Chi2TestX","different number of y channels");
2097 }
2098 if (nbinz1 != nbinz2) {
2099 Error("Chi2TestX","different number of z channels");
2100 }
2101
2102 //check for ranges
2103 i_start = j_start = k_start = 1;
2104 i_end = nbinx1;
2105 j_end = nbiny1;
2106 k_end = nbinz1;
2107
2108 if (xaxis1->TestBit(TAxis::kAxisRange)) {
2109 i_start = xaxis1->GetFirst();
2110 i_end = xaxis1->GetLast();
2111 }
2112 if (yaxis1->TestBit(TAxis::kAxisRange)) {
2113 j_start = yaxis1->GetFirst();
2114 j_end = yaxis1->GetLast();
2115 }
2116 if (zaxis1->TestBit(TAxis::kAxisRange)) {
2117 k_start = zaxis1->GetFirst();
2118 k_end = zaxis1->GetLast();
2119 }
2120
2121
2122 if (opt.Contains("OF")) {
2123 if (GetDimension() == 3) k_end = ++nbinz1;
2124 if (GetDimension() >= 2) j_end = ++nbiny1;
2125 if (GetDimension() >= 1) i_end = ++nbinx1;
2126 }
2127
2128 if (opt.Contains("UF")) {
2129 if (GetDimension() == 3) k_start = 0;
2130 if (GetDimension() >= 2) j_start = 0;
2131 if (GetDimension() >= 1) i_start = 0;
2132 }
2133
2134 ndf = (i_end - i_start + 1) * (j_end - j_start + 1) * (k_end - k_start + 1) - 1;
2135
2136 Bool_t comparisonUU = opt.Contains("UU");
2137 Bool_t comparisonUW = opt.Contains("UW");
2138 Bool_t comparisonWW = opt.Contains("WW");
2139 Bool_t scaledHistogram = opt.Contains("NORM");
2140
2141 if (scaledHistogram && !comparisonUU) {
2142 Info("Chi2TestX", "NORM option should be used together with UU option. It is ignored");
2143 }
2144
2145 // look at histo global bin content and effective entries
2146 Stat_t s[kNstat];
2147 GetStats(s);// s[1] sum of squares of weights, s[0] sum of weights
2148 Double_t sumBinContent1 = s[0];
2149 Double_t effEntries1 = (s[1] ? s[0] * s[0] / s[1] : 0.0);
2150
2151 h2->GetStats(s);// s[1] sum of squares of weights, s[0] sum of weights
2152 Double_t sumBinContent2 = s[0];
2153 Double_t effEntries2 = (s[1] ? s[0] * s[0] / s[1] : 0.0);
2154
2155 if (!comparisonUU && !comparisonUW && !comparisonWW ) {
2156 // deduce automatically from type of histogram
2157 if (TMath::Abs(sumBinContent1 - effEntries1) < 1) {
2158 if ( TMath::Abs(sumBinContent2 - effEntries2) < 1) comparisonUU = true;
2159 else comparisonUW = true;
2160 }
2161 else comparisonWW = true;
2162 }
2163 // check unweighted histogram
2164 if (comparisonUW) {
2165 if (TMath::Abs(sumBinContent1 - effEntries1) >= 1) {
2166 Warning("Chi2TestX","First histogram is not unweighted and option UW has been requested");
2167 }
2168 }
2169 if ( (!scaledHistogram && comparisonUU) ) {
2170 if ( ( TMath::Abs(sumBinContent1 - effEntries1) >= 1) || (TMath::Abs(sumBinContent2 - effEntries2) >= 1) ) {
2171 Warning("Chi2TestX","Both histograms are not unweighted and option UU has been requested");
2172 }
2173 }
2174
2175
2176 //get number of events in histogram
2177 if (comparisonUU && scaledHistogram) {
2178 for (Int_t i = i_start; i <= i_end; ++i) {
2179 for (Int_t j = j_start; j <= j_end; ++j) {
2180 for (Int_t k = k_start; k <= k_end; ++k) {
2181
2182 Int_t bin = GetBin(i, j, k);
2183
2184 Double_t cnt1 = RetrieveBinContent(bin);
2185 Double_t cnt2 = h2->RetrieveBinContent(bin);
2186 Double_t e1sq = GetBinErrorSqUnchecked(bin);
2187 Double_t e2sq = h2->GetBinErrorSqUnchecked(bin);
2188
2189 if (e1sq > 0.0) cnt1 = TMath::Floor(cnt1 * cnt1 / e1sq + 0.5); // avoid rounding errors
2190 else cnt1 = 0.0;
2191
2192 if (e2sq > 0.0) cnt2 = TMath::Floor(cnt2 * cnt2 / e2sq + 0.5); // avoid rounding errors
2193 else cnt2 = 0.0;
2194
2195 // sum contents
2196 sum1 += cnt1;
2197 sum2 += cnt2;
2198 sumw1 += e1sq;
2199 sumw2 += e2sq;
2200 }
2201 }
2202 }
2203 if (sumw1 <= 0.0 || sumw2 <= 0.0) {
2204 Error("Chi2TestX", "Cannot use option NORM when one histogram has all zero errors");
2205 return 0.0;
2206 }
2207
2208 } else {
2209 for (Int_t i = i_start; i <= i_end; ++i) {
2210 for (Int_t j = j_start; j <= j_end; ++j) {
2211 for (Int_t k = k_start; k <= k_end; ++k) {
2212
2213 Int_t bin = GetBin(i, j, k);
2214
2215 sum1 += RetrieveBinContent(bin);
2216 sum2 += h2->RetrieveBinContent(bin);
2217
2218 if ( comparisonWW ) sumw1 += GetBinErrorSqUnchecked(bin);
2219 if ( comparisonUW || comparisonWW ) sumw2 += h2->GetBinErrorSqUnchecked(bin);
2220 }
2221 }
2222 }
2223 }
2224 //checks that the histograms are not empty
2225 if (sum1 == 0.0 || sum2 == 0.0) {
2226 Error("Chi2TestX","one histogram is empty");
2227 return 0.0;
2228 }
2229
2230 if ( comparisonWW && ( sumw1 <= 0.0 && sumw2 <= 0.0 ) ){
2231 Error("Chi2TestX","Hist1 and Hist2 have both all zero errors\n");
2232 return 0.0;
2233 }
2234
2235 //THE TEST
2236 Int_t m = 0, n = 0;
2237
2238 //Experiment - experiment comparison
2239 if (comparisonUU) {
2240 Double_t sum = sum1 + sum2;
2241 for (Int_t i = i_start; i <= i_end; ++i) {
2242 for (Int_t j = j_start; j <= j_end; ++j) {
2243 for (Int_t k = k_start; k <= k_end; ++k) {
2244
2245 Int_t bin = GetBin(i, j, k);
2246
2247 Double_t cnt1 = RetrieveBinContent(bin);
2248 Double_t cnt2 = h2->RetrieveBinContent(bin);
2249
2250 if (scaledHistogram) {
2251 // scale bin value to effective bin entries
2252 Double_t e1sq = GetBinErrorSqUnchecked(bin);
2253 Double_t e2sq = h2->GetBinErrorSqUnchecked(bin);
2254
2255 if (e1sq > 0) cnt1 = TMath::Floor(cnt1 * cnt1 / e1sq + 0.5); // avoid rounding errors
2256 else cnt1 = 0;
2257
2258 if (e2sq > 0) cnt2 = TMath::Floor(cnt2 * cnt2 / e2sq + 0.5); // avoid rounding errors
2259 else cnt2 = 0;
2260 }
2261
2262 if (Int_t(cnt1) == 0 && Int_t(cnt2) == 0) --ndf; // no data means one degree of freedom less
2263 else {
2264
2265 Double_t cntsum = cnt1 + cnt2;
2266 Double_t nexp1 = cntsum * sum1 / sum;
2267 //Double_t nexp2 = binsum*sum2/sum;
2268
2269 if (res) res[i - i_start] = (cnt1 - nexp1) / TMath::Sqrt(nexp1);
2270
2271 if (cnt1 < 1) ++m;
2272 if (cnt2 < 1) ++n;
2273
2274 //Habermann correction for residuals
2275 Double_t correc = (1. - sum1 / sum) * (1. - cntsum / sum);
2276 if (res) res[i - i_start] /= TMath::Sqrt(correc);
2277
2278 Double_t delta = sum2 * cnt1 - sum1 * cnt2;
2279 chi2 += delta * delta / cntsum;
2280 }
2281 }
2282 }
2283 }
2284 chi2 /= sum1 * sum2;
2285
2286 // flag error only when of the two histogram is zero
2287 if (m) {
2288 igood += 1;
2289 Info("Chi2TestX","There is a bin in h1 with less than 1 event.\n");
2290 }
2291 if (n) {
2292 igood += 2;
2293 Info("Chi2TestX","There is a bin in h2 with less than 1 event.\n");
2294 }
2295
2296 Double_t prob = TMath::Prob(chi2,ndf);
2297 return prob;
2298
2299 }
2300
2301 // unweighted - weighted comparison
2302 // case of error = 0 and content not zero is treated without problems by excluding second chi2 sum
2303 // and can be considered as a data-theory comparison
2304 if ( comparisonUW ) {
2305 for (Int_t i = i_start; i <= i_end; ++i) {
2306 for (Int_t j = j_start; j <= j_end; ++j) {
2307 for (Int_t k = k_start; k <= k_end; ++k) {
2308
2309 Int_t bin = GetBin(i, j, k);
2310
2311 Double_t cnt1 = RetrieveBinContent(bin);
2312 Double_t cnt2 = h2->RetrieveBinContent(bin);
2313 Double_t e2sq = h2->GetBinErrorSqUnchecked(bin);
2314
2315 // case both histogram have zero bin contents
2316 if (cnt1 * cnt1 == 0 && cnt2 * cnt2 == 0) {
2317 --ndf; //no data means one degree of freedom less
2318 continue;
2319 }
2320
2321 // case weighted histogram has zero bin content and error
2322 if (cnt2 * cnt2 == 0 && e2sq == 0) {
2323 if (sumw2 > 0) {
2324 // use as approximated error as 1 scaled by a scaling ratio
2325 // estimated from the total sum weight and sum weight squared
2326 e2sq = sumw2 / sum2;
2327 }
2328 else {
2329 // return error because infinite discrepancy here:
2330 // bin1 != 0 and bin2 =0 in a histogram with all errors zero
2331 Error("Chi2TestX","Hist2 has in bin (%d,%d,%d) zero content and zero errors\n", i, j, k);
2332 chi2 = 0; return 0;
2333 }
2334 }
2335
2336 if (cnt1 < 1) m++;
2337 if (e2sq > 0 && cnt2 * cnt2 / e2sq < 10) n++;
2338
2339 Double_t var1 = sum2 * cnt2 - sum1 * e2sq;
2340 Double_t var2 = var1 * var1 + 4. * sum2 * sum2 * cnt1 * e2sq;
2341
2342 // if cnt1 is zero and cnt2 = 1 and sum1 = sum2 var1 = 0 && var2 == 0
2343 // approximate by incrementing cnt1
2344 // LM (this need to be fixed for numerical errors)
2345 while (var1 * var1 + cnt1 == 0 || var1 + var2 == 0) {
2346 sum1++;
2347 cnt1++;
2348 var1 = sum2 * cnt2 - sum1 * e2sq;
2349 var2 = var1 * var1 + 4. * sum2 * sum2 * cnt1 * e2sq;
2350 }
2351 var2 = TMath::Sqrt(var2);
2352
2353 while (var1 + var2 == 0) {
2354 sum1++;
2355 cnt1++;
2356 var1 = sum2 * cnt2 - sum1 * e2sq;
2357 var2 = var1 * var1 + 4. * sum2 * sum2 * cnt1 * e2sq;
2358 while (var1 * var1 + cnt1 == 0 || var1 + var2 == 0) {
2359 sum1++;
2360 cnt1++;
2361 var1 = sum2 * cnt2 - sum1 * e2sq;
2362 var2 = var1 * var1 + 4. * sum2 * sum2 * cnt1 * e2sq;
2363 }
2364 var2 = TMath::Sqrt(var2);
2365 }
2366
2367 Double_t probb = (var1 + var2) / (2. * sum2 * sum2);
2368
2369 Double_t nexp1 = probb * sum1;
2370 Double_t nexp2 = probb * sum2;
2371
2372 Double_t delta1 = cnt1 - nexp1;
2373 Double_t delta2 = cnt2 - nexp2;
2374
2375 chi2 += delta1 * delta1 / nexp1;
2376
2377 if (e2sq > 0) {
2378 chi2 += delta2 * delta2 / e2sq;
2379 }
2380
2381 if (res) {
2382 if (e2sq > 0) {
2383 Double_t temp1 = sum2 * e2sq / var2;
2384 Double_t temp2 = 1.0 + (sum1 * e2sq - sum2 * cnt2) / var2;
2385 temp2 = temp1 * temp1 * sum1 * probb * (1.0 - probb) + temp2 * temp2 * e2sq / 4.0;
2386 // invert sign here
2387 res[i - i_start] = - delta2 / TMath::Sqrt(temp2);
2388 }
2389 else
2390 res[i - i_start] = delta1 / TMath::Sqrt(nexp1);
2391 }
2392 }
2393 }
2394 }
2395
2396 if (m) {
2397 igood += 1;
2398 Info("Chi2TestX","There is a bin in h1 with less than 1 event.\n");
2399 }
2400 if (n) {
2401 igood += 2;
2402 Info("Chi2TestX","There is a bin in h2 with less than 10 effective events.\n");
2403 }
2404
2405 Double_t prob = TMath::Prob(chi2, ndf);
2406
2407 return prob;
2408 }
2409
2410 // weighted - weighted comparison
2411 if (comparisonWW) {
2412 for (Int_t i = i_start; i <= i_end; ++i) {
2413 for (Int_t j = j_start; j <= j_end; ++j) {
2414 for (Int_t k = k_start; k <= k_end; ++k) {
2415
2416 Int_t bin = GetBin(i, j, k);
2417 Double_t cnt1 = RetrieveBinContent(bin);
2418 Double_t cnt2 = h2->RetrieveBinContent(bin);
2419 Double_t e1sq = GetBinErrorSqUnchecked(bin);
2420 Double_t e2sq = h2->GetBinErrorSqUnchecked(bin);
2421
2422 // case both histogram have zero bin contents
2423 // (use square of content to avoid numerical errors)
2424 if (cnt1 * cnt1 == 0 && cnt2 * cnt2 == 0) {
2425 --ndf; //no data means one degree of freedom less
2426 continue;
2427 }
2428
2429 if (e1sq == 0 && e2sq == 0) {
2430 // cannot treat case of booth histogram have zero zero errors
2431 Error("Chi2TestX","h1 and h2 both have bin %d,%d,%d with all zero errors\n", i,j,k);
2432 chi2 = 0; return 0;
2433 }
2434
2435 Double_t sigma = sum1 * sum1 * e2sq + sum2 * sum2 * e1sq;
2436 Double_t delta = sum2 * cnt1 - sum1 * cnt2;
2437 chi2 += delta * delta / sigma;
2438
2439 if (res) {
2440 Double_t temp = cnt1 * sum1 * e2sq + cnt2 * sum2 * e1sq;
2441 Double_t probb = temp / sigma;
2442 Double_t z = 0;
2443 if (e1sq > e2sq) {
2444 Double_t d1 = cnt1 - sum1 * probb;
2445 Double_t s1 = e1sq * ( 1. - e2sq * sum1 * sum1 / sigma );
2446 z = d1 / TMath::Sqrt(s1);
2447 }
2448 else {
2449 Double_t d2 = cnt2 - sum2 * probb;
2450 Double_t s2 = e2sq * ( 1. - e1sq * sum2 * sum2 / sigma );
2451 z = -d2 / TMath::Sqrt(s2);
2452 }
2453 res[i - i_start] = z;
2454 }
2455
2456 if (e1sq > 0 && cnt1 * cnt1 / e1sq < 10) m++;
2457 if (e2sq > 0 && cnt2 * cnt2 / e2sq < 10) n++;
2458 }
2459 }
2460 }
2461 if (m) {
2462 igood += 1;
2463 Info("Chi2TestX","There is a bin in h1 with less than 10 effective events.\n");
2464 }
2465 if (n) {
2466 igood += 2;
2467 Info("Chi2TestX","There is a bin in h2 with less than 10 effective events.\n");
2468 }
2469 Double_t prob = TMath::Prob(chi2, ndf);
2470 return prob;
2471 }
2472 return 0;
2473}
2474////////////////////////////////////////////////////////////////////////////////
2475/// Compute and return the chisquare of this histogram with respect to a function
2476/// The chisquare is computed by weighting each histogram point by the bin error
2477/// By default the full range of the histogram is used.
2478/// Use option "R" for restricting the chisquare calculation to the given range of the function
2479/// Use option "L" for using the chisquare based on the poisson likelihood (Baker-Cousins Chisquare)
2480
2482{
2483 if (!func) {
2484 Error("Chisquare","Function pointer is Null - return -1");
2485 return -1;
2486 }
2487
2488 TString opt(option); opt.ToUpper();
2489 bool useRange = opt.Contains("R");
2490 bool usePL = opt.Contains("L");
2491
2492 return ROOT::Fit::Chisquare(*this, *func, useRange, usePL);
2493}
2494
2495////////////////////////////////////////////////////////////////////////////////
2496/// Remove all the content from the underflow and overflow bins, without changing the number of entries
2497/// After calling this method, every undeflow and overflow bins will have content 0.0
2498/// The Sumw2 is also cleared, since there is no more content in the bins
2499
2501{
2502 for (Int_t bin = 0; bin < fNcells; ++bin)
2503 if (IsBinUnderflow(bin) || IsBinOverflow(bin)) {
2504 UpdateBinContent(bin, 0.0);
2505 if (fSumw2.fN) fSumw2.fArray[bin] = 0.0;
2506 }
2507}
2508
2509////////////////////////////////////////////////////////////////////////////////
2510/// Compute integral (cumulative sum of bins)
2511/// The result stored in fIntegral is used by the GetRandom functions.
2512/// This function is automatically called by GetRandom when the fIntegral
2513/// array does not exist or when the number of entries in the histogram
2514/// has changed since the previous call to GetRandom.
2515/// The resulting integral is normalized to 1
2516/// If the routine is called with the onlyPositive flag set an error will
2517/// be produced in case of negative bin content and a NaN value returned
2518
2520{
2521 if (fBuffer) BufferEmpty();
2522
2523 // delete previously computed integral (if any)
2524 if (fIntegral) delete [] fIntegral;
2525
2526 // - Allocate space to store the integral and compute integral
2527 Int_t nbinsx = GetNbinsX();
2528 Int_t nbinsy = GetNbinsY();
2529 Int_t nbinsz = GetNbinsZ();
2530 Int_t nbins = nbinsx * nbinsy * nbinsz;
2531
2532 fIntegral = new Double_t[nbins + 2];
2533 Int_t ibin = 0; fIntegral[ibin] = 0;
2534
2535 for (Int_t binz=1; binz <= nbinsz; ++binz) {
2536 for (Int_t biny=1; biny <= nbinsy; ++biny) {
2537 for (Int_t binx=1; binx <= nbinsx; ++binx) {
2538 ++ibin;
2539 Double_t y = RetrieveBinContent(GetBin(binx, biny, binz));
2540 if (onlyPositive && y < 0) {
2541 Error("ComputeIntegral","Bin content is negative - return a NaN value");
2542 fIntegral[nbins] = TMath::QuietNaN();
2543 break;
2544 }
2545 fIntegral[ibin] = fIntegral[ibin - 1] + y;
2546 }
2547 }
2548 }
2549
2550 // - Normalize integral to 1
2551 if (fIntegral[nbins] == 0 ) {
2552 Error("ComputeIntegral", "Integral = zero"); return 0;
2553 }
2554 for (Int_t bin=1; bin <= nbins; ++bin) fIntegral[bin] /= fIntegral[nbins];
2555 fIntegral[nbins+1] = fEntries;
2556 return fIntegral[nbins];
2557}
2558
2559////////////////////////////////////////////////////////////////////////////////
2560/// Return a pointer to the array of bins integral.
2561/// if the pointer fIntegral is null, TH1::ComputeIntegral is called
2562/// The array dimension is the number of bins in the histograms
2563/// including underflow and overflow (fNCells)
2564/// the last value integral[fNCells] is set to the number of entries of
2565/// the histogram
2566
2568{
2569 if (!fIntegral) ComputeIntegral();
2570 return fIntegral;
2571}
2572
2573////////////////////////////////////////////////////////////////////////////////
2574/// Return a pointer to a histogram containing the cumulative content.
2575/// The cumulative can be computed both in the forward (default) or backward
2576/// direction; the name of the new histogram is constructed from
2577/// the name of this histogram with the suffix "suffix" appended provided
2578/// by the user. If not provided a default suffix="_cumulative" is used.
2579///
2580/// The cumulative distribution is formed by filling each bin of the
2581/// resulting histogram with the sum of that bin and all previous
2582/// (forward == kTRUE) or following (forward = kFALSE) bins.
2583///
2584/// Note: while cumulative distributions make sense in one dimension, you
2585/// may not be getting what you expect in more than 1D because the concept
2586/// of a cumulative distribution is much trickier to define; make sure you
2587/// understand the order of summation before you use this method with
2588/// histograms of dimension >= 2.
2589///
2590/// Note 2: By default the cumulative is computed from bin 1 to Nbins
2591/// If an axis range is set, values between the minimum and maximum of the range
2592/// are set.
2593/// Setting an axis range can also be used for including underflow and overflow in
2594/// the cumulative (e.g. by setting h->GetXaxis()->SetRange(0, h->GetNbinsX()+1); )
2596
2597TH1 *TH1::GetCumulative(Bool_t forward, const char* suffix) const
2598{
2599 const Int_t firstX = fXaxis.GetFirst();
2600 const Int_t lastX = fXaxis.GetLast();
2601 const Int_t firstY = (fDimension > 1) ? fYaxis.GetFirst() : 1;
2602 const Int_t lastY = (fDimension > 1) ? fYaxis.GetLast() : 1;
2603 const Int_t firstZ = (fDimension > 1) ? fZaxis.GetFirst() : 1;
2604 const Int_t lastZ = (fDimension > 1) ? fZaxis.GetLast() : 1;
2605
2606 TH1* hintegrated = (TH1*) Clone(fName + suffix);
2607 hintegrated->Reset();
2608 Double_t sum = 0.;
2609 Double_t esum = 0;
2610 if (forward) { // Forward computation
2611 for (Int_t binz = firstZ; binz <= lastZ; ++binz) {
2612 for (Int_t biny = firstY; biny <= lastY; ++biny) {
2613 for (Int_t binx = firstX; binx <= lastX; ++binx) {
2614 const Int_t bin = hintegrated->GetBin(binx, biny, binz);
2615 sum += RetrieveBinContent(bin);
2616 hintegrated->AddBinContent(bin, sum);
2617 if (fSumw2.fN) {
2618 esum += GetBinErrorSqUnchecked(bin);
2619 hintegrated->fSumw2.fArray[bin] = esum;
2620 }
2621 }
2622 }
2623 }
2624 } else { // Backward computation
2625 for (Int_t binz = lastZ; binz >= firstZ; --binz) {
2626 for (Int_t biny = lastY; biny >= firstY; --biny) {
2627 for (Int_t binx = lastX; binx >= firstX; --binx) {
2628 const Int_t bin = hintegrated->GetBin(binx, biny, binz);
2629 sum += RetrieveBinContent(bin);
2630 hintegrated->AddBinContent(bin, sum);
2631 if (fSumw2.fN) {
2632 esum += GetBinErrorSqUnchecked(bin);
2633 hintegrated->fSumw2.fArray[bin] = esum;
2634 }
2635 }
2636 }
2637 }
2638 }
2639 return hintegrated;
2640}
2641
2642////////////////////////////////////////////////////////////////////////////////
2643/// Copy this histogram structure to newth1.
2644///
2645/// Note that this function does not copy the list of associated functions.
2646/// Use TObject::Clone to make a full copy of a histogram.
2647///
2648/// Note also that the histogram it will be created in gDirectory (if AddDirectoryStatus()=true)
2649/// or will not be added to any directory if AddDirectoryStatus()=false
2650/// independently of the current directory stored in the original histogram
2651
2652void TH1::Copy(TObject &obj) const
2653{
2654 if (((TH1&)obj).fDirectory) {
2655 // We are likely to change the hash value of this object
2656 // with TNamed::Copy, to keep things correct, we need to
2657 // clean up its existing entries.
2658 ((TH1&)obj).fDirectory->Remove(&obj);
2659 ((TH1&)obj).fDirectory = nullptr;
2660 }
2661 TNamed::Copy(obj);
2662 ((TH1&)obj).fDimension = fDimension;
2663 ((TH1&)obj).fNormFactor= fNormFactor;
2664 ((TH1&)obj).fNcells = fNcells;
2665 ((TH1&)obj).fBarOffset = fBarOffset;
2666 ((TH1&)obj).fBarWidth = fBarWidth;
2667 ((TH1&)obj).fOption = fOption;
2668 ((TH1&)obj).fBinStatErrOpt = fBinStatErrOpt;
2669 ((TH1&)obj).fBufferSize= fBufferSize;
2670 // copy the Buffer
2671 // delete first a previously existing buffer
2672 if (((TH1&)obj).fBuffer != nullptr) {
2673 delete [] ((TH1&)obj).fBuffer;
2674 ((TH1&)obj).fBuffer = nullptr;
2675 }
2676 if (fBuffer) {
2677 Double_t *buf = new Double_t[fBufferSize];
2678 for (Int_t i=0;i<fBufferSize;i++) buf[i] = fBuffer[i];
2679 // obj.fBuffer has been deleted before
2680 ((TH1&)obj).fBuffer = buf;
2681 }
2682
2683
2684 TArray* a = dynamic_cast<TArray*>(&obj);
2685 if (a) a->Set(fNcells);
2686 for (Int_t i = 0; i < fNcells; i++) ((TH1&)obj).UpdateBinContent(i, RetrieveBinContent(i));
2687
2688 ((TH1&)obj).fEntries = fEntries;
2689
2690 // which will call BufferEmpty(0) and set fBuffer[0] to a Maybe one should call
2691 // assignment operator on the TArrayD
2692
2693 ((TH1&)obj).fTsumw = fTsumw;
2694 ((TH1&)obj).fTsumw2 = fTsumw2;
2695 ((TH1&)obj).fTsumwx = fTsumwx;
2696 ((TH1&)obj).fTsumwx2 = fTsumwx2;
2697 ((TH1&)obj).fMaximum = fMaximum;
2698 ((TH1&)obj).fMinimum = fMinimum;
2699
2700 TAttLine::Copy(((TH1&)obj));
2701 TAttFill::Copy(((TH1&)obj));
2702 TAttMarker::Copy(((TH1&)obj));
2703 fXaxis.Copy(((TH1&)obj).fXaxis);
2704 fYaxis.Copy(((TH1&)obj).fYaxis);
2705 fZaxis.Copy(((TH1&)obj).fZaxis);
2706 ((TH1&)obj).fXaxis.SetParent(&obj);
2707 ((TH1&)obj).fYaxis.SetParent(&obj);
2708 ((TH1&)obj).fZaxis.SetParent(&obj);
2709 fContour.Copy(((TH1&)obj).fContour);
2710 fSumw2.Copy(((TH1&)obj).fSumw2);
2711 // fFunctions->Copy(((TH1&)obj).fFunctions);
2712 // when copying an histogram if the AddDirectoryStatus() is true it
2713 // will be added to gDirectory independently of the fDirectory stored.
2714 // and if the AddDirectoryStatus() is false it will not be added to
2715 // any directory (fDirectory = nullptr)
2716 if (fgAddDirectory && gDirectory) {
2717 gDirectory->Append(&obj);
2718 ((TH1&)obj).fFunctions->UseRWLock();
2719 ((TH1&)obj).fDirectory = gDirectory;
2720 } else
2721 ((TH1&)obj).fDirectory = nullptr;
2722
2723}
2724
2725////////////////////////////////////////////////////////////////////////////////
2726/// Make a complete copy of the underlying object. If 'newname' is set,
2727/// the copy's name will be set to that name.
2728
2729TObject* TH1::Clone(const char* newname) const
2730{
2731 TH1* obj = (TH1*)IsA()->GetNew()(0);
2732 Copy(*obj);
2733
2734 // Now handle the parts that Copy doesn't do
2735 if(fFunctions) {
2736 // The Copy above might have published 'obj' to the ListOfCleanups.
2737 // Clone can call RecursiveRemove, for example via TCheckHashRecursiveRemoveConsistency
2738 // when dictionary information is initialized, so we need to
2739 // keep obj->fFunction valid during its execution and
2740 // protect the update with the write lock.
2741
2742 // Reset stats parent - else cloning the stats will clone this histogram, too.
2743 auto oldstats = dynamic_cast<TVirtualPaveStats*>(fFunctions->FindObject("stats"));
2744 TObject *oldparent = nullptr;
2745 if (oldstats) {
2746 oldparent = oldstats->GetParent();
2747 oldstats->SetParent(nullptr);
2748 }
2749
2750 auto newlist = (TList*)fFunctions->Clone();
2751
2752 if (oldstats)
2753 oldstats->SetParent(oldparent);
2754 auto newstats = dynamic_cast<TVirtualPaveStats*>(obj->fFunctions->FindObject("stats"));
2755 if (newstats)
2756 newstats->SetParent(obj);
2757
2758 auto oldlist = obj->fFunctions;
2759 {
2761 obj->fFunctions = newlist;
2762 }
2763 delete oldlist;
2764 }
2765 if(newname && strlen(newname) ) {
2766 obj->SetName(newname);
2767 }
2768 return obj;
2769}
2770
2771////////////////////////////////////////////////////////////////////////////////
2772/// Perform the automatic addition of the histogram to the given directory
2773///
2774/// Note this function is called in place when the semantic requires
2775/// this object to be added to a directory (I.e. when being read from
2776/// a TKey or being Cloned)
2777
2779{
2780 Bool_t addStatus = TH1::AddDirectoryStatus();
2781 if (addStatus) {
2782 SetDirectory(dir);
2783 if (dir) {
2785 }
2786 }
2787}
2788
2789////////////////////////////////////////////////////////////////////////////////
2790/// Compute distance from point px,py to a line.
2791///
2792/// Compute the closest distance of approach from point px,py to elements
2793/// of a histogram.
2794/// The distance is computed in pixels units.
2795///
2796/// #### Algorithm:
2797/// Currently, this simple model computes the distance from the mouse
2798/// to the histogram contour only.
2799
2801{
2802 if (!fPainter) return 9999;
2803 return fPainter->DistancetoPrimitive(px,py);
2804}
2805
2806////////////////////////////////////////////////////////////////////////////////
2807/// Performs the operation: `this = this/(c1*f1)`
2808/// if errors are defined (see TH1::Sumw2), errors are also recalculated.
2809///
2810/// Only bins inside the function range are recomputed.
2811/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
2812/// you should call Sumw2 before making this operation.
2813/// This is particularly important if you fit the histogram after TH1::Divide
2814///
2815/// The function return kFALSE if the divide operation failed
2816
2818{
2819 if (!f1) {
2820 Error("Divide","Attempt to divide by a non-existing function");
2821 return kFALSE;
2822 }
2823
2824 // delete buffer if it is there since it will become invalid
2825 if (fBuffer) BufferEmpty(1);
2826
2827 Int_t nx = GetNbinsX() + 2; // normal bins + uf / of
2828 Int_t ny = GetNbinsY() + 2;
2829 Int_t nz = GetNbinsZ() + 2;
2830 if (fDimension < 2) ny = 1;
2831 if (fDimension < 3) nz = 1;
2832
2833
2834 SetMinimum();
2835 SetMaximum();
2836
2837 // - Loop on bins (including underflows/overflows)
2838 Int_t bin, binx, biny, binz;
2839 Double_t cu, w;
2840 Double_t xx[3];
2841 Double_t *params = 0;
2842 f1->InitArgs(xx,params);
2843 for (binz = 0; binz < nz; ++binz) {
2844 xx[2] = fZaxis.GetBinCenter(binz);
2845 for (biny = 0; biny < ny; ++biny) {
2846 xx[1] = fYaxis.GetBinCenter(biny);
2847 for (binx = 0; binx < nx; ++binx) {
2848 xx[0] = fXaxis.GetBinCenter(binx);
2849 if (!f1->IsInside(xx)) continue;
2851 bin = binx + nx * (biny + ny * binz);
2852 cu = c1 * f1->EvalPar(xx);
2853 if (TF1::RejectedPoint()) continue;
2854 if (cu) w = RetrieveBinContent(bin) / cu;
2855 else w = 0;
2856 UpdateBinContent(bin, w);
2857 if (fSumw2.fN) {
2858 if (cu != 0) fSumw2.fArray[bin] = GetBinErrorSqUnchecked(bin) / (cu * cu);
2859 else fSumw2.fArray[bin] = 0;
2860 }
2861 }
2862 }
2863 }
2864 ResetStats();
2865 return kTRUE;
2866}
2867
2868////////////////////////////////////////////////////////////////////////////////
2869/// Divide this histogram by h1.
2870///
2871/// `this = this/h1`
2872/// if errors are defined (see TH1::Sumw2), errors are also recalculated.
2873/// Note that if h1 has Sumw2 set, Sumw2 is automatically called for this
2874/// if not already set.
2875/// The resulting errors are calculated assuming uncorrelated histograms.
2876/// See the other TH1::Divide that gives the possibility to optionally
2877/// compute binomial errors.
2878///
2879/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
2880/// you should call Sumw2 before making this operation.
2881/// This is particularly important if you fit the histogram after TH1::Scale
2882///
2883/// The function return kFALSE if the divide operation failed
2884
2885Bool_t TH1::Divide(const TH1 *h1)
2886{
2887 if (!h1) {
2888 Error("Divide", "Input histogram passed does not exist (NULL).");
2889 return kFALSE;
2890 }
2891
2892 // delete buffer if it is there since it will become invalid
2893 if (fBuffer) BufferEmpty(1);
2894
2895 try {
2896 CheckConsistency(this,h1);
2897 } catch(DifferentNumberOfBins&) {
2898 Error("Divide","Cannot divide histograms with different number of bins");
2899 return kFALSE;
2900 } catch(DifferentAxisLimits&) {
2901 Warning("Divide","Dividing histograms with different axis limits");
2902 } catch(DifferentBinLimits&) {
2903 Warning("Divide","Dividing histograms with different bin limits");
2904 } catch(DifferentLabels&) {
2905 Warning("Divide","Dividing histograms with different labels");
2906 }
2907
2908 // Create Sumw2 if h1 has Sumw2 set
2909 if (fSumw2.fN == 0 && h1->GetSumw2N() != 0) Sumw2();
2910
2911 // - Loop on bins (including underflows/overflows)
2912 for (Int_t i = 0; i < fNcells; ++i) {
2915 if (c1) UpdateBinContent(i, c0 / c1);
2916 else UpdateBinContent(i, 0);
2917
2918 if(fSumw2.fN) {
2919 if (c1 == 0) { fSumw2.fArray[i] = 0; continue; }
2920 Double_t c1sq = c1 * c1;
2921 fSumw2.fArray[i] = (GetBinErrorSqUnchecked(i) * c1sq + h1->GetBinErrorSqUnchecked(i) * c0 * c0) / (c1sq * c1sq);
2922 }
2923 }
2924 ResetStats();
2925 return kTRUE;
2926}
2927
2928////////////////////////////////////////////////////////////////////////////////
2929/// Replace contents of this histogram by the division of h1 by h2.
2930///
2931/// `this = c1*h1/(c2*h2)`
2932///
2933/// If errors are defined (see TH1::Sumw2), errors are also recalculated
2934/// Note that if h1 or h2 have Sumw2 set, Sumw2 is automatically called for this
2935/// if not already set.
2936/// The resulting errors are calculated assuming uncorrelated histograms.
2937/// However, if option ="B" is specified, Binomial errors are computed.
2938/// In this case c1 and c2 do not make real sense and they are ignored.
2939///
2940/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
2941/// you should call Sumw2 before making this operation.
2942/// This is particularly important if you fit the histogram after TH1::Divide
2943///
2944/// Please note also that in the binomial case errors are calculated using standard
2945/// binomial statistics, which means when b1 = b2, the error is zero.
2946/// If you prefer to have efficiency errors not going to zero when the efficiency is 1, you must
2947/// use the function TGraphAsymmErrors::BayesDivide, which will return an asymmetric and non-zero lower
2948/// error for the case b1=b2.
2949///
2950/// The function return kFALSE if the divide operation failed
2951
2953{
2954
2955 TString opt = option;
2956 opt.ToLower();
2957 Bool_t binomial = kFALSE;
2958 if (opt.Contains("b")) binomial = kTRUE;
2959 if (!h1 || !h2) {
2960 Error("Divide", "At least one of the input histograms passed does not exist (NULL).");
2961 return kFALSE;
2962 }
2963
2964 // delete buffer if it is there since it will become invalid
2965 if (fBuffer) BufferEmpty(1);
2966
2967 try {
2968 CheckConsistency(h1,h2);
2969 CheckConsistency(this,h1);
2970 } catch(DifferentNumberOfBins&) {
2971 Error("Divide","Cannot divide histograms with different number of bins");
2972 return kFALSE;
2973 } catch(DifferentAxisLimits&) {
2974 Warning("Divide","Dividing histograms with different axis limits");
2975 } catch(DifferentBinLimits&) {
2976 Warning("Divide","Dividing histograms with different bin limits");
2977 } catch(DifferentLabels&) {
2978 Warning("Divide","Dividing histograms with different labels");
2979 }
2980
2981
2982 if (!c2) {
2983 Error("Divide","Coefficient of dividing histogram cannot be zero");
2984 return kFALSE;
2985 }
2986
2987 // Create Sumw2 if h1 or h2 have Sumw2 set, or if binomial errors are explicitly requested
2988 if (fSumw2.fN == 0 && (h1->GetSumw2N() != 0 || h2->GetSumw2N() != 0 || binomial)) Sumw2();
2989
2990 SetMinimum();
2991 SetMaximum();
2992
2993 // - Loop on bins (including underflows/overflows)
2994 for (Int_t i = 0; i < fNcells; ++i) {
2996 Double_t b2 = h2->RetrieveBinContent(i);
2997 if (b2) UpdateBinContent(i, c1 * b1 / (c2 * b2));
2998 else UpdateBinContent(i, 0);
2999
3000 if (fSumw2.fN) {
3001 if (b2 == 0) { fSumw2.fArray[i] = 0; continue; }
3002 Double_t b1sq = b1 * b1; Double_t b2sq = b2 * b2;
3003 Double_t c1sq = c1 * c1; Double_t c2sq = c2 * c2;
3005 Double_t e2sq = h2->GetBinErrorSqUnchecked(i);
3006 if (binomial) {
3007 if (b1 != b2) {
3008 // in the case of binomial statistics c1 and c2 must be 1 otherwise it does not make sense
3009 // c1 and c2 are ignored
3010 //fSumw2.fArray[bin] = TMath::Abs(w*(1-w)/(c2*b2));//this is the formula in Hbook/Hoper1
3011 //fSumw2.fArray[bin] = TMath::Abs(w*(1-w)/b2); // old formula from G. Flucke
3012 // formula which works also for weighted histogram (see http://root-forum.cern.ch/viewtopic.php?t=3753 )
3013 fSumw2.fArray[i] = TMath::Abs( ( (1. - 2.* b1 / b2) * e1sq + b1sq * e2sq / b2sq ) / b2sq );
3014 } else {
3015 //in case b1=b2 error is zero
3016 //use TGraphAsymmErrors::BayesDivide for getting the asymmetric error not equal to zero
3017 fSumw2.fArray[i] = 0;
3018 }
3019 } else {
3020 fSumw2.fArray[i] = c1sq * c2sq * (e1sq * b2sq + e2sq * b1sq) / (c2sq * c2sq * b2sq * b2sq);
3021 }
3022 }
3023 }
3024 ResetStats();
3025 if (binomial)
3026 // in case of binomial division use denominator for number of entries
3027 SetEntries ( h2->GetEntries() );
3028
3029 return kTRUE;
3030}
3031
3032////////////////////////////////////////////////////////////////////////////////
3033/// Draw this histogram with options.
3034///
3035/// Histograms are drawn via the THistPainter class. Each histogram has
3036/// a pointer to its own painter (to be usable in a multithreaded program).
3037/// The same histogram can be drawn with different options in different pads.
3038/// When a histogram drawn in a pad is deleted, the histogram is
3039/// automatically removed from the pad or pads where it was drawn.
3040/// If a histogram is drawn in a pad, then filled again, the new status
3041/// of the histogram will be automatically shown in the pad next time
3042/// the pad is updated. One does not need to redraw the histogram.
3043/// To draw the current version of a histogram in a pad, one can use
3044/// `h->DrawCopy();`
3045/// This makes a clone of the histogram. Once the clone is drawn, the original
3046/// histogram may be modified or deleted without affecting the aspect of the
3047/// clone.
3048/// By default, TH1::Draw clears the current pad.
3049///
3050/// One can use TH1::SetMaximum and TH1::SetMinimum to force a particular
3051/// value for the maximum or the minimum scale on the plot.
3052///
3053/// TH1::UseCurrentStyle can be used to change all histogram graphics
3054/// attributes to correspond to the current selected style.
3055/// This function must be called for each histogram.
3056/// In case one reads and draws many histograms from a file, one can force
3057/// the histograms to inherit automatically the current graphics style
3058/// by calling before gROOT->ForceStyle();
3059///
3060/// See the THistPainter class for a description of all the drawing options.
3061
3063{
3064 TString opt1 = option; opt1.ToLower();
3065 TString opt2 = option;
3066 Int_t index = opt1.Index("same");
3067
3068 // Check if the string "same" is part of a TCutg name.
3069 if (index>=0) {
3070 Int_t indb = opt1.Index("[");
3071 if (indb>=0) {
3072 Int_t indk = opt1.Index("]");
3073 if (index>indb && index<indk) index = -1;
3074 }
3075 }
3076
3077 // If there is no pad or an empty pad the "same" option is ignored.
3078 if (gPad) {
3079 if (!gPad->IsEditable()) gROOT->MakeDefCanvas();
3080 if (index>=0) {
3081 if (gPad->GetX1() == 0 && gPad->GetX2() == 1 &&
3082 gPad->GetY1() == 0 && gPad->GetY2() == 1 &&
3083 gPad->GetListOfPrimitives()->GetSize()==0) opt2.Remove(index,4);
3084 } else {
3085 //the following statement is necessary in case one attempts to draw
3086 //a temporary histogram already in the current pad
3087 if (TestBit(kCanDelete)) gPad->GetListOfPrimitives()->Remove(this);
3088 gPad->Clear();
3089 }
3090 gPad->IncrementPaletteColor(1, opt1);
3091 } else {
3092 if (index>=0) opt2.Remove(index,4);
3093 }
3094
3095 AppendPad(opt2.Data());
3096}
3097
3098////////////////////////////////////////////////////////////////////////////////
3099/// Copy this histogram and Draw in the current pad.
3100///
3101/// Once the histogram is drawn into the pad, any further modification
3102/// using graphics input will be made on the copy of the histogram,
3103/// and not to the original object.
3104/// By default a postfix "_copy" is added to the histogram name. Pass an empty postfix in case
3105/// you want to draw a histogram with the same name
3106///
3107/// See Draw for the list of options
3108
3109TH1 *TH1::DrawCopy(Option_t *option, const char * name_postfix) const
3110{
3111 TString opt = option;
3112 opt.ToLower();
3113 if (gPad && !opt.Contains("same")) gPad->Clear();
3114 TString newName;
3115 if (name_postfix) newName.Form("%s%s", GetName(), name_postfix);
3116 TH1 *newth1 = (TH1 *)Clone(newName.Data());
3117 newth1->SetDirectory(nullptr);
3118 newth1->SetBit(kCanDelete);
3119 if (gPad) gPad->IncrementPaletteColor(1, opt);
3120
3121 newth1->AppendPad(option);
3122 return newth1;
3123}
3124
3125////////////////////////////////////////////////////////////////////////////////
3126/// Draw a normalized copy of this histogram.
3127///
3128/// A clone of this histogram is normalized to norm and drawn with option.
3129/// A pointer to the normalized histogram is returned.
3130/// The contents of the histogram copy are scaled such that the new
3131/// sum of weights (excluding under and overflow) is equal to norm.
3132/// Note that the returned normalized histogram is not added to the list
3133/// of histograms in the current directory in memory.
3134/// It is the user's responsibility to delete this histogram.
3135/// The kCanDelete bit is set for the returned object. If a pad containing
3136/// this copy is cleared, the histogram will be automatically deleted.
3137///
3138/// See Draw for the list of options
3139
3141{
3143 if (sum == 0) {
3144 Error("DrawNormalized","Sum of weights is null. Cannot normalize histogram: %s",GetName());
3145 return nullptr;
3146 }
3147 Bool_t addStatus = TH1::AddDirectoryStatus();
3149 TH1 *h = (TH1*)Clone();
3151 // in case of drawing with error options - scale correctly the error
3152 TString opt(option); opt.ToUpper();
3153 if (fSumw2.fN == 0) {
3154 h->Sumw2();
3155 // do not use in this case the "Error option " for drawing which is enabled by default since the normalized histogram has now errors
3156 if (opt.IsNull() || opt == "SAME") opt += "HIST";
3157 }
3158 h->Scale(norm/sum);
3159 if (TMath::Abs(fMaximum+1111) > 1e-3) h->SetMaximum(fMaximum*norm/sum);
3160 if (TMath::Abs(fMinimum+1111) > 1e-3) h->SetMinimum(fMinimum*norm/sum);
3161 h->Draw(opt);
3162 TH1::AddDirectory(addStatus);
3163 return h;
3164}
3165
3166////////////////////////////////////////////////////////////////////////////////
3167/// Display a panel with all histogram drawing options.
3168///
3169/// See class TDrawPanelHist for example
3170
3171void TH1::DrawPanel()
3172{
3173 if (!fPainter) {Draw(); if (gPad) gPad->Update();}
3174 if (fPainter) fPainter->DrawPanel();
3175}
3176
3177////////////////////////////////////////////////////////////////////////////////
3178/// Evaluate function f1 at the center of bins of this histogram.
3179///
3180/// - If option "R" is specified, the function is evaluated only
3181/// for the bins included in the function range.
3182/// - If option "A" is specified, the value of the function is added to the
3183/// existing bin contents
3184/// - If option "S" is specified, the value of the function is used to
3185/// generate a value, distributed according to the Poisson
3186/// distribution, with f1 as the mean.
3187
3189{
3190 Double_t x[3];
3191 Int_t range, stat, add;
3192 if (!f1) return;
3193
3194 TString opt = option;
3195 opt.ToLower();
3196 if (opt.Contains("a")) add = 1;
3197 else add = 0;
3198 if (opt.Contains("s")) stat = 1;
3199 else stat = 0;
3200 if (opt.Contains("r")) range = 1;
3201 else range = 0;
3202
3203 // delete buffer if it is there since it will become invalid
3204 if (fBuffer) BufferEmpty(1);
3205
3206 Int_t nbinsx = fXaxis.GetNbins();
3207 Int_t nbinsy = fYaxis.GetNbins();
3208 Int_t nbinsz = fZaxis.GetNbins();
3209 if (!add) Reset();
3210
3211 for (Int_t binz = 1; binz <= nbinsz; ++binz) {
3212 x[2] = fZaxis.GetBinCenter(binz);
3213 for (Int_t biny = 1; biny <= nbinsy; ++biny) {
3214 x[1] = fYaxis.GetBinCenter(biny);
3215 for (Int_t binx = 1; binx <= nbinsx; ++binx) {
3216 Int_t bin = GetBin(binx,biny,binz);
3217 x[0] = fXaxis.GetBinCenter(binx);
3218 if (range && !f1->IsInside(x)) continue;
3219 Double_t fu = f1->Eval(x[0], x[1], x[2]);
3220 if (stat) fu = gRandom->PoissonD(fu);
3221 AddBinContent(bin, fu);
3222 if (fSumw2.fN) fSumw2.fArray[bin] += TMath::Abs(fu);
3223 }
3224 }
3225 }
3226}
3227
3228////////////////////////////////////////////////////////////////////////////////
3229/// Execute action corresponding to one event.
3230///
3231/// This member function is called when a histogram is clicked with the locator
3232///
3233/// If Left button clicked on the bin top value, then the content of this bin
3234/// is modified according to the new position of the mouse when it is released.
3235
3237{
3238 if (fPainter) fPainter->ExecuteEvent(event, px, py);
3239}
3240
3241////////////////////////////////////////////////////////////////////////////////
3242/// This function allows to do discrete Fourier transforms of TH1 and TH2.
3243/// Available transform types and flags are described below.
3244///
3245/// To extract more information about the transform, use the function
3246/// TVirtualFFT::GetCurrentTransform() to get a pointer to the current
3247/// transform object.
3248///
3249/// \param[out] h_output histogram for the output. If a null pointer is passed, a new histogram is created
3250/// and returned, otherwise, the provided histogram is used and should be big enough
3251/// \param[in] option option parameters consists of 3 parts:
3252/// - option on what to return
3253/// - "RE" - returns a histogram of the real part of the output
3254/// - "IM" - returns a histogram of the imaginary part of the output
3255/// - "MAG"- returns a histogram of the magnitude of the output
3256/// - "PH" - returns a histogram of the phase of the output
3257/// - option of transform type
3258/// - "R2C" - real to complex transforms - default
3259/// - "R2HC" - real to halfcomplex (special format of storing output data,
3260/// results the same as for R2C)
3261/// - "DHT" - discrete Hartley transform
3262/// real to real transforms (sine and cosine):
3263/// - "R2R_0", "R2R_1", "R2R_2", "R2R_3" - discrete cosine transforms of types I-IV
3264/// - "R2R_4", "R2R_5", "R2R_6", "R2R_7" - discrete sine transforms of types I-IV
3265/// To specify the type of each dimension of a 2-dimensional real to real
3266/// transform, use options of form "R2R_XX", for example, "R2R_02" for a transform,
3267/// which is of type "R2R_0" in 1st dimension and "R2R_2" in the 2nd.
3268/// - option of transform flag
3269/// - "ES" (from "estimate") - no time in preparing the transform, but probably sub-optimal
3270/// performance
3271/// - "M" (from "measure") - some time spend in finding the optimal way to do the transform
3272/// - "P" (from "patient") - more time spend in finding the optimal way to do the transform
3273/// - "EX" (from "exhaustive") - the most optimal way is found
3274/// This option should be chosen depending on how many transforms of the same size and
3275/// type are going to be done. Planning is only done once, for the first transform of this
3276/// size and type. Default is "ES".
3277///
3278/// Examples of valid options: "Mag R2C M" "Re R2R_11" "Im R2C ES" "PH R2HC EX"
3279
3280TH1* TH1::FFT(TH1* h_output, Option_t *option)
3281{
3282
3283 Int_t ndim[3];
3284 ndim[0] = this->GetNbinsX();
3285 ndim[1] = this->GetNbinsY();
3286 ndim[2] = this->GetNbinsZ();
3287
3288 TVirtualFFT *fft;
3289 TString opt = option;
3290 opt.ToUpper();
3291 if (!opt.Contains("2R")){
3292 if (!opt.Contains("2C") && !opt.Contains("2HC") && !opt.Contains("DHT")) {
3293 //no type specified, "R2C" by default
3294 opt.Append("R2C");
3295 }
3296 fft = TVirtualFFT::FFT(this->GetDimension(), ndim, opt.Data());
3297 }
3298 else {
3299 //find the kind of transform
3300 Int_t ind = opt.Index("R2R", 3);
3301 Int_t *kind = new Int_t[2];
3302 char t;
3303 t = opt[ind+4];
3304 kind[0] = atoi(&t);
3305 if (h_output->GetDimension()>1) {
3306 t = opt[ind+5];
3307 kind[1] = atoi(&t);
3308 }
3309 fft = TVirtualFFT::SineCosine(this->GetDimension(), ndim, kind, option);
3310 delete [] kind;
3311 }
3312
3313 if (!fft) return 0;
3314 Int_t in=0;
3315 for (Int_t binx = 1; binx<=ndim[0]; binx++) {
3316 for (Int_t biny=1; biny<=ndim[1]; biny++) {
3317 for (Int_t binz=1; binz<=ndim[2]; binz++) {
3318 fft->SetPoint(in, this->GetBinContent(binx, biny, binz));
3319 in++;
3320 }
3321 }
3322 }
3323 fft->Transform();
3324 h_output = TransformHisto(fft, h_output, option);
3325 return h_output;
3326}
3327
3328////////////////////////////////////////////////////////////////////////////////
3329/// Increment bin with abscissa X by 1.
3330///
3331/// if x is less than the low-edge of the first bin, the Underflow bin is incremented
3332/// if x is equal to or greater than the upper edge of last bin, the Overflow bin is incremented
3333///
3334/// If the storage of the sum of squares of weights has been triggered,
3335/// via the function Sumw2, then the sum of the squares of weights is incremented
3336/// by 1 in the bin corresponding to x.
3337///
3338/// The function returns the corresponding bin number which has its content incremented by 1
3339
3341{
3342 if (fBuffer) return BufferFill(x,1);
3343
3344 Int_t bin;
3345 fEntries++;
3346 bin =fXaxis.FindBin(x);
3347 if (bin <0) return -1;
3348 AddBinContent(bin);
3349 if (fSumw2.fN) ++fSumw2.fArray[bin];
3350 if (bin == 0 || bin > fXaxis.GetNbins()) {
3351 if (!GetStatOverflowsBehaviour()) return -1;
3352 }
3353 ++fTsumw;
3354 ++fTsumw2;
3355 fTsumwx += x;
3356 fTsumwx2 += x*x;
3357 return bin;
3358}
3359
3360////////////////////////////////////////////////////////////////////////////////
3361/// Increment bin with abscissa X with a weight w.
3362///
3363/// if x is less than the low-edge of the first bin, the Underflow bin is incremented
3364/// if x is equal to or greater than the upper edge of last bin, the Overflow bin is incremented
3365///
3366/// If the weight is not equal to 1, the storage of the sum of squares of
3367/// weights is automatically triggered and the sum of the squares of weights is incremented
3368/// by \f$ w^2 \f$ in the bin corresponding to x.
3369///
3370/// The function returns the corresponding bin number which has its content incremented by w
3371
3373{
3374
3375 if (fBuffer) return BufferFill(x,w);
3376
3377 Int_t bin;
3378 fEntries++;
3379 bin =fXaxis.FindBin(x);
3380 if (bin <0) return -1;
3381 if (!fSumw2.fN && w != 1.0 && !TestBit(TH1::kIsNotW) ) Sumw2(); // must be called before AddBinContent
3382 if (fSumw2.fN) fSumw2.fArray[bin] += w*w;
3383 AddBinContent(bin, w);
3384 if (bin == 0 || bin > fXaxis.GetNbins()) {
3385 if (!GetStatOverflowsBehaviour()) return -1;
3386 }
3387 Double_t z= w;
3388 fTsumw += z;
3389 fTsumw2 += z*z;
3390 fTsumwx += z*x;
3391 fTsumwx2 += z*x*x;
3392 return bin;
3393}
3394
3395////////////////////////////////////////////////////////////////////////////////
3396/// Increment bin with namex with a weight w
3397///
3398/// if x is less than the low-edge of the first bin, the Underflow bin is incremented
3399/// if x is equal to or greater than the upper edge of last bin, the Overflow bin is incremented
3400///
3401/// If the weight is not equal to 1, the storage of the sum of squares of
3402/// weights is automatically triggered and the sum of the squares of weights is incremented
3403/// by \f$ w^2 \f$ in the bin corresponding to x.
3404///
3405/// The function returns the corresponding bin number which has its content
3406/// incremented by w.
3407
3408Int_t TH1::Fill(const char *namex, Double_t w)
3409{
3410 Int_t bin;
3411 fEntries++;
3412 bin =fXaxis.FindBin(namex);
3413 if (bin <0) return -1;
3414 if (!fSumw2.fN && w != 1.0 && !TestBit(TH1::kIsNotW)) Sumw2();
3415 if (fSumw2.fN) fSumw2.fArray[bin] += w*w;
3416 AddBinContent(bin, w);
3417 if (bin == 0 || bin > fXaxis.GetNbins()) return -1;
3418 Double_t z= w;
3419 fTsumw += z;
3420 fTsumw2 += z*z;
3421 // this make sense if the histogram is not expanding (the x axis cannot be extended)
3422 if (!fXaxis.CanExtend() || !fXaxis.IsAlphanumeric()) {
3424 fTsumwx += z*x;
3425 fTsumwx2 += z*x*x;
3426 }
3427 return bin;
3428}
3429
3430////////////////////////////////////////////////////////////////////////////////
3431/// Fill this histogram with an array x and weights w.
3432///
3433/// \param[in] ntimes number of entries in arrays x and w (array size must be ntimes*stride)
3434/// \param[in] x array of values to be histogrammed
3435/// \param[in] w array of weighs
3436/// \param[in] stride step size through arrays x and w
3437///
3438/// If the weight is not equal to 1, the storage of the sum of squares of
3439/// weights is automatically triggered and the sum of the squares of weights is incremented
3440/// by \f$ w^2 \f$ in the bin corresponding to x.
3441/// if w is NULL each entry is assumed a weight=1
3442
3443void TH1::FillN(Int_t ntimes, const Double_t *x, const Double_t *w, Int_t stride)
3444{
3445 //If a buffer is activated, fill buffer
3446 if (fBuffer) {
3447 ntimes *= stride;
3448 Int_t i = 0;
3449 for (i=0;i<ntimes;i+=stride) {
3450 if (!fBuffer) break; // buffer can be deleted in BufferFill when is empty
3451 if (w) BufferFill(x[i],w[i]);
3452 else BufferFill(x[i], 1.);
3453 }
3454 // fill the remaining entries if the buffer has been deleted
3455 if (i < ntimes && !fBuffer) {
3456 auto weights = w ? &w[i] : nullptr;
3457 DoFillN((ntimes-i)/stride,&x[i],weights,stride);
3458 }
3459 return;
3460 }
3461 // call internal method
3462 DoFillN(ntimes, x, w, stride);
3463}
3464
3465////////////////////////////////////////////////////////////////////////////////
3466/// Internal method to fill histogram content from a vector
3467/// called directly by TH1::BufferEmpty
3468
3469void TH1::DoFillN(Int_t ntimes, const Double_t *x, const Double_t *w, Int_t stride)
3470{
3471 Int_t bin,i;
3472
3473 fEntries += ntimes;
3474 Double_t ww = 1;
3475 Int_t nbins = fXaxis.GetNbins();
3476 ntimes *= stride;
3477 for (i=0;i<ntimes;i+=stride) {
3478 bin =fXaxis.FindBin(x[i]);
3479 if (bin <0) continue;
3480 if (w) ww = w[i];
3481 if (!fSumw2.fN && ww != 1.0 && !TestBit(TH1::kIsNotW)) Sumw2();
3482 if (fSumw2.fN) fSumw2.fArray[bin] += ww*ww;
3483 AddBinContent(bin, ww);
3484 if (bin == 0 || bin > nbins) {
3485 if (!GetStatOverflowsBehaviour()) continue;
3486 }
3487 Double_t z= ww;
3488 fTsumw += z;
3489 fTsumw2 += z*z;
3490 fTsumwx += z*x[i];
3491 fTsumwx2 += z*x[i]*x[i];
3492 }
3493}
3494
3495////////////////////////////////////////////////////////////////////////////////
3496/// Fill histogram following distribution in function fname.
3497///
3498/// @param fname : Function name used for filling the histogram
3499/// @param ntimes : number of times the histogram is filled
3500/// @param rng : (optional) Random number generator used to sample
3501///
3502///
3503/// The distribution contained in the function fname (TF1) is integrated
3504/// over the channel contents for the bin range of this histogram.
3505/// It is normalized to 1.
3506///
3507/// Getting one random number implies:
3508/// - Generating a random number between 0 and 1 (say r1)
3509/// - Look in which bin in the normalized integral r1 corresponds to
3510/// - Fill histogram channel
3511/// ntimes random numbers are generated
3512///
3513/// One can also call TF1::GetRandom to get a random variate from a function.
3514
3515void TH1::FillRandom(const char *fname, Int_t ntimes, TRandom * rng)
3516{
3517 Int_t bin, binx, ibin, loop;
3518 Double_t r1, x;
3519 // - Search for fname in the list of ROOT defined functions
3520 TF1 *f1 = (TF1*)gROOT->GetFunction(fname);
3521 if (!f1) { Error("FillRandom", "Unknown function: %s",fname); return; }
3522
3523 // - Allocate temporary space to store the integral and compute integral
3524
3525 TAxis * xAxis = &fXaxis;
3526
3527 // in case axis of histogram is not defined use the function axis
3528 if (fXaxis.GetXmax() <= fXaxis.GetXmin()) {
3530 f1->GetRange(xmin,xmax);
3531 Info("FillRandom","Using function axis and range [%g,%g]",xmin, xmax);
3532 xAxis = f1->GetHistogram()->GetXaxis();
3533 }
3534
3535 Int_t first = xAxis->GetFirst();
3536 Int_t last = xAxis->GetLast();
3537 Int_t nbinsx = last-first+1;
3538
3539 Double_t *integral = new Double_t[nbinsx+1];
3540 integral[0] = 0;
3541 for (binx=1;binx<=nbinsx;binx++) {
3542 Double_t fint = f1->Integral(xAxis->GetBinLowEdge(binx+first-1),xAxis->GetBinUpEdge(binx+first-1), 0.);
3543 integral[binx] = integral[binx-1] + fint;
3544 }
3545
3546 // - Normalize integral to 1
3547 if (integral[nbinsx] == 0 ) {
3548 delete [] integral;
3549 Error("FillRandom", "Integral = zero"); return;
3550 }
3551 for (bin=1;bin<=nbinsx;bin++) integral[bin] /= integral[nbinsx];
3552
3553 // --------------Start main loop ntimes
3554 for (loop=0;loop<ntimes;loop++) {
3555 r1 = (rng) ? rng->Rndm() : gRandom->Rndm();
3556 ibin = TMath::BinarySearch(nbinsx,&integral[0],r1);
3557 //binx = 1 + ibin;
3558 //x = xAxis->GetBinCenter(binx); //this is not OK when SetBuffer is used
3559 x = xAxis->GetBinLowEdge(ibin+first)
3560 +xAxis->GetBinWidth(ibin+first)*(r1-integral[ibin])/(integral[ibin+1] - integral[ibin]);
3561 Fill(x);
3562 }
3563 delete [] integral;
3564}
3565
3566////////////////////////////////////////////////////////////////////////////////
3567/// Fill histogram following distribution in histogram h.
3568///
3569/// @param h : Histogram pointer used for sampling random number
3570/// @param ntimes : number of times the histogram is filled
3571/// @param rng : (optional) Random number generator used for sampling
3572///
3573/// The distribution contained in the histogram h (TH1) is integrated
3574/// over the channel contents for the bin range of this histogram.
3575/// It is normalized to 1.
3576///
3577/// Getting one random number implies:
3578/// - Generating a random number between 0 and 1 (say r1)
3579/// - Look in which bin in the normalized integral r1 corresponds to
3580/// - Fill histogram channel ntimes random numbers are generated
3581///
3582/// SPECIAL CASE when the target histogram has the same binning as the source.
3583/// in this case we simply use a poisson distribution where
3584/// the mean value per bin = bincontent/integral.
3585
3586void TH1::FillRandom(TH1 *h, Int_t ntimes, TRandom * rng)
3587{
3588 if (!h) { Error("FillRandom", "Null histogram"); return; }
3589 if (fDimension != h->GetDimension()) {
3590 Error("FillRandom", "Histograms with different dimensions"); return;
3591 }
3592 if (std::isnan(h->ComputeIntegral(true))) {
3593 Error("FillRandom", "Histograms contains negative bins, does not represent probabilities");
3594 return;
3595 }
3596
3597 //in case the target histogram has the same binning and ntimes much greater
3598 //than the number of bins we can use a fast method
3600 Int_t last = fXaxis.GetLast();
3601 Int_t nbins = last-first+1;
3602 if (ntimes > 10*nbins) {
3603 try {
3604 CheckConsistency(this,h);
3605 Double_t sumw = h->Integral(first,last);
3606 if (sumw == 0) return;
3607 Double_t sumgen = 0;
3608 for (Int_t bin=first;bin<=last;bin++) {
3609 Double_t mean = h->RetrieveBinContent(bin)*ntimes/sumw;
3610 Double_t cont = (rng) ? rng->Poisson(mean) : gRandom->Poisson(mean);
3611 sumgen += cont;
3612 AddBinContent(bin,cont);
3613 if (fSumw2.fN) fSumw2.fArray[bin] += cont;
3614 }
3615
3616 // fix for the fluctuations in the total number n
3617 // since we use Poisson instead of multinomial
3618 // add a correction to have ntimes as generated entries
3619 Int_t i;
3620 if (sumgen < ntimes) {
3621 // add missing entries
3622 for (i = Int_t(sumgen+0.5); i < ntimes; ++i)
3623 {
3624 Double_t x = h->GetRandom();
3625 Fill(x);
3626 }
3627 }
3628 else if (sumgen > ntimes) {
3629 // remove extra entries
3630 i = Int_t(sumgen+0.5);
3631 while( i > ntimes) {
3632 Double_t x = h->GetRandom(rng);
3633 Int_t ibin = fXaxis.FindBin(x);
3635 // skip in case bin is empty
3636 if (y > 0) {
3637 SetBinContent(ibin, y-1.);
3638 i--;
3639 }
3640 }
3641 }
3642
3643 ResetStats();
3644 return;
3645 }
3646 catch(std::exception&) {} // do nothing
3647 }
3648 // case of different axis and not too large ntimes
3649
3650 if (h->ComputeIntegral() ==0) return;
3651 Int_t loop;
3652 Double_t x;
3653 for (loop=0;loop<ntimes;loop++) {
3654 x = h->GetRandom();
3655 Fill(x);
3656 }
3657}
3658
3659////////////////////////////////////////////////////////////////////////////////
3660/// Return Global bin number corresponding to x,y,z
3661///
3662/// 2-D and 3-D histograms are represented with a one dimensional
3663/// structure. This has the advantage that all existing functions, such as
3664/// GetBinContent, GetBinError, GetBinFunction work for all dimensions.
3665/// This function tries to extend the axis if the given point belongs to an
3666/// under-/overflow bin AND if CanExtendAllAxes() is true.
3667///
3668/// See also TH1::GetBin, TAxis::FindBin and TAxis::FindFixBin
3669
3671{
3672 if (GetDimension() < 2) {
3673 return fXaxis.FindBin(x);
3674 }
3675 if (GetDimension() < 3) {
3676 Int_t nx = fXaxis.GetNbins()+2;
3677 Int_t binx = fXaxis.FindBin(x);
3678 Int_t biny = fYaxis.FindBin(y);
3679 return binx + nx*biny;
3680 }
3681 if (GetDimension() < 4) {
3682 Int_t nx = fXaxis.GetNbins()+2;
3683 Int_t ny = fYaxis.GetNbins()+2;
3684 Int_t binx = fXaxis.FindBin(x);
3685 Int_t biny = fYaxis.FindBin(y);
3686 Int_t binz = fZaxis.FindBin(z);
3687 return binx + nx*(biny +ny*binz);
3688 }
3689 return -1;
3690}
3691
3692////////////////////////////////////////////////////////////////////////////////
3693/// Return Global bin number corresponding to x,y,z.
3694///
3695/// 2-D and 3-D histograms are represented with a one dimensional
3696/// structure. This has the advantage that all existing functions, such as
3697/// GetBinContent, GetBinError, GetBinFunction work for all dimensions.
3698/// This function DOES NOT try to extend the axis if the given point belongs
3699/// to an under-/overflow bin.
3700///
3701/// See also TH1::GetBin, TAxis::FindBin and TAxis::FindFixBin
3702
3704{
3705 if (GetDimension() < 2) {
3706 return fXaxis.FindFixBin(x);
3707 }
3708 if (GetDimension() < 3) {
3709 Int_t nx = fXaxis.GetNbins()+2;
3710 Int_t binx = fXaxis.FindFixBin(x);
3711 Int_t biny = fYaxis.FindFixBin(y);
3712 return binx + nx*biny;
3713 }
3714 if (GetDimension() < 4) {
3715 Int_t nx = fXaxis.GetNbins()+2;
3716 Int_t ny = fYaxis.GetNbins()+2;
3717 Int_t binx = fXaxis.FindFixBin(x);
3718 Int_t biny = fYaxis.FindFixBin(y);
3719 Int_t binz = fZaxis.FindFixBin(z);
3720 return binx + nx*(biny +ny*binz);
3721 }
3722 return -1;
3723}
3724
3725////////////////////////////////////////////////////////////////////////////////
3726/// Find first bin with content > threshold for axis (1=x, 2=y, 3=z)
3727/// if no bins with content > threshold is found the function returns -1.
3728/// The search will occur between the specified first and last bin. Specifying
3729/// the value of the last bin to search to less than zero will search until the
3730/// last defined bin.
3731
3732Int_t TH1::FindFirstBinAbove(Double_t threshold, Int_t axis, Int_t firstBin, Int_t lastBin) const
3733{
3734 if (fBuffer) ((TH1*)this)->BufferEmpty();
3735
3736 if (axis < 1 || (axis > 1 && GetDimension() == 1 ) ||
3737 ( axis > 2 && GetDimension() == 2 ) || ( axis > 3 && GetDimension() > 3 ) ) {
3738 Warning("FindFirstBinAbove","Invalid axis number : %d, axis x assumed\n",axis);
3739 axis = 1;
3740 }
3741 if (firstBin < 1) {
3742 firstBin = 1;
3743 }
3744 Int_t nbinsx = fXaxis.GetNbins();
3745 Int_t nbinsy = (GetDimension() > 1 ) ? fYaxis.GetNbins() : 1;
3746 Int_t nbinsz = (GetDimension() > 2 ) ? fZaxis.GetNbins() : 1;
3747
3748 if (axis == 1) {
3749 if (lastBin < 0 || lastBin > fXaxis.GetNbins()) {
3750 lastBin = fXaxis.GetNbins();
3751 }
3752 for (Int_t binx = firstBin; binx <= lastBin; binx++) {
3753 for (Int_t biny = 1; biny <= nbinsy; biny++) {
3754 for (Int_t binz = 1; binz <= nbinsz; binz++) {
3755 if (RetrieveBinContent(GetBin(binx,biny,binz)) > threshold) return binx;
3756 }
3757 }
3758 }
3759 }
3760 else if (axis == 2) {
3761 if (lastBin < 0 || lastBin > fYaxis.GetNbins()) {
3762 lastBin = fYaxis.GetNbins();
3763 }
3764 for (Int_t biny = firstBin; biny <= lastBin; biny++) {
3765 for (Int_t binx = 1; binx <= nbinsx; binx++) {
3766 for (Int_t binz = 1; binz <= nbinsz; binz++) {
3767 if (RetrieveBinContent(GetBin(binx,biny,binz)) > threshold) return biny;
3768 }
3769 }
3770 }
3771 }
3772 else if (axis == 3) {
3773 if (lastBin < 0 || lastBin > fZaxis.GetNbins()) {
3774 lastBin = fZaxis.GetNbins();
3775 }
3776 for (Int_t binz = firstBin; binz <= lastBin; binz++) {
3777 for (Int_t binx = 1; binx <= nbinsx; binx++) {
3778 for (Int_t biny = 1; biny <= nbinsy; biny++) {
3779 if (RetrieveBinContent(GetBin(binx,biny,binz)) > threshold) return binz;
3780 }
3781 }
3782 }
3783 }
3784
3785 return -1;
3786}
3787
3788////////////////////////////////////////////////////////////////////////////////
3789/// Find last bin with content > threshold for axis (1=x, 2=y, 3=z)
3790/// if no bins with content > threshold is found the function returns -1.
3791/// The search will occur between the specified first and last bin. Specifying
3792/// the value of the last bin to search to less than zero will search until the
3793/// last defined bin.
3794
3795Int_t TH1::FindLastBinAbove(Double_t threshold, Int_t axis, Int_t firstBin, Int_t lastBin) const
3796{
3797 if (fBuffer) ((TH1*)this)->BufferEmpty();
3798
3799
3800 if (axis < 1 || ( axis > 1 && GetDimension() == 1 ) ||
3801 ( axis > 2 && GetDimension() == 2 ) || ( axis > 3 && GetDimension() > 3) ) {
3802 Warning("FindFirstBinAbove","Invalid axis number : %d, axis x assumed\n",axis);
3803 axis = 1;
3804 }
3805 if (firstBin < 1) {
3806 firstBin = 1;
3807 }
3808 Int_t nbinsx = fXaxis.GetNbins();
3809 Int_t nbinsy = (GetDimension() > 1 ) ? fYaxis.GetNbins() : 1;
3810 Int_t nbinsz = (GetDimension() > 2 ) ? fZaxis.GetNbins() : 1;
3811
3812 if (axis == 1) {
3813 if (lastBin < 0 || lastBin > fXaxis.GetNbins()) {
3814 lastBin = fXaxis.GetNbins();
3815 }
3816 for (Int_t binx = lastBin; binx >= firstBin; binx--) {
3817 for (Int_t biny = 1; biny <= nbinsy; biny++) {
3818 for (Int_t binz = 1; binz <= nbinsz; binz++) {
3819 if (RetrieveBinContent(GetBin(binx, biny, binz)) > threshold) return binx;
3820 }
3821 }
3822 }
3823 }
3824 else if (axis == 2) {
3825 if (lastBin < 0 || lastBin > fYaxis.GetNbins()) {
3826 lastBin = fYaxis.GetNbins();
3827 }
3828 for (Int_t biny = lastBin; biny >= firstBin; biny--) {
3829 for (Int_t binx = 1; binx <= nbinsx; binx++) {
3830 for (Int_t binz = 1; binz <= nbinsz; binz++) {
3831 if (RetrieveBinContent(GetBin(binx, biny, binz)) > threshold) return biny;
3832 }
3833 }
3834 }
3835 }
3836 else if (axis == 3) {
3837 if (lastBin < 0 || lastBin > fZaxis.GetNbins()) {
3838 lastBin = fZaxis.GetNbins();
3839 }
3840 for (Int_t binz = lastBin; binz >= firstBin; binz--) {
3841 for (Int_t binx = 1; binx <= nbinsx; binx++) {
3842 for (Int_t biny = 1; biny <= nbinsy; biny++) {
3843 if (RetrieveBinContent(GetBin(binx, biny, binz)) > threshold) return binz;
3844 }
3845 }
3846 }
3847 }
3848
3849 return -1;
3850}
3851
3852////////////////////////////////////////////////////////////////////////////////
3853/// Search object named name in the list of functions.
3854
3855TObject *TH1::FindObject(const char *name) const
3856{
3857 if (fFunctions) return fFunctions->FindObject(name);
3858 return 0;
3859}
3860
3861////////////////////////////////////////////////////////////////////////////////
3862/// Search object obj in the list of functions.
3863
3864TObject *TH1::FindObject(const TObject *obj) const
3865{
3866 if (fFunctions) return fFunctions->FindObject(obj);
3867 return 0;
3868}
3869
3870////////////////////////////////////////////////////////////////////////////////
3871/// Fit histogram with function fname.
3872///
3873///
3874/// fname is the name of a function available in the global ROOT list of functions
3875/// `gROOT->GetListOfFunctions`
3876/// The list include any TF1 object created by the user plus some pre-defined functions
3877/// which are automatically created by ROOT the first time a pre-defined function is requested from `gROOT`
3878/// (i.e. when calling `gROOT->GetFunction(const char *name)`).
3879/// These pre-defined functions are:
3880/// - `gaus, gausn` where gausn is the normalized Gaussian
3881/// - `landau, landaun`
3882/// - `expo`
3883/// - `pol1,...9, chebyshev1,...9`.
3884///
3885/// For printing the list of all available functions do:
3886///
3887/// TF1::InitStandardFunctions(); // not needed if `gROOT->GetFunction` is called before
3888/// gROOT->GetListOfFunctions()->ls()
3889///
3890/// `fname` can also be a formula that is accepted by the linear fitter containing the special operator `++`,
3891/// representing linear components separated by `++` sign, for example `x++sin(x)` for fitting `[0]*x+[1]*sin(x)`
3892///
3893/// This function finds a pointer to the TF1 object with name `fname` and calls TH1::Fit(TF1 *, Option_t *, Option_t *,
3894/// Double_t, Double_t). See there for the fitting options and the details about fitting histograms
3895
3896TFitResultPtr TH1::Fit(const char *fname ,Option_t *option ,Option_t *goption, Double_t xxmin, Double_t xxmax)
3897{
3898 char *linear;
3899 linear= (char*)strstr(fname, "++");
3900 Int_t ndim=GetDimension();
3901 if (linear){
3902 if (ndim<2){
3903 TF1 f1(fname, fname, xxmin, xxmax);
3904 return Fit(&f1,option,goption,xxmin,xxmax);
3905 }
3906 else if (ndim<3){
3907 TF2 f2(fname, fname);
3908 return Fit(&f2,option,goption,xxmin,xxmax);
3909 }
3910 else{
3911 TF3 f3(fname, fname);
3912 return Fit(&f3,option,goption,xxmin,xxmax);
3913 }
3914 }
3915 else{
3916 TF1 * f1 = (TF1*)gROOT->GetFunction(fname);
3917 if (!f1) { Printf("Unknown function: %s",fname); return -1; }
3918 return Fit(f1,option,goption,xxmin,xxmax);
3919 }
3920}
3921
3922////////////////////////////////////////////////////////////////////////////////
3923/// Fit histogram with the function pointer f1.
3924///
3925/// \param[in] f1 pointer to the function object
3926/// \param[in] option string defining the fit options (see table below).
3927/// \param[in] goption specify a list of graphics options. See TH1::Draw for a complete list of these options.
3928/// \param[in] xxmin lower fitting range
3929/// \param[in] xxmax upper fitting range
3930/// \return A smart pointer to the TFitResult class
3931///
3932/// \anchor HFitOpt
3933/// ### Histogram Fitting Options
3934///
3935/// Here is the full list of fit options that can be given in the parameter `option`.
3936/// Several options can be used together by concatanating the strings without the need of any delimiters.
3937///
3938/// option | description
3939/// -------|------------
3940/// "L" | Uses a log likelihood method (default is chi-square method). To be used when the histogram represents counts.
3941/// "WL" | Weighted log likelihood method. To be used when the histogram has been filled with weights different than 1. This is needed for getting correct parameter uncertainties for weighted fits.
3942/// "P" | Uses Pearson chi-square method. Uses expected errors instead of the observed one (default case). The expected error is instead estimated from the square-root of the bin function value.
3943/// "MULTI" | Uses Loglikelihood method based on multi-nomial distribution. In this case the function must be normalized and one fits only the function shape.
3944/// "W" | Fit using the chi-square method and ignoring the bin uncertainties and skip empty bins.
3945/// "WW" | Fit using the chi-square method and ignoring the bin uncertainties and include the empty bins.
3946/// "I" | Uses the integral of function in the bin instead of the default bin center value.
3947/// "F" | Uses the default minimizer (e.g. Minuit) when fitting a linear function (e.g. polN) instead of the linear fitter.
3948/// "U" | Uses a user specified objective function (e.g. user providedlikelihood function) defined using `TVirtualFitter::SetFCN`
3949/// "E" | Performs a better parameter errors estimation using the Minos technique for all fit parameters.
3950/// "M" | Uses the IMPROVE algorithm (available only in TMinuit). This algorithm attempts improve the found local minimum by searching for a better one.
3951/// "S" | The full result of the fit is returned in the `TFitResultPtr`. This is needed to get the covariance matrix of the fit. See `TFitResult` and the base class `ROOT::Math::FitResult`.
3952/// "Q" | Quiet mode (minimum printing)
3953/// "V" | Verbose mode (default is between Q and V)
3954/// "+" | Adds this new fitted function to the list of fitted functions. By default, the previous function is deleted and only the last one is kept.
3955/// "N" | Does not store the graphics function, does not draw the histogram with the function after fitting.
3956/// "0" | Does not draw the histogram and the fitted function after fitting, but in contrast to option "N", it stores the fitted function in the histogram list of functions.
3957/// "R" | Fit using a fitting range specified in the function range with `TF1::SetRange`.
3958/// "B" | Use this option when you want to fix or set limits on one or more parameters and the fitting function is a predefined one (e.g gaus, expo,..), otherwise in case of pre-defined functions, some default initial values and limits will be used.
3959/// "C" | In case of linear fitting, do no calculate the chisquare (saves CPU time).
3960/// "G" | Uses the gradient implemented in `TF1::GradientPar` for the minimization. This allows to use Automatic Differentiation when it is supported by the provided TF1 function.
3961/// "WIDTH" | Scales the histogran bin content by the bin width (useful for variable bins histograms)
3962/// "SERIAL" | Runs in serial mode. By defult if ROOT is built with MT support and MT is enables, the fit is perfomed in multi-thread - "E" Perform better Errors estimation using Minos technique
3963/// "MULTITHREAD" | Forces usage of multi-thread execution whenever possible
3964///
3965/// The default fitting of an histogram (when no option is given) is perfomed as following:
3966/// - a chi-square fit (see below Chi-square Fits) computed using the bin histogram errors and excluding bins with zero errors (empty bins);
3967/// - the full range of the histogram is used;
3968/// - the default Minimizer with its default configuration is used (see below Minimizer Configuration) except for linear function;
3969/// - for linear functions (`polN`, `chenbyshev` or formula expressions combined using operator `++`) a linear minimization is used.
3970/// - only the status of the fit is returned;
3971/// - the fit is performed in Multithread whenever is enabled in ROOT;
3972/// - only the last fitted function is saved in the histogram;
3973/// - the histogram is drawn after fitting overalyed with the resulting fitting function
3974///
3975/// \anchor HFitMinimizer
3976/// ### Minimizer Configuration
3977///
3978/// The Fit is perfomed using the default Minimizer, defined in the `ROOT::Math::MinimizerOptions` class.
3979/// It is possible to change the default minimizer and its configuration parameters by calling these static functions before fitting (before calling `TH1::Fit`):
3980/// - `ROOT::Math::MinimizerOptions::SetDefaultMinimizer(minimizerName, minimizerAgorithm)` for changing the minmizer and/or the corresponding algorithm.
3981/// For example `ROOT::Math::MinimizerOptions::SetDefaultMinimizer("GSLMultiMin","BFGS");` will set the usage of the BFGS algorithm of the GSL multi-dimensional minimization
3982/// The current defaults are ("Minuit","Migrad").
3983/// See the documentation of the `ROOT::Math::MinimizerOptions` for the available minimizers in ROOT and their corresponding algorithms.
3984/// - `ROOT::Math::MinimizerOptions::SetDefaultTolerance` for setting a different tolerance value for the minimization.
3985/// - `ROOT::Math::MinimizerOptions::SetDefaultMaxFunctionCalls` for setting the maximum number of function calls.
3986/// - `ROOT::Math::MinimizerOptions::SetDefaultPrintLevel` for changing the minimizer print level from level=0 (minimal printing) to level=3 maximum printing
3987///
3988/// Other options are possible depending on the Minimizer used, see the corresponding documentation.
3989/// The default minimizer can be also set in the resource file in etc/system.rootrc. For example
3990///
3991/// ~~~ {.cpp}
3992/// Root.Fitter: Minuit2
3993/// ~~~
3994///
3995/// \anchor HFitChi2
3996/// ### Chi-square Fits
3997///
3998/// By default a chi-square (least-square) fit is performed on the histogram. The so-called modified least-square method
3999/// is used where the residual for each bin is computed using as error the observed value (the bin error) returned by `TH1::GetBinError`
4000///
4001/// \f[
4002/// Chi2 = \sum_{i}{ \left(\frac{y(i) - f(x(i) | p )}{e(i)} \right)^2 }
4003/// \f]
4004///
4005/// where `y(i)` is the bin content for each bin `i`, `x(i)` is the bin center and `e(i)` is the bin error (`sqrt(y(i)` for
4006/// an un-weighted histogram). Bins with zero errors are excluded from the fit. See also later the note on the treatment
4007/// of empty bins. When using option "I" the residual is computed not using the function value at the bin center, `f(x(i)|p)`,
4008/// but the integral of the function in the bin, Integral{ f(x|p)dx }, divided by the bin volume.
4009/// When using option `P` (Pearson chi2), the expected error computed as `e(i) = sqrt(f(x(i)|p))` is used.
4010/// In this case empty bins are considered in the fit.
4011/// Both chi-square methods should not be used when the bin content represent counts, especially in case of low bin statistics,
4012/// because they could return a biased result.
4013///
4014/// \anchor HFitNLL
4015/// ### Likelihood Fits
4016///
4017/// When using option "L" a likelihood fit is used instead of the default chi-square fit.
4018/// The likelihood is built assuming a Poisson probability density function for each bin.
4019/// The negative log-likelihood to be minimized is
4020///
4021/// \f[
4022/// NLL = - \sum_{i}{ \log {\mathrm P} ( y(i) | f(x(i) | p ) ) }
4023/// \f]
4024/// where `P(y|f)` is the Poisson distribution of observing a count `y(i)` in the bin when the expected count is `f(x(i)|p)`.
4025/// The exact likelihood used is the Poisson likelihood described in this paper:
4026/// S. Baker and R. D. Cousins, “Clarification of the use of chi-square and likelihood functions in fits to histograms,”
4027/// Nucl. Instrum. Meth. 221 (1984) 437.
4028///
4029/// \f[
4030/// NLL = \sum_{i}{( f(x(i) | p ) + y(i)\log(y(i)/ f(x(i) | p )) - y(i)) }
4031/// \f]
4032/// By using this formulation, `2*NLL` can be interpreted as the chi-square resulting from the fit.
4033///
4034/// This method should be always used when the bin content represents counts (i.e. errors are sqrt(N) ).
4035/// The likelihood method has the advantage of treating correctly bins with low statistics. In case of high
4036/// statistics/bin the distribution of the bin content becomes a normal distribution and the likelihood and the chi2 fit
4037/// give the same result.
4038///
4039/// The likelihood method, although a bit slower, it is therefore the recommended method,
4040/// when the histogram represent counts (Poisson statistics), where the chi-square methods may
4041/// give incorrect results, especially in case of low statistics.
4042/// In case of a weighted histogram, it is possible to perform also a likelihood fit by using the
4043/// option "WL". Note a weighted histogram is a histogram which has been filled with weights and it
4044/// has the information on the sum of the weight square for each bin ( TH1::Sumw2() has been called).
4045/// The bin error for a weighted histogram is the square root of the sum of the weight square.
4046///
4047/// \anchor HFitRes
4048/// ### Fit Result
4049///
4050/// The function returns a TFitResultPtr which can hold a pointer to a TFitResult object.
4051/// By default the TFitResultPtr contains only the status of the fit which is return by an
4052/// automatic conversion of the TFitResultPtr to an integer. One can write in this case directly:
4053///
4054/// ~~~ {.cpp}
4055/// Int_t fitStatus = h->Fit(myFunc);
4056/// ~~~
4057///
4058/// If the option "S" is instead used, TFitResultPtr behaves as a smart
4059/// pointer to the TFitResult object. This is useful for retrieving the full result information from the fit, such as the covariance matrix,
4060/// as shown in this example code:
4061///
4062/// ~~~ {.cpp}
4063/// TFitResultPtr r = h->Fit(myFunc,"S");
4064/// TMatrixDSym cov = r->GetCovarianceMatrix(); // to access the covariance matrix
4065/// Double_t chi2 = r->Chi2(); // to retrieve the fit chi2
4066/// Double_t par0 = r->Parameter(0); // retrieve the value for the parameter 0
4067/// Double_t err0 = r->ParError(0); // retrieve the error for the parameter 0
4068/// r->Print("V"); // print full information of fit including covariance matrix
4069/// r->Write(); // store the result in a file
4070/// ~~~
4071///
4072/// The fit parameters, error and chi-square (but not covariance matrix) can be retrieved also
4073/// directly from the fitted function that is passed to this call.
4074/// Given a pointer to an associated fitted function `myfunc`, one can retrieve the function/fit
4075/// parameters with calls such as:
4076///
4077/// ~~~ {.cpp}
4078/// Double_t chi2 = myfunc->GetChisquare();
4079/// Double_t par0 = myfunc->GetParameter(0); //value of 1st parameter
4080/// Double_t err0 = myfunc->GetParError(0); //error on first parameter
4081/// ~~~
4082///
4083/// ##### Associated functions
4084///
4085/// One or more object ( can be added to the list
4086/// of functions (fFunctions) associated to each histogram.
4087/// When TH1::Fit is invoked, the fitted function is added to the histogram list of functions (fFunctions).
4088/// If the histogram is made persistent, the list of associated functions is also persistent.
4089/// Given a histogram h, one can retrieve an associated function with:
4090///
4091/// ~~~ {.cpp}
4092/// TF1 *myfunc = h->GetFunction("myfunc");
4093/// ~~~
4094/// or by quering directly the list obtained by calling `TH1::GetListOfFunctions`.
4095///
4096/// \anchor HFitStatus
4097/// ### Fit status
4098///
4099/// The status of the fit is obtained converting the TFitResultPtr to an integer
4100/// independently if the fit option "S" is used or not:
4101///
4102/// ~~~ {.cpp}
4103/// TFitResultPtr r = h->Fit(myFunc,opt);
4104/// Int_t fitStatus = r;
4105/// ~~~
4106///
4107/// - `status = 0` : the fit has been performed successfully (i.e no error occurred).
4108/// - `status < 0` : there is an error not connected with the minimization procedure, for example when a wrong function is used.
4109/// - `status > 0` : return status from Minimizer, depends on used Minimizer. For example for TMinuit and Minuit2 we have:
4110/// - `status = migradStatus + 10*minosStatus + 100*hesseStatus + 1000*improveStatus`.
4111/// TMinuit returns 0 (for migrad, minos, hesse or improve) in case of success and 4 in case of error (see the documentation of TMinuit::mnexcm). For example, for an error
4112/// only in Minos but not in Migrad a fitStatus of 40 will be returned.
4113/// Minuit2 returns 0 in case of success and different values in migrad,minos or
4114/// hesse depending on the error. See in this case the documentation of
4115/// Minuit2Minimizer::Minimize for the migrad return status, Minuit2Minimizer::GetMinosError for the
4116/// minos return status and Minuit2Minimizer::Hesse for the hesse return status.
4117/// If other minimizers are used see their specific documentation for the status code returned.
4118/// For example in the case of Fumili, see TFumili::Minimize.
4119///
4120/// \anchor HFitRange
4121/// ### Fitting in a range
4122///
4123/// In order to fit in a sub-range of the histogram you have two options:
4124/// - pass to this function the lower (`xxmin`) and upper (`xxmax`) values for the fitting range;
4125/// - define a specific range in the fitted function and use the fitting option "R".
4126/// For example, if your histogram has a defined range between -4 and 4 and you want to fit a gaussian
4127/// only in the interval 1 to 3, you can do:
4128///
4129/// ~~~ {.cpp}
4130/// TF1 *f1 = new TF1("f1", "gaus", 1, 3);
4131/// histo->Fit("f1", "R");
4132/// ~~~
4133///
4134/// The fitting range is also limited by the histogram range defined using TAxis::SetRange
4135/// or TAxis::SetRangeUser. Therefore the fitting range is the smallest range between the
4136/// histogram one and the one defined by one of the two previous options described above.
4137///
4138/// \anchor HFitInitial
4139/// ### Setting initial conditions
4140///
4141/// Parameters must be initialized before invoking the Fit function.
4142/// The setting of the parameter initial values is automatic for the
4143/// predefined functions such as poln, expo, gaus, landau. One can however disable
4144/// this automatic computation by using the option "B".
4145/// Note that if a predefined function is defined with an argument,
4146/// eg, gaus(0), expo(1), you must specify the initial values for
4147/// the parameters.
4148/// You can specify boundary limits for some or all parameters via
4149///
4150/// ~~~ {.cpp}
4151/// f1->SetParLimits(p_number, parmin, parmax);
4152/// ~~~
4153///
4154/// if `parmin >= parmax`, the parameter is fixed
4155/// Note that you are not forced to fix the limits for all parameters.
4156/// For example, if you fit a function with 6 parameters, you can do:
4157///
4158/// ~~~ {.cpp}
4159/// func->SetParameters(0, 3.1, 1.e-6, -8, 0, 100);
4160/// func->SetParLimits(3, -10, -4);
4161/// func->FixParameter(4, 0);
4162/// func->SetParLimits(5, 1, 1);
4163/// ~~~
4164///
4165/// With this setup, parameters 0->2 can vary freely
4166/// Parameter 3 has boundaries [-10,-4] with initial value -8
4167/// Parameter 4 is fixed to 0
4168/// Parameter 5 is fixed to 100.
4169/// When the lower limit and upper limit are equal, the parameter is fixed.
4170/// However to fix a parameter to 0, one must call the FixParameter function.
4171///
4172/// \anchor HFitStatBox
4173/// ### Fit Statistics Box
4174///
4175/// The statistics box can display the result of the fit.
4176/// You can change the statistics box to display the fit parameters with
4177/// the TStyle::SetOptFit(mode) method. This mode has four digits.
4178/// mode = pcev (default = 0111)
4179///
4180/// v = 1; print name/values of parameters
4181/// e = 1; print errors (if e=1, v must be 1)
4182/// c = 1; print Chisquare/Number of degrees of freedom
4183/// p = 1; print Probability
4184///
4185/// For example: gStyle->SetOptFit(1011);
4186/// prints the fit probability, parameter names/values, and errors.
4187/// You can change the position of the statistics box with these lines
4188/// (where g is a pointer to the TGraph):
4189///
4190/// TPaveStats *st = (TPaveStats*)g->GetListOfFunctions()->FindObject("stats");
4191/// st->SetX1NDC(newx1); //new x start position
4192/// st->SetX2NDC(newx2); //new x end position
4193///
4194/// \anchor HFitExtra
4195/// ### Additional Notes on Fitting
4196///
4197/// #### Fitting a histogram of dimension N with a function of dimension N-1
4198///
4199/// It is possible to fit a TH2 with a TF1 or a TH3 with a TF2.
4200/// In this case the chi-square is computed from the squared error distance between the function values and the bin centers weighted by the bin content.
4201/// For correct error scaling, the obtained parameter error are corrected as in the case when the
4202/// option "W" is used.
4203///
4204/// #### User defined objective functions
4205///
4206/// By default when fitting a chi square function is used for fitting. When option "L" is used
4207/// a Poisson likelihood function is used. Using option "MULTI" a multinomial likelihood fit is used.
4208/// Thes functions are defined in the header Fit/Chi2Func.h or Fit/PoissonLikelihoodFCN and they
4209/// are implemented using the routines FitUtil::EvaluateChi2 or FitUtil::EvaluatePoissonLogL in
4210/// the file math/mathcore/src/FitUtil.cxx.
4211/// It is possible to specify a user defined fitting function, using option "U" and
4212/// calling the following functions:
4213///
4214/// ~~~ {.cpp}
4215/// TVirtualFitter::Fitter(myhist)->SetFCN(MyFittingFunction);
4216/// ~~~
4217///
4218/// where MyFittingFunction is of type:
4219///
4220/// ~~~ {.cpp}
4221/// extern void MyFittingFunction(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag);
4222/// ~~~
4223///
4224/// #### Note on treatment of empty bins
4225///
4226/// Empty bins, which have the content equal to zero AND error equal to zero,
4227/// are excluded by default from the chi-square fit, but they are considered in the likelihood fit.
4228/// since they affect the likelihood if the function value in these bins is not negligible.
4229/// Note that if the histogram is having bins with zero content and non zero-errors they are considered as
4230/// any other bins in the fit. Instead bins with zero error and non-zero content are by default excluded in the chi-squared fit.
4231/// In general, one should not fit a histogram with non-empty bins and zero errors.
4232///
4233/// If the bin errors are not known, one should use the fit option "W", which gives a weight=1 for each bin (it is an unweighted least-square
4234/// fit). When using option "WW" the empty bins will be also considered in the chi-square fit with an error of 1.
4235/// Note that in this fitting case (option "W" or "WW") the resulting fitted parameter errors
4236/// are corrected by the obtained chi2 value using this scaling expression:
4237/// `errorp *= sqrt(chisquare/(ndf-1))` as it is done when fitting a TGraph with
4238/// no point errors.
4239///
4240/// #### Excluding points
4241///
4242/// You can use TF1::RejectPoint inside your fitting function to exclude some points
4243/// within a certain range from the fit. See the tutorial `fit/fitExclude.C`.
4244///
4245///
4246/// #### Warning when using the option "0"
4247///
4248/// When selecting the option "0", the fitted function is added to
4249/// the list of functions of the histogram, but it is not drawn when the histogram is drawn.
4250/// You can undo this behaviour resetting its corresponding bit in the TF1 object as following:
4251///
4252/// ~~~ {.cpp}
4253/// h.Fit("myFunction", "0"); // fit, store function but do not draw
4254/// h.Draw(); // function is not drawn
4255/// h.GetFunction("myFunction")->ResetBit(TF1::kNotDraw);
4256/// h.Draw(); // function is visible again
4257/// ~~~
4259
4261{
4262 // implementation of Fit method is in file hist/src/HFitImpl.cxx
4263 Foption_t fitOption;
4265
4266 // create range and minimizer options with default values
4267 ROOT::Fit::DataRange range(xxmin,xxmax);
4269
4270 // need to empty the buffer before
4271 // (t.b.d. do a ML unbinned fit with buffer data)
4272 if (fBuffer) BufferEmpty();
4273
4274 return ROOT::Fit::FitObject(this, f1 , fitOption , minOption, goption, range);
4275}
4276
4277////////////////////////////////////////////////////////////////////////////////
4278/// Display a panel with all histogram fit options.
4279///
4280/// See class TFitPanel for example
4281
4282void TH1::FitPanel()
4283{
4284 if (!gPad)
4285 gROOT->MakeDefCanvas();
4286
4287 if (!gPad) {
4288 Error("FitPanel", "Unable to create a default canvas");
4289 return;
4290 }
4291
4292
4293 // use plugin manager to create instance of TFitEditor
4294 TPluginHandler *handler = gROOT->GetPluginManager()->FindHandler("TFitEditor");
4295 if (handler && handler->LoadPlugin() != -1) {
4296 if (handler->ExecPlugin(2, gPad, this) == 0)
4297 Error("FitPanel", "Unable to create the FitPanel");
4298 }
4299 else
4300 Error("FitPanel", "Unable to find the FitPanel plug-in");
4301}
4302
4303////////////////////////////////////////////////////////////////////////////////
4304/// Return a histogram containing the asymmetry of this histogram with h2,
4305/// where the asymmetry is defined as:
4306///
4307/// ~~~ {.cpp}
4308/// Asymmetry = (h1 - h2)/(h1 + h2) where h1 = this
4309/// ~~~
4310///
4311/// works for 1D, 2D, etc. histograms
4312/// c2 is an optional argument that gives a relative weight between the two
4313/// histograms, and dc2 is the error on this weight. This is useful, for example,
4314/// when forming an asymmetry between two histograms from 2 different data sets that
4315/// need to be normalized to each other in some way. The function calculates
4316/// the errors assuming Poisson statistics on h1 and h2 (that is, dh = sqrt(h)).
4317///
4318/// example: assuming 'h1' and 'h2' are already filled
4319///
4320/// ~~~ {.cpp}
4321/// h3 = h1->GetAsymmetry(h2)
4322/// ~~~
4323///
4324/// then 'h3' is created and filled with the asymmetry between 'h1' and 'h2';
4325/// h1 and h2 are left intact.
4326///
4327/// Note that it is the user's responsibility to manage the created histogram.
4328/// The name of the returned histogram will be `Asymmetry_nameOfh1-nameOfh2`
4329///
4330/// code proposed by Jason Seely (seely@mit.edu) and adapted by R.Brun
4331///
4332/// clone the histograms so top and bottom will have the
4333/// correct dimensions:
4334/// Sumw2 just makes sure the errors will be computed properly
4335/// when we form sums and ratios below.
4336
4338{
4339 TH1 *h1 = this;
4340 TString name = TString::Format("Asymmetry_%s-%s",h1->GetName(),h2->GetName() );
4341 TH1 *asym = (TH1*)Clone(name);
4342
4343 // set also the title
4344 TString title = TString::Format("(%s - %s)/(%s+%s)",h1->GetName(),h2->GetName(),h1->GetName(),h2->GetName() );
4345 asym->SetTitle(title);
4346
4347 asym->Sumw2();
4348 Bool_t addStatus = TH1::AddDirectoryStatus();
4350 TH1 *top = (TH1*)asym->Clone();
4351 TH1 *bottom = (TH1*)asym->Clone();
4352 TH1::AddDirectory(addStatus);
4353
4354 // form the top and bottom of the asymmetry, and then divide:
4355 top->Add(h1,h2,1,-c2);
4356 bottom->Add(h1,h2,1,c2);
4357 asym->Divide(top,bottom);
4358
4359 Int_t xmax = asym->GetNbinsX();
4360 Int_t ymax = asym->GetNbinsY();
4361 Int_t zmax = asym->GetNbinsZ();
4362
4363 if (h1->fBuffer) h1->BufferEmpty(1);
4364 if (h2->fBuffer) h2->BufferEmpty(1);
4365 if (bottom->fBuffer) bottom->BufferEmpty(1);
4366
4367 // now loop over bins to calculate the correct errors
4368 // the reason this error calculation looks complex is because of c2
4369 for(Int_t i=1; i<= xmax; i++){
4370 for(Int_t j=1; j<= ymax; j++){
4371 for(Int_t k=1; k<= zmax; k++){
4372 Int_t bin = GetBin(i, j, k);
4373 // here some bin contents are written into variables to make the error
4374 // calculation a little more legible:
4376 Double_t b = h2->RetrieveBinContent(bin);
4377 Double_t bot = bottom->RetrieveBinContent(bin);
4378
4379 // make sure there are some events, if not, then the errors are set = 0
4380 // automatically.
4381 //if(bot < 1){} was changed to the next line from recommendation of Jason Seely (28 Nov 2005)
4382 if(bot < 1e-6){}
4383 else{
4384 // computation of errors by Christos Leonidopoulos
4385 Double_t dasq = h1->GetBinErrorSqUnchecked(bin);
4386 Double_t dbsq = h2->GetBinErrorSqUnchecked(bin);
4387 Double_t error = 2*TMath::Sqrt(a*a*c2*c2*dbsq + c2*c2*b*b*dasq+a*a*b*b*dc2*dc2)/(bot*bot);
4388 asym->SetBinError(i,j,k,error);
4389 }
4390 }
4391 }
4392 }
4393 delete top;
4394 delete bottom;
4395
4396 return asym;
4397}
4398
4399////////////////////////////////////////////////////////////////////////////////
4400/// Static function
4401/// return the default buffer size for automatic histograms
4402/// the parameter fgBufferSize may be changed via SetDefaultBufferSize
4403
4405{
4406 return fgBufferSize;
4407}
4408
4409////////////////////////////////////////////////////////////////////////////////
4410/// Return kTRUE if TH1::Sumw2 must be called when creating new histograms.
4411/// see TH1::SetDefaultSumw2.
4412
4414{
4415 return fgDefaultSumw2;
4416}
4417
4418////////////////////////////////////////////////////////////////////////////////
4419/// Return the current number of entries.
4420
4422{
4423 if (fBuffer) {
4424 Int_t nentries = (Int_t) fBuffer[0];
4425 if (nentries > 0) return nentries;
4426 }
4427
4428 return fEntries;
4429}
4430
4431////////////////////////////////////////////////////////////////////////////////
4432/// Number of effective entries of the histogram.
4433///
4434/// \f[
4435/// neff = \frac{(\sum Weights )^2}{(\sum Weight^2 )}
4436/// \f]
4437///
4438/// In case of an unweighted histogram this number is equivalent to the
4439/// number of entries of the histogram.
4440/// For a weighted histogram, this number corresponds to the hypothetical number of unweighted entries
4441/// a histogram would need to have the same statistical power as this weighted histogram.
4442/// Note: The underflow/overflow are included if one has set the TH1::StatOverFlows flag
4443/// and if the statistics has been computed at filling time.
4444/// If a range is set in the histogram the number is computed from the given range.
4445
4447{
4448 Stat_t s[kNstat];
4449 this->GetStats(s);// s[1] sum of squares of weights, s[0] sum of weights
4450 return (s[1] ? s[0]*s[0]/s[1] : TMath::Abs(s[0]) );
4451}
4452
4453////////////////////////////////////////////////////////////////////////////////
4454/// Set highlight (enable/disable) mode for the histogram
4455/// by default highlight mode is disable
4456
4457void TH1::SetHighlight(Bool_t set)
4458{
4459 if (IsHighlight() == set)
4460 return;
4461 if (fDimension > 2) {
4462 Info("SetHighlight", "Supported only 1-D or 2-D histograms");
4463 return;
4464 }
4465
4466 SetBit(kIsHighlight, set);
4467
4468 if (fPainter)
4470}
4471
4472////////////////////////////////////////////////////////////////////////////////
4473/// Redefines TObject::GetObjectInfo.
4474/// Displays the histogram info (bin number, contents, integral up to bin
4475/// corresponding to cursor position px,py
4476
4477char *TH1::GetObjectInfo(Int_t px, Int_t py) const
4478{
4479 return ((TH1*)this)->GetPainter()->GetObjectInfo(px,py);
4480}
4481
4482////////////////////////////////////////////////////////////////////////////////
4483/// Return pointer to painter.
4484/// If painter does not exist, it is created
4485
4487{
4488 if (!fPainter) {
4489 TString opt = option;
4490 opt.ToLower();
4491 if (opt.Contains("gl") || gStyle->GetCanvasPreferGL()) {
4492 //try to create TGLHistPainter
4493 TPluginHandler *handler = gROOT->GetPluginManager()->FindHandler("TGLHistPainter");
4494
4495 if (handler && handler->LoadPlugin() != -1)
4496 fPainter = reinterpret_cast<TVirtualHistPainter *>(handler->ExecPlugin(1, this));
4497 }
4498 }
4499
4501
4502 return fPainter;
4503}
4504
4505////////////////////////////////////////////////////////////////////////////////
4506/// Compute Quantiles for this histogram
4507/// Quantile x_q of a probability distribution Function F is defined as
4508///
4509/// ~~~ {.cpp}
4510/// F(x_q) = q with 0 <= q <= 1.
4511/// ~~~
4512///
4513/// For instance the median x_0.5 of a distribution is defined as that value
4514/// of the random variable for which the distribution function equals 0.5:
4515///
4516/// ~~~ {.cpp}
4517/// F(x_0.5) = Probability(x < x_0.5) = 0.5
4518/// ~~~
4519///
4520/// code from Eddy Offermann, Renaissance
4521///
4522/// \param[in] nprobSum maximum size of array q and size of array probSum (if given)
4523/// \param[in] probSum array of positions where quantiles will be computed.
4524/// - if probSum is null, probSum will be computed internally and will
4525/// have a size = number of bins + 1 in h. it will correspond to the
4526/// quantiles calculated at the lowest edge of the histogram (quantile=0) and
4527/// all the upper edges of the bins.
4528/// - if probSum is not null, it is assumed to contain at least nprobSum values.
4529/// \param[out] q array q filled with nq quantiles
4530/// \return value nq (<=nprobSum) with the number of quantiles computed
4531///
4532/// Note that the Integral of the histogram is automatically recomputed
4533/// if the number of entries is different of the number of entries when
4534/// the integral was computed last time. In case you do not use the Fill
4535/// functions to fill your histogram, but SetBinContent, you must call
4536/// TH1::ComputeIntegral before calling this function.
4537///
4538/// Getting quantiles q from two histograms and storing results in a TGraph,
4539/// a so-called QQ-plot
4540///
4541/// ~~~ {.cpp}
4542/// TGraph *gr = new TGraph(nprob);
4543/// h1->GetQuantiles(nprob,gr->GetX());
4544/// h2->GetQuantiles(nprob,gr->GetY());
4545/// gr->Draw("alp");
4546/// ~~~
4547///
4548/// Example:
4549///
4550/// ~~~ {.cpp}
4551/// void quantiles() {
4552/// // demo for quantiles
4553/// const Int_t nq = 20;
4554/// TH1F *h = new TH1F("h","demo quantiles",100,-3,3);
4555/// h->FillRandom("gaus",5000);
4556///
4557/// Double_t xq[nq]; // position where to compute the quantiles in [0,1]
4558/// Double_t yq[nq]; // array to contain the quantiles
4559/// for (Int_t i=0;i<nq;i++) xq[i] = Float_t(i+1)/nq;
4560/// h->GetQuantiles(nq,yq,xq);
4561///
4562/// //show the original histogram in the top pad
4563/// TCanvas *c1 = new TCanvas("c1","demo quantiles",10,10,700,900);
4564/// c1->Divide(1,2);
4565/// c1->cd(1);
4566/// h->Draw();
4567///
4568/// // show the quantiles in the bottom pad
4569/// c1->cd(2);
4570/// gPad->SetGrid();
4571/// TGraph *gr = new TGraph(nq,xq,yq);
4572/// gr->SetMarkerStyle(21);
4573/// gr->Draw("alp");
4574/// }
4575/// ~~~
4576
4577Int_t TH1::GetQuantiles(Int_t nprobSum, Double_t *q, const Double_t *probSum)
4578{
4579 if (GetDimension() > 1) {
4580 Error("GetQuantiles","Only available for 1-d histograms");
4581 return 0;
4582 }
4583
4584 const Int_t nbins = GetXaxis()->GetNbins();
4585 if (!fIntegral) ComputeIntegral();
4586 if (fIntegral[nbins+1] != fEntries) ComputeIntegral();
4587
4588 Int_t i, ibin;
4589 Double_t *prob = (Double_t*)probSum;
4590 Int_t nq = nprobSum;
4591 if (probSum == 0) {
4592 nq = nbins+1;
4593 prob = new Double_t[nq];
4594 prob[0] = 0;
4595 for (i=1;i<nq;i++) {
4596 prob[i] = fIntegral[i]/fIntegral[nbins];
4597 }
4598 }
4599
4600 for (i = 0; i < nq; i++) {
4601 ibin = TMath::BinarySearch(nbins,fIntegral,prob[i]);
4602 while (ibin < nbins-1 && fIntegral[ibin+1] == prob[i]) {
4603 if (fIntegral[ibin+2] == prob[i]) ibin++;
4604 else break;
4605 }
4606 q[i] = GetBinLowEdge(ibin+1);
4607 const Double_t dint = fIntegral[ibin+1]-fIntegral[ibin];
4608 if (dint > 0) q[i] += GetBinWidth(ibin+1)*(prob[i]-fIntegral[ibin])/dint;
4609 }
4610
4611 if (!probSum) delete [] prob;
4612 return nq;
4613}
4614
4615////////////////////////////////////////////////////////////////////////////////
4616/// Decode string choptin and fill fitOption structure.
4617
4618Int_t TH1::FitOptionsMake(Option_t *choptin, Foption_t &fitOption)
4619{
4621 return 1;
4622}
4623
4624////////////////////////////////////////////////////////////////////////////////
4625/// Compute Initial values of parameters for a gaussian.
4626
4627void H1InitGaus()
4628{
4629 Double_t allcha, sumx, sumx2, x, val, stddev, mean;
4630 Int_t bin;
4631 const Double_t sqrtpi = 2.506628;
4632
4633 // - Compute mean value and StdDev of the histogram in the given range
4635 TH1 *curHist = (TH1*)hFitter->GetObjectFit();
4636 Int_t hxfirst = hFitter->GetXfirst();
4637 Int_t hxlast = hFitter->GetXlast();
4638 Double_t valmax = curHist->GetBinContent(hxfirst);
4639 Double_t binwidx = curHist->GetBinWidth(hxfirst);
4640 allcha = sumx = sumx2 = 0;
4641 for (bin=hxfirst;bin<=hxlast;bin++) {
4642 x = curHist->GetBinCenter(bin);
4643 val = TMath::Abs(curHist->GetBinContent(bin));
4644 if (val > valmax) valmax = val;
4645 sumx += val*x;
4646 sumx2 += val*x*x;
4647 allcha += val;
4648 }
4649 if (allcha == 0) return;
4650 mean = sumx/allcha;
4651 stddev = sumx2/allcha - mean*mean;
4652 if (stddev > 0) stddev = TMath::Sqrt(stddev);
4653 else stddev = 0;
4654 if (stddev == 0) stddev = binwidx*(hxlast-hxfirst+1)/4;
4655 //if the distribution is really gaussian, the best approximation
4656 //is binwidx*allcha/(sqrtpi*stddev)
4657 //However, in case of non-gaussian tails, this underestimates
4658 //the normalisation constant. In this case the maximum value
4659 //is a better approximation.
4660 //We take the average of both quantities
4661 Double_t constant = 0.5*(valmax+binwidx*allcha/(sqrtpi*stddev));
4662
4663 //In case the mean value is outside the histo limits and
4664 //the StdDev is bigger than the range, we take
4665 // mean = center of bins
4666 // stddev = half range
4667 Double_t xmin = curHist->GetXaxis()->GetXmin();
4668 Double_t xmax = curHist->GetXaxis()->GetXmax();
4669 if ((mean < xmin || mean > xmax) && stddev > (xmax-xmin)) {
4670 mean = 0.5*(xmax+xmin);
4671 stddev = 0.5*(xmax-xmin);
4672 }
4673 TF1 *f1 = (TF1*)hFitter->GetUserFunc();
4674 f1->SetParameter(0,constant);
4675 f1->SetParameter(1,mean);
4676 f1->SetParameter(2,stddev);
4677 f1->SetParLimits(2,0,10*stddev);
4678}
4679
4680////////////////////////////////////////////////////////////////////////////////
4681/// Compute Initial values of parameters for an exponential.
4682
4683void H1InitExpo()
4684{
4685 Double_t constant, slope;
4686 Int_t ifail;
4688 Int_t hxfirst = hFitter->GetXfirst();
4689 Int_t hxlast = hFitter->GetXlast();
4690 Int_t nchanx = hxlast - hxfirst + 1;
4691
4692 H1LeastSquareLinearFit(-nchanx, constant, slope, ifail);
4693
4694 TF1 *f1 = (TF1*)hFitter->GetUserFunc();
4695 f1->SetParameter(0,constant);
4696 f1->SetParameter(1,slope);
4697
4698}
4699
4700////////////////////////////////////////////////////////////////////////////////
4701/// Compute Initial values of parameters for a polynom.
4702
4703void H1InitPolynom()
4704{
4705 Double_t fitpar[25];
4706
4708 TF1 *f1 = (TF1*)hFitter->GetUserFunc();
4709 Int_t hxfirst = hFitter->GetXfirst();
4710 Int_t hxlast = hFitter->GetXlast();
4711 Int_t nchanx = hxlast - hxfirst + 1;
4712 Int_t npar = f1->GetNpar();
4713
4714 if (nchanx <=1 || npar == 1) {
4715 TH1 *curHist = (TH1*)hFitter->GetObjectFit();
4716 fitpar[0] = curHist->GetSumOfWeights()/Double_t(nchanx);
4717 } else {
4718 H1LeastSquareFit( nchanx, npar, fitpar);
4719 }
4720 for (Int_t i=0;i<npar;i++) f1->SetParameter(i, fitpar[i]);
4721}
4722
4723////////////////////////////////////////////////////////////////////////////////
4724/// Least squares lpolynomial fitting without weights.
4725///
4726/// \param[in] n number of points to fit
4727/// \param[in] m number of parameters
4728/// \param[in] a array of parameters
4729///
4730/// based on CERNLIB routine LSQ: Translated to C++ by Rene Brun
4731/// (E.Keil. revised by B.Schorr, 23.10.1981.)
4732
4734{
4735 const Double_t zero = 0.;
4736 const Double_t one = 1.;
4737 const Int_t idim = 20;
4738
4739 Double_t b[400] /* was [20][20] */;
4740 Int_t i, k, l, ifail;
4741 Double_t power;
4742 Double_t da[20], xk, yk;
4743
4744 if (m <= 2) {
4745 H1LeastSquareLinearFit(n, a[0], a[1], ifail);
4746 return;
4747 }
4748 if (m > idim || m > n) return;
4749 b[0] = Double_t(n);
4750 da[0] = zero;
4751 for (l = 2; l <= m; ++l) {
4752 b[l-1] = zero;
4753 b[m + l*20 - 21] = zero;
4754 da[l-1] = zero;
4755 }
4757 TH1 *curHist = (TH1*)hFitter->GetObjectFit();
4758 Int_t hxfirst = hFitter->GetXfirst();
4759 Int_t hxlast = hFitter->GetXlast();
4760 for (k = hxfirst; k <= hxlast; ++k) {
4761 xk = curHist->GetBinCenter(k);
4762 yk = curHist->GetBinContent(k);
4763 power = one;
4764 da[0] += yk;
4765 for (l = 2; l <= m; ++l) {
4766 power *= xk;
4767 b[l-1] += power;
4768 da[l-1] += power*yk;
4769 }
4770 for (l = 2; l <= m; ++l) {
4771 power *= xk;
4772 b[m + l*20 - 21] += power;
4773 }
4774 }
4775 for (i = 3; i <= m; ++i) {
4776 for (k = i; k <= m; ++k) {
4777 b[k - 1 + (i-1)*20 - 21] = b[k + (i-2)*20 - 21];
4778 }
4779 }
4780 H1LeastSquareSeqnd(m, b, idim, ifail, 1, da);
4781
4782 for (i=0; i<m; ++i) a[i] = da[i];
4783
4784}
4785
4786////////////////////////////////////////////////////////////////////////////////
4787/// Least square linear fit without weights.
4788///
4789/// extracted from CERNLIB LLSQ: Translated to C++ by Rene Brun
4790/// (added to LSQ by B. Schorr, 15.02.1982.)
4791
4792void H1LeastSquareLinearFit(Int_t ndata, Double_t &a0, Double_t &a1, Int_t &ifail)
4793{
4794 Double_t xbar, ybar, x2bar;
4795 Int_t i, n;
4796 Double_t xybar;
4797 Double_t fn, xk, yk;
4798 Double_t det;
4799
4800 n = TMath::Abs(ndata);
4801 ifail = -2;
4802 xbar = ybar = x2bar = xybar = 0;
4804 TH1 *curHist = (TH1*)hFitter->GetObjectFit();
4805 Int_t hxfirst = hFitter->GetXfirst();
4806 Int_t hxlast = hFitter->GetXlast();
4807 for (i = hxfirst; i <= hxlast; ++i) {
4808 xk = curHist->GetBinCenter(i);
4809 yk = curHist->GetBinContent(i);
4810 if (ndata < 0) {
4811 if (yk <= 0) yk = 1e-9;
4812 yk = TMath::Log(yk);
4813 }
4814 xbar += xk;
4815 ybar += yk;
4816 x2bar += xk*xk;
4817 xybar += xk*yk;
4818 }
4819 fn = Double_t(n);
4820 det = fn*x2bar - xbar*xbar;
4821 ifail = -1;
4822 if (det <= 0) {
4823 a0 = ybar/fn;
4824 a1 = 0;
4825 return;
4826 }
4827 ifail = 0;
4828 a0 = (x2bar*ybar - xbar*xybar) / det;
4829 a1 = (fn*xybar - xbar*ybar) / det;
4830
4831}
4832
4833////////////////////////////////////////////////////////////////////////////////
4834/// Extracted from CERN Program library routine DSEQN.
4835///
4836/// Translated to C++ by Rene Brun
4837
4838void H1LeastSquareSeqnd(Int_t n, Double_t *a, Int_t idim, Int_t &ifail, Int_t k, Double_t *b)
4839{
4840 Int_t a_dim1, a_offset, b_dim1, b_offset;
4841 Int_t nmjp1, i, j, l;
4842 Int_t im1, jp1, nm1, nmi;
4843 Double_t s1, s21, s22;
4844 const Double_t one = 1.;
4845
4846 /* Parameter adjustments */
4847 b_dim1 = idim;
4848 b_offset = b_dim1 + 1;
4849 b -= b_offset;
4850 a_dim1 = idim;
4851 a_offset = a_dim1 + 1;
4852 a -= a_offset;
4853
4854 if (idim < n) return;
4855
4856 ifail = 0;
4857 for (j = 1; j <= n; ++j) {
4858 if (a[j + j*a_dim1] <= 0) { ifail = -1; return; }
4859 a[j + j*a_dim1] = one / a[j + j*a_dim1];
4860 if (j == n) continue;
4861 jp1 = j + 1;
4862 for (l = jp1; l <= n; ++l) {
4863 a[j + l*a_dim1] = a[j + j*a_dim1] * a[l + j*a_dim1];
4864 s1 = -a[l + (j+1)*a_dim1];
4865 for (i = 1; i <= j; ++i) { s1 = a[l + i*a_dim1] * a[i + (j+1)*a_dim1] + s1; }
4866 a[l + (j+1)*a_dim1] = -s1;
4867 }
4868 }
4869 if (k <= 0) return;
4870
4871 for (l = 1; l <= k; ++l) {
4872 b[l*b_dim1 + 1] = a[a_dim1 + 1]*b[l*b_dim1 + 1];
4873 }
4874 if (n == 1) return;
4875 for (l = 1; l <= k; ++l) {
4876 for (i = 2; i <= n; ++i) {
4877 im1 = i - 1;
4878 s21 = -b[i + l*b_dim1];
4879 for (j = 1; j <= im1; ++j) {
4880 s21 = a[i + j*a_dim1]*b[j + l*b_dim1] + s21;
4881 }
4882 b[i + l*b_dim1] = -a[i + i*a_dim1]*s21;
4883 }
4884 nm1 = n - 1;
4885 for (i = 1; i <= nm1; ++i) {
4886 nmi = n - i;
4887 s22 = -b[nmi + l*b_dim1];
4888 for (j = 1; j <= i; ++j) {
4889 nmjp1 = n - j + 1;
4890 s22 = a[nmi + nmjp1*a_dim1]*b[nmjp1 + l*b_dim1] + s22;
4891 }
4892 b[nmi + l*b_dim1] = -s22;
4893 }
4894 }
4895}
4896
4897////////////////////////////////////////////////////////////////////////////////
4898/// Return Global bin number corresponding to binx,y,z.
4899///
4900/// 2-D and 3-D histograms are represented with a one dimensional
4901/// structure.
4902/// This has the advantage that all existing functions, such as
4903/// GetBinContent, GetBinError, GetBinFunction work for all dimensions.
4904///
4905/// In case of a TH1x, returns binx directly.
4906/// see TH1::GetBinXYZ for the inverse transformation.
4907///
4908/// Convention for numbering bins
4909///
4910/// For all histogram types: nbins, xlow, xup
4911///
4912/// - bin = 0; underflow bin
4913/// - bin = 1; first bin with low-edge xlow INCLUDED
4914/// - bin = nbins; last bin with upper-edge xup EXCLUDED
4915/// - bin = nbins+1; overflow bin
4916///
4917/// In case of 2-D or 3-D histograms, a "global bin" number is defined.
4918/// For example, assuming a 3-D histogram with binx,biny,binz, the function
4919///
4920/// ~~~ {.cpp}
4921/// Int_t bin = h->GetBin(binx,biny,binz);
4922/// ~~~
4923///
4924/// returns a global/linearized bin number. This global bin is useful
4925/// to access the bin information independently of the dimension.
4926
4927Int_t TH1::GetBin(Int_t binx, Int_t, Int_t) const
4928{
4929 Int_t ofx = fXaxis.GetNbins() + 1; // overflow bin
4930 if (binx < 0) binx = 0;
4931 if (binx > ofx) binx = ofx;
4932
4933 return binx;
4934}
4935
4936////////////////////////////////////////////////////////////////////////////////
4937/// Return binx, biny, binz corresponding to the global bin number globalbin
4938/// see TH1::GetBin function above
4939
4940void TH1::GetBinXYZ(Int_t binglobal, Int_t &binx, Int_t &biny, Int_t &binz) const
4941{
4942 Int_t nx = fXaxis.GetNbins()+2;
4943 Int_t ny = fYaxis.GetNbins()+2;
4944
4945 if (GetDimension() == 1) {
4946 binx = binglobal%nx;
4947 biny = 0;
4948 binz = 0;
4949 return;
4950 }
4951 if (GetDimension() == 2) {
4952 binx = binglobal%nx;
4953 biny = ((binglobal-binx)/nx)%ny;
4954 binz = 0;
4955 return;
4956 }
4957 if (GetDimension() == 3) {
4958 binx = binglobal%nx;
4959 biny = ((binglobal-binx)/nx)%ny;
4960 binz = ((binglobal-binx)/nx -biny)/ny;
4961 }
4962}
4963
4964////////////////////////////////////////////////////////////////////////////////
4965/// Return a random number distributed according the histogram bin contents.
4966/// This function checks if the bins integral exists. If not, the integral
4967/// is evaluated, normalized to one.
4968///
4969/// @param rng (optional) Random number generator pointer used (default is gRandom)
4970///
4971/// The integral is automatically recomputed if the number of entries
4972/// is not the same then when the integral was computed.
4973/// NB Only valid for 1-d histograms. Use GetRandom2 or 3 otherwise.
4974/// If the histogram has a bin with negative content a NaN is returned
4975
4976Double_t TH1::GetRandom(TRandom * rng) const
4977{
4978 if (fDimension > 1) {
4979 Error("GetRandom","Function only valid for 1-d histograms");
4980 return 0;
4981 }
4982 Int_t nbinsx = GetNbinsX();
4983 Double_t integral = 0;
4984 // compute integral checking that all bins have positive content (see ROOT-5894)
4985 if (fIntegral) {
4986 if (fIntegral[nbinsx+1] != fEntries) integral = ((TH1*)this)->ComputeIntegral(true);
4987 else integral = fIntegral[nbinsx];
4988 } else {
4989 integral = ((TH1*)this)->ComputeIntegral(true);
4990 }
4991 if (integral == 0) return 0;
4992 // return a NaN in case some bins have negative content
4993 if (integral == TMath::QuietNaN() ) return TMath::QuietNaN();
4994
4995 Double_t r1 = (rng) ? rng->Rndm() : gRandom->Rndm();
4996 Int_t ibin = TMath::BinarySearch(nbinsx,fIntegral,r1);
4997 Double_t x = GetBinLowEdge(ibin+1);
4998 if (r1 > fIntegral[ibin]) x +=
4999 GetBinWidth(ibin+1)*(r1-fIntegral[ibin])/(fIntegral[ibin+1] - fIntegral[ibin]);
5000 return x;
5001}
5002
5003////////////////////////////////////////////////////////////////////////////////
5004/// Return content of bin number bin.
5005///
5006/// Implemented in TH1C,S,F,D
5007///
5008/// Convention for numbering bins
5009///
5010/// For all histogram types: nbins, xlow, xup
5011///
5012/// - bin = 0; underflow bin
5013/// - bin = 1; first bin with low-edge xlow INCLUDED
5014/// - bin = nbins; last bin with upper-edge xup EXCLUDED
5015/// - bin = nbins+1; overflow bin
5016///
5017/// In case of 2-D or 3-D histograms, a "global bin" number is defined.
5018/// For example, assuming a 3-D histogram with binx,biny,binz, the function
5019///
5020/// ~~~ {.cpp}
5021/// Int_t bin = h->GetBin(binx,biny,binz);
5022/// ~~~
5023///
5024/// returns a global/linearized bin number. This global bin is useful
5025/// to access the bin information independently of the dimension.
5026
5028{
5029 if (fBuffer) const_cast<TH1*>(this)->BufferEmpty();
5030 if (bin < 0) bin = 0;
5031 if (bin >= fNcells) bin = fNcells-1;
5032
5033 return RetrieveBinContent(bin);
5034}
5035
5036////////////////////////////////////////////////////////////////////////////////
5037/// Compute first binx in the range [firstx,lastx] for which
5038/// diff = abs(bin_content-c) <= maxdiff
5039///
5040/// In case several bins in the specified range with diff=0 are found
5041/// the first bin found is returned in binx.
5042/// In case several bins in the specified range satisfy diff <=maxdiff
5043/// the bin with the smallest difference is returned in binx.
5044/// In all cases the function returns the smallest difference.
5045///
5046/// NOTE1: if firstx <= 0, firstx is set to bin 1
5047/// if (lastx < firstx then firstx is set to the number of bins
5048/// ie if firstx=0 and lastx=0 (default) the search is on all bins.
5049///
5050/// NOTE2: if maxdiff=0 (default), the first bin with content=c is returned.
5051
5052Double_t TH1::GetBinWithContent(Double_t c, Int_t &binx, Int_t firstx, Int_t lastx,Double_t maxdiff) const
5053{
5054 if (fDimension > 1) {
5055 binx = 0;
5056 Error("GetBinWithContent","function is only valid for 1-D histograms");
5057 return 0;
5058 }
5059
5060 if (fBuffer) ((TH1*)this)->BufferEmpty();
5061
5062 if (firstx <= 0) firstx = 1;
5063 if (lastx < firstx) lastx = fXaxis.GetNbins();
5064 Int_t binminx = 0;
5065 Double_t diff, curmax = 1.e240;
5066 for (Int_t i=firstx;i<=lastx;i++) {
5067 diff = TMath::Abs(RetrieveBinContent(i)-c);
5068 if (diff <= 0) {binx = i; return diff;}
5069 if (diff < curmax && diff <= maxdiff) {curmax = diff, binminx=i;}
5070 }
5071 binx = binminx;
5072 return curmax;
5073}
5074
5075////////////////////////////////////////////////////////////////////////////////
5076/// Given a point x, approximates the value via linear interpolation
5077/// based on the two nearest bin centers
5078///
5079/// Andy Mastbaum 10/21/08
5080
5082{
5083 if (fBuffer) ((TH1*)this)->BufferEmpty();
5084
5085 Int_t xbin = fXaxis.FindFixBin(x);
5086 Double_t x0,x1,y0,y1;
5087
5088 if(x<=GetBinCenter(1)) {
5089 return RetrieveBinContent(1);
5090 } else if(x>=GetBinCenter(GetNbinsX())) {
5091 return RetrieveBinContent(GetNbinsX());
5092 } else {
5093 if(x<=GetBinCenter(xbin)) {
5094 y0 = RetrieveBinContent(xbin-1);
5095 x0 = GetBinCenter(xbin-1);
5096 y1 = RetrieveBinContent(xbin);
5097 x1 = GetBinCenter(xbin);
5098 } else {
5099 y0 = RetrieveBinContent(xbin);
5100 x0 = GetBinCenter(xbin);
5101 y1 = RetrieveBinContent(xbin+1);
5102 x1 = GetBinCenter(xbin+1);
5103 }
5104 return y0 + (x-x0)*((y1-y0)/(x1-x0));
5105 }
5106}
5107
5108////////////////////////////////////////////////////////////////////////////////
5109/// 2d Interpolation. Not yet implemented.
5110
5112{
5113 Error("Interpolate","This function must be called with 1 argument for a TH1");
5114 return 0;
5115}
5116
5117////////////////////////////////////////////////////////////////////////////////
5118/// 3d Interpolation. Not yet implemented.
5119
5121{
5122 Error("Interpolate","This function must be called with 1 argument for a TH1");
5123 return 0;
5124}
5125
5126///////////////////////////////////////////////////////////////////////////////
5127/// Check if a histogram is empty
5128/// (this is a protected method used mainly by TH1Merger )
5129
5130Bool_t TH1::IsEmpty() const
5131{
5132 // if fTsumw or fentries are not zero histogram is not empty
5133 // need to use GetEntries() instead of fEntries in case of bugger histograms
5134 // so we will flash the buffer
5135 if (fTsumw != 0) return kFALSE;
5136 if (GetEntries() != 0) return kFALSE;
5137 // case fTSumw == 0 amd entries are also zero
5138 // this should not really happening, but if one sets content by hand
5139 // it can happen. a call to ResetStats() should be done in such cases
5140 double sumw = 0;
5141 for (int i = 0; i< GetNcells(); ++i) sumw += RetrieveBinContent(i);
5142 return (sumw != 0) ? kFALSE : kTRUE;
5143}
5144
5145////////////////////////////////////////////////////////////////////////////////
5146/// Return true if the bin is overflow.
5147
5148Bool_t TH1::IsBinOverflow(Int_t bin, Int_t iaxis) const
5149{
5150 Int_t binx, biny, binz;
5151 GetBinXYZ(bin, binx, biny, binz);
5152
5153 if (iaxis == 0) {
5154 if ( fDimension == 1 )
5155 return binx >= GetNbinsX() + 1;
5156 if ( fDimension == 2 )
5157 return (binx >= GetNbinsX() + 1) ||
5158 (biny >= GetNbinsY() + 1);
5159 if ( fDimension == 3 )
5160 return (binx >= GetNbinsX() + 1) ||
5161 (biny >= GetNbinsY() + 1) ||
5162 (binz >= GetNbinsZ() + 1);
5163 return kFALSE;
5164 }
5165 if (iaxis == 1)
5166 return binx >= GetNbinsX() + 1;
5167 if (iaxis == 2)
5168 return biny >= GetNbinsY() + 1;
5169 if (iaxis == 3)
5170 return binz >= GetNbinsZ() + 1;
5171
5172 Error("IsBinOverflow","Invalid axis value");
5173 return kFALSE;
5174}
5175
5176////////////////////////////////////////////////////////////////////////////////
5177/// Return true if the bin is underflow.
5178/// If iaxis = 0 make OR with all axes otherwise check only for the given axis
5179
5180Bool_t TH1::IsBinUnderflow(Int_t bin, Int_t iaxis) const
5181{
5182 Int_t binx, biny, binz;
5183 GetBinXYZ(bin, binx, biny, binz);
5184
5185 if (iaxis == 0) {
5186 if ( fDimension == 1 )
5187 return (binx <= 0);
5188 else if ( fDimension == 2 )
5189 return (binx <= 0 || biny <= 0);
5190 else if ( fDimension == 3 )
5191 return (binx <= 0 || biny <= 0 || binz <= 0);
5192 else
5193 return kFALSE;
5194 }
5195 if (iaxis == 1)
5196 return (binx <= 0);
5197 if (iaxis == 2)
5198 return (biny <= 0);
5199 if (iaxis == 3)
5200 return (binz <= 0);
5201
5202 Error("IsBinUnderflow","Invalid axis value");
5203 return kFALSE;
5204}
5205
5206////////////////////////////////////////////////////////////////////////////////
5207/// Reduce the number of bins for the axis passed in the option to the number of bins having a label.
5208/// The method will remove only the extra bins existing after the last "labeled" bin.
5209/// Note that if there are "un-labeled" bins present between "labeled" bins they will not be removed
5210
5212{
5213 Int_t iaxis = AxisChoice(ax);
5214 TAxis *axis = 0;
5215 if (iaxis == 1) axis = GetXaxis();
5216 if (iaxis == 2) axis = GetYaxis();
5217 if (iaxis == 3) axis = GetZaxis();
5218 if (!axis) {
5219 Error("LabelsDeflate","Invalid axis option %s",ax);
5220 return;
5221 }
5222 if (!axis->GetLabels()) return;
5223
5224 // find bin with last labels
5225 // bin number is object ID in list of labels
5226 // therefore max bin number is number of bins of the deflated histograms
5227 TIter next(axis->GetLabels());
5228 TObject *obj;
5229 Int_t nbins = 0;
5230 while ((obj = next())) {
5231 Int_t ibin = obj->GetUniqueID();
5232 if (ibin > nbins) nbins = ibin;
5233 }
5234 if (nbins < 1) nbins = 1;
5235
5236 // Do nothing in case it was the last bin
5237 if (nbins==axis->GetNbins()) return;
5238
5239 TH1 *hold = (TH1*)IsA()->New();
5240 R__ASSERT(hold);
5241 hold->SetDirectory(nullptr);
5242 Copy(*hold);
5243
5244 Bool_t timedisp = axis->GetTimeDisplay();
5245 Double_t xmin = axis->GetXmin();
5246 Double_t xmax = axis->GetBinUpEdge(nbins);
5247 if (xmax <= xmin) xmax = xmin +nbins;
5248 axis->SetRange(0,0);
5249 axis->Set(nbins,xmin,xmax);
5250 SetBinsLength(-1); // reset the number of cells
5251 Int_t errors = fSumw2.fN;
5252 if (errors) fSumw2.Set(fNcells);
5253 axis->SetTimeDisplay(timedisp);
5254 // reset histogram content
5255 Reset("ICE");
5256
5257 //now loop on all bins and refill
5258 // NOTE that if the bins without labels have content
5259 // it will be put in the underflow/overflow.
5260 // For this reason we use AddBinContent method
5261 Double_t oldEntries = fEntries;
5262 Int_t bin,binx,biny,binz;
5263 for (bin=0; bin < hold->fNcells; ++bin) {
5264 hold->GetBinXYZ(bin,binx,biny,binz);
5265 Int_t ibin = GetBin(binx,biny,binz);
5266 Double_t cu = hold->RetrieveBinContent(bin);
5267 AddBinContent(ibin,cu);
5268 if (errors) {
5269 fSumw2.fArray[ibin] += hold->fSumw2.fArray[bin];
5270 }
5271 }
5272 fEntries = oldEntries;
5273 delete hold;
5274}
5275
5276////////////////////////////////////////////////////////////////////////////////
5277/// Double the number of bins for axis.
5278/// Refill histogram.
5279/// This function is called by TAxis::FindBin(const char *label)
5280
5282{
5283 Int_t iaxis = AxisChoice(ax);
5284 TAxis *axis = 0;
5285 if (iaxis == 1) axis = GetXaxis();
5286 if (iaxis == 2) axis = GetYaxis();
5287 if (iaxis == 3) axis = GetZaxis();
5288 if (!axis) return;
5289
5290 TH1 *hold = (TH1*)IsA()->New();
5291 hold->SetDirectory(nullptr);
5292 Copy(*hold);
5293 hold->ResetBit(kMustCleanup);
5294
5295 Bool_t timedisp = axis->GetTimeDisplay();
5296 Int_t nbins = axis->GetNbins();
5297 Double_t xmin = axis->GetXmin();
5298 Double_t xmax = axis->GetXmax();
5299 xmax = xmin + 2*(xmax-xmin);
5300 axis->SetRange(0,0);
5301 // double the bins and recompute ncells
5302 axis->Set(2*nbins,xmin,xmax);
5303 SetBinsLength(-1);
5304 Int_t errors = fSumw2.fN;
5305 if (errors) fSumw2.Set(fNcells);
5306 axis->SetTimeDisplay(timedisp);
5307
5308 Reset("ICE"); // reset content and error
5309
5310 //now loop on all bins and refill
5311 Double_t oldEntries = fEntries;
5312 Int_t bin,ibin,binx,biny,binz;
5313 for (ibin =0; ibin < hold->fNcells; ibin++) {
5314 // get the binx,y,z values . The x-y-z (axis) bin values will stay the same between new-old after the expanding
5315 hold->GetBinXYZ(ibin,binx,biny,binz);
5316 bin = GetBin(binx,biny,binz);
5317
5318 // underflow and overflow will be cleaned up because their meaning has been altered
5319 if (hold->IsBinUnderflow(ibin,iaxis) || hold->IsBinOverflow(ibin,iaxis)) {
5320 continue;
5321 }
5322 else {
5323 AddBinContent(bin, hold->RetrieveBinContent(ibin));
5324 if (errors) fSumw2.fArray[bin] += hold->fSumw2.fArray[ibin];
5325 }
5326 }
5327 fEntries = oldEntries;
5328 delete hold;
5329}
5330
5331////////////////////////////////////////////////////////////////////////////////
5332/// Sort bins with labels or set option(s) to draw axis with labels
5333/// \param[in] option
5334/// - "a" sort by alphabetic order
5335/// - ">" sort by decreasing values
5336/// - "<" sort by increasing values
5337/// - "h" draw labels horizontal
5338/// - "v" draw labels vertical
5339/// - "u" draw labels up (end of label right adjusted)
5340/// - "d" draw labels down (start of label left adjusted)
5341///
5342/// In case not all bins have labels sorting will work only in the case
5343/// the first `n` consecutive bins have all labels and sorting will be performed on
5344/// those label bins.
5345///
5346/// \param[in] ax axis
5347
5349{
5350 Int_t iaxis = AxisChoice(ax);
5351 TAxis *axis = 0;
5352 if (iaxis == 1)
5353 axis = GetXaxis();
5354 if (iaxis == 2)
5355 axis = GetYaxis();
5356 if (iaxis == 3)
5357 axis = GetZaxis();
5358 if (!axis)
5359 return;
5360 THashList *labels = axis->GetLabels();
5361 if (!labels) {
5362 Warning("LabelsOption", "Axis %s has no labels!",axis->GetName());
5363 return;
5364 }
5365 TString opt = option;
5366 opt.ToLower();
5367 Int_t iopt = -1;
5368 if (opt.Contains("h")) {
5373 iopt = 0;
5374 }
5375 if (opt.Contains("v")) {
5380 iopt = 1;
5381 }
5382 if (opt.Contains("u")) {
5383 axis->SetBit(TAxis::kLabelsUp);
5387 iopt = 2;
5388 }
5389 if (opt.Contains("d")) {
5394 iopt = 3;
5395 }
5396 Int_t sort = -1;
5397 if (opt.Contains("a"))
5398 sort = 0;
5399 if (opt.Contains(">"))
5400 sort = 1;
5401 if (opt.Contains("<"))
5402 sort = 2;
5403 if (sort < 0) {
5404 if (iopt < 0)
5405 Error("LabelsOption", "%s is an invalid label placement option!",opt.Data());
5406 return;
5407 }
5408
5409 // Code works only if first n bins have labels if we uncomment following line
5410 // but we don't want to support this special case
5411 // Int_t n = TMath::Min(axis->GetNbins(), labels->GetSize());
5412
5413 // support only cases where each bin has a labels (should be when axis is alphanumeric)
5414 Int_t n = labels->GetSize();
5415 if (n != axis->GetNbins()) {
5416 // check if labels are all consecutive and starts from the first bin
5417 // in that case the current code will work fine
5418 Int_t firstLabelBin = axis->GetNbins()+1;
5419 Int_t lastLabelBin = -1;
5420 for (Int_t i = 0; i < n; ++i) {
5421 Int_t bin = labels->At(i)->GetUniqueID();
5422 if (bin < firstLabelBin) firstLabelBin = bin;
5423 if (bin > lastLabelBin) lastLabelBin = bin;
5424 }
5425 if (firstLabelBin != 1 || lastLabelBin-firstLabelBin +1 != n) {
5426 Error("LabelsOption", "%s of Histogram %s contains bins without labels. Sorting will not work correctly - return",
5427 axis->GetName(), GetName());
5428 return;
5429 }
5430 // case where label bins are consecutive starting from first bin will work
5431 // calling before a TH1::LabelsDeflate() will avoid this error message
5432 Warning("LabelsOption", "axis %s of Histogram %s has extra following bins without labels. Sorting will work only for first label bins",
5433 axis->GetName(), GetName());
5434 }
5435 std::vector<Int_t> a(n);
5436 std::vector<Int_t> b(n);
5437
5438
5439 Int_t i, j, k;
5440 std::vector<Double_t> cont;
5441 std::vector<Double_t> errors2;
5442 THashList *labold = new THashList(labels->GetSize(), 1);
5443 TIter nextold(labels);
5444 TObject *obj = nullptr;
5445 labold->AddAll(labels);
5446 labels->Clear();
5447
5448 // delete buffer if it is there since bins will be reordered.
5449 if (fBuffer)
5450 BufferEmpty(1);
5451
5452 if (sort > 0) {
5453 //---sort by values of bins
5454 if (GetDimension() == 1) {
5455 cont.resize(n);
5456 if (fSumw2.fN)
5457 errors2.resize(n);
5458 for (i = 0; i < n; i++) {
5459 cont[i] = RetrieveBinContent(i + 1);
5460 if (!errors2.empty())
5461 errors2[i] = GetBinErrorSqUnchecked(i + 1);
5462 b[i] = labold->At(i)->GetUniqueID(); // this is the bin corresponding to the label
5463 a[i] = i;
5464 }
5465 if (sort == 1)
5466 TMath::Sort(n, cont.data(), a.data(), kTRUE); // sort by decreasing values
5467 else
5468 TMath::Sort(n, cont.data(), a.data(), kFALSE); // sort by increasing values
5469 for (i = 0; i < n; i++) {
5470 // use UpdateBinCOntent to not screw up histogram entries
5471 UpdateBinContent(i + 1, cont[b[a[i]] - 1]); // b[a[i]] returns bin number. .we need to subtract 1
5472 if (gDebug)
5473 Info("LabelsOption","setting bin %d value %f from bin %d label %s at pos %d ",
5474 i+1,cont[b[a[i]] - 1],b[a[i]],labold->At(a[i])->GetName(),a[i]);
5475 if (!errors2.empty())
5476 fSumw2.fArray[i + 1] = errors2[b[a[i]] - 1];
5477 }
5478 for (i = 0; i < n; i++) {
5479 obj = labold->At(a[i]);
5480 labels->Add(obj);
5481 obj->SetUniqueID(i + 1);
5482 }
5483 } else if (GetDimension() == 2) {
5484 std::vector<Double_t> pcont(n + 2);
5485 Int_t nx = fXaxis.GetNbins() + 2;
5486 Int_t ny = fYaxis.GetNbins() + 2;
5487 cont.resize((nx + 2) * (ny + 2));
5488 if (fSumw2.fN)
5489 errors2.resize((nx + 2) * (ny + 2));
5490 for (i = 0; i < nx; i++) {
5491 for (j = 0; j < ny; j++) {
5492 Int_t bin = GetBin(i,j);
5493 cont[i + nx * j] = RetrieveBinContent(bin);
5494 if (!errors2.empty())
5495 errors2[i + nx * j] = GetBinErrorSqUnchecked(bin);
5496 if (axis == GetXaxis())
5497 k = i - 1;
5498 else
5499 k = j - 1;
5500 if (k >= 0 && k < n) { // we consider underflow/overflows in y for ordering the bins
5501 pcont[k] += cont[i + nx * j];
5502 a[k] = k;
5503 }
5504 }
5505 }
5506 if (sort == 1)
5507 TMath::Sort(n, pcont.data(), a.data(), kTRUE); // sort by decreasing values
5508 else
5509 TMath::Sort(n, pcont.data(), a.data(), kFALSE); // sort by increasing values
5510 for (i = 0; i < n; i++) {
5511 // iterate on old label list to find corresponding bin match
5512 TIter next(labold);
5513 UInt_t bin = a[i] + 1;
5514 while ((obj = next())) {
5515 if (obj->GetUniqueID() == (UInt_t)bin)
5516 break;
5517 else
5518 obj = nullptr;
5519 }
5520 if (!obj) {
5521 // this should not really happen
5522 R__ASSERT("LabelsOption - No corresponding bin found when ordering labels");
5523 return;
5524 }
5525
5526 labels->Add(obj);
5527 if (gDebug)
5528 std::cout << " set label " << obj->GetName() << " to bin " << i + 1 << " from order " << a[i] << " bin "
5529 << b[a[i]] << "content " << pcont[a[i]] << std::endl;
5530 }
5531 // need to set here new ordered labels - otherwise loop before does not work since labold and labels list
5532 // contain same objects
5533 for (i = 0; i < n; i++) {
5534 labels->At(i)->SetUniqueID(i + 1);
5535 }
5536 // set now the bin contents
5537 if (axis == GetXaxis()) {
5538 for (i = 0; i < n; i++) {
5539 Int_t ix = a[i] + 1;
5540 for (j = 0; j < ny; j++) {
5541 Int_t bin = GetBin(i + 1, j);
5542 UpdateBinContent(bin, cont[ix + nx * j]);
5543 if (!errors2.empty())
5544 fSumw2.fArray[bin] = errors2[ix + nx * j];
5545 }
5546 }
5547 } else {
5548 // using y axis
5549 for (i = 0; i < nx; i++) {
5550 for (j = 0; j < n; j++) {
5551 Int_t iy = a[j] + 1;
5552 Int_t bin = GetBin(i, j + 1);
5553 UpdateBinContent(bin, cont[i + nx * iy]);
5554 if (!errors2.empty())
5555 fSumw2.fArray[bin] = errors2[i + nx * iy];
5556 }
5557 }
5558 }
5559 } else {
5560 // sorting histograms: 3D case
5561 std::vector<Double_t> pcont(n + 2);
5562 Int_t nx = fXaxis.GetNbins() + 2;
5563 Int_t ny = fYaxis.GetNbins() + 2;
5564 Int_t nz = fZaxis.GetNbins() + 2;
5565 Int_t l = 0;
5566 cont.resize((nx + 2) * (ny + 2) * (nz + 2));
5567 if (fSumw2.fN)
5568 errors2.resize((nx + 2) * (ny + 2) * (nz + 2));
5569 for (i = 0; i < nx; i++) {
5570 for (j = 0; j < ny; j++) {
5571 for (k = 0; k < nz; k++) {
5572 Int_t bin = GetBin(i,j,k);
5574 if (axis == GetXaxis())
5575 l = i - 1;
5576 else if (axis == GetYaxis())
5577 l = j - 1;
5578 else
5579 l = k - 1;
5580 if (l >= 0 && l < n) { // we consider underflow/overflows in y for ordering the bins
5581 pcont[l] += c;
5582 a[l] = l;
5583 }
5584 cont[i + nx * (j + ny * k)] = c;
5585 if (!errors2.empty())
5586 errors2[i + nx * (j + ny * k)] = GetBinErrorSqUnchecked(bin);
5587 }
5588 }
5589 }
5590 if (sort == 1)
5591 TMath::Sort(n, pcont.data(), a.data(), kTRUE); // sort by decreasing values
5592 else
5593 TMath::Sort(n, pcont.data(), a.data(), kFALSE); // sort by increasing values
5594 for (i = 0; i < n; i++) {
5595 // iterate on the old label list to find corresponding bin match
5596 TIter next(labold);
5597 UInt_t bin = a[i] + 1;
5598 obj = nullptr;
5599 while ((obj = next())) {
5600 if (obj->GetUniqueID() == (UInt_t)bin) {
5601 break;
5602 }
5603 else
5604 obj = nullptr;
5605 }
5606 if (!obj) {
5607 R__ASSERT("LabelsOption - No corresponding bin found when ordering labels");
5608 return;
5609 }
5610 labels->Add(obj);
5611 if (gDebug)
5612 std::cout << " set label " << obj->GetName() << " to bin " << i + 1 << " from bin " << a[i] << "content "
5613 << pcont[a[i]] << std::endl;
5614 }
5615
5616 // need to set here new ordered labels - otherwise loop before does not work since labold and llabels list
5617 // contain same objects
5618 for (i = 0; i < n; i++) {
5619 labels->At(i)->SetUniqueID(i + 1);
5620 }
5621 // set now the bin contents
5622 if (axis == GetXaxis()) {
5623 for (i = 0; i < n; i++) {
5624 Int_t ix = a[i] + 1;
5625 for (j = 0; j < ny; j++) {
5626 for (k = 0; k < nz; k++) {
5627 Int_t bin = GetBin(i + 1, j, k);
5628 UpdateBinContent(bin, cont[ix + nx * (j + ny * k)]);
5629 if (!errors2.empty())
5630 fSumw2.fArray[bin] = errors2[ix + nx * (j + ny * k)];
5631 }
5632 }
5633 }
5634 } else if (axis == GetYaxis()) {
5635 // using y axis
5636 for (i = 0; i < nx; i++) {
5637 for (j = 0; j < n; j++) {
5638 Int_t iy = a[j] + 1;
5639 for (k = 0; k < nz; k++) {
5640 Int_t bin = GetBin(i, j + 1, k);
5641 UpdateBinContent(bin, cont[i + nx * (iy + ny * k)]);
5642 if (!errors2.empty())
5643 fSumw2.fArray[bin] = errors2[i + nx * (iy + ny * k)];
5644 }
5645 }
5646 }
5647 } else {
5648 // using z axis
5649 for (i = 0; i < nx; i++) {
5650 for (j = 0; j < ny; j++) {
5651 for (k = 0; k < n; k++) {
5652 Int_t iz = a[k] + 1;
5653 Int_t bin = GetBin(i, j , k +1);
5654 UpdateBinContent(bin, cont[i + nx * (j + ny * iz)]);
5655 if (!errors2.empty())
5656 fSumw2.fArray[bin] = errors2[i + nx * (j + ny * iz)];
5657 }
5658 }
5659 }
5660 }
5661 }
5662 } else {
5663 //---alphabetic sort
5664 // sort labels using vector of strings and TMath::Sort
5665 // I need to array because labels order in list is not necessary that of the bins
5666 std::vector<std::string> vecLabels(n);
5667 for (i = 0; i < n; i++) {
5668 vecLabels[i] = labold->At(i)->GetName();
5669 b[i] = labold->At(i)->GetUniqueID(); // this is the bin corresponding to the label
5670 a[i] = i;
5671 }
5672 // sort in ascending order for strings
5673 TMath::Sort(n, vecLabels.data(), a.data(), kFALSE);
5674 // set the new labels
5675 for (i = 0; i < n; i++) {
5676 TObject *labelObj = labold->At(a[i]);
5677 labels->Add(labold->At(a[i]));
5678 // set the corresponding bin. NB bin starts from 1
5679 labelObj->SetUniqueID(i + 1);
5680 if (gDebug)
5681 std::cout << "bin " << i + 1 << " setting new labels for axis " << labold->At(a[i])->GetName() << " from "
5682 << b[a[i]] << std::endl;
5683 }
5684
5685 if (GetDimension() == 1) {
5686 cont.resize(n + 2);
5687 if (fSumw2.fN)
5688 errors2.resize(n + 2);
5689 for (i = 0; i < n; i++) {
5690 cont[i] = RetrieveBinContent(b[a[i]]);
5691 if (!errors2.empty())
5692 errors2[i] = GetBinErrorSqUnchecked(b[a[i]]);
5693 }
5694 for (i = 0; i < n; i++) {
5695 UpdateBinContent(i + 1, cont[i]);
5696 if (!errors2.empty())
5697 fSumw2.fArray[i+1] = errors2[i];
5698 }
5699 } else if (GetDimension() == 2) {
5700 Int_t nx = fXaxis.GetNbins() + 2;
5701 Int_t ny = fYaxis.GetNbins() + 2;
5702 cont.resize(nx * ny);
5703 if (fSumw2.fN)
5704 errors2.resize(nx * ny);
5705 // copy old bin contents and then set to new ordered bins
5706 // N.B. bin in histograms starts from 1, but in y we consider under/overflows
5707 for (i = 0; i < nx; i++) {
5708 for (j = 0; j < ny; j++) { // ny is nbins+2
5709 Int_t bin = GetBin(i, j);
5710 cont[i + nx * j] = RetrieveBinContent(bin);
5711 if (!errors2.empty())
5712 errors2[i + nx * j] = GetBinErrorSqUnchecked(bin);
5713 }
5714 }
5715 if (axis == GetXaxis()) {
5716 for (i = 0; i < n; i++) {
5717 for (j = 0; j < ny; j++) {
5718 Int_t bin = GetBin(i + 1 , j);
5719 UpdateBinContent(bin, cont[b[a[i]] + nx * j]);
5720 if (!errors2.empty())
5721 fSumw2.fArray[bin] = errors2[b[a[i]] + nx * j];
5722 }
5723 }
5724 } else {
5725 for (i = 0; i < nx; i++) {
5726 for (j = 0; j < n; j++) {
5727 Int_t bin = GetBin(i, j + 1);
5728 UpdateBinContent(bin, cont[i + nx * b[a[j]]]);
5729 if (!errors2.empty())
5730 fSumw2.fArray[bin] = errors2[i + nx * b[a[j]]];
5731 }
5732 }
5733 }
5734 } else {
5735 // case of 3D (needs to be tested)
5736 Int_t nx = fXaxis.GetNbins() + 2;
5737 Int_t ny = fYaxis.GetNbins() + 2;
5738 Int_t nz = fZaxis.GetNbins() + 2;
5739 cont.resize(nx * ny * nz);
5740 if (fSumw2.fN)
5741 errors2.resize(nx * ny * nz);
5742 for (i = 0; i < nx; i++) {
5743 for (j = 0; j < ny; j++) {
5744 for (k = 0; k < nz; k++) {
5745 Int_t bin = GetBin(i, j, k);
5746 cont[i + nx * (j + ny * k)] = RetrieveBinContent(bin);
5747 if (!errors2.empty())
5748 errors2[i + nx * (j + ny * k)] = GetBinErrorSqUnchecked(bin);
5749 }
5750 }
5751 }
5752 if (axis == GetXaxis()) {
5753 // labels on x axis
5754 for (i = 0; i < n; i++) { // for x we loop only on bins with the labels
5755 for (j = 0; j < ny; j++) {
5756 for (k = 0; k < nz; k++) {
5757 Int_t bin = GetBin(i + 1, j, k);
5758 UpdateBinContent(bin, cont[b[a[i]] + nx * (j + ny * k)]);
5759 if (!errors2.empty())
5760 fSumw2.fArray[bin] = errors2[b[a[i]] + nx * (j + ny * k)];
5761 }
5762 }
5763 }
5764 } else if (axis == GetYaxis()) {
5765 // labels on y axis
5766 for (i = 0; i < nx; i++) {
5767 for (j = 0; j < n; j++) {
5768 for (k = 0; k < nz; k++) {
5769 Int_t bin = GetBin(i, j+1, k);
5770 UpdateBinContent(bin, cont[i + nx * (b[a[j]] + ny * k)]);
5771 if (!errors2.empty())
5772 fSumw2.fArray[bin] = errors2[i + nx * (b[a[j]] + ny * k)];
5773 }
5774 }
5775 }
5776 } else {
5777 // labels on z axis
5778 for (i = 0; i < nx; i++) {
5779 for (j = 0; j < ny; j++) {
5780 for (k = 0; k < n; k++) {
5781 Int_t bin = GetBin(i, j, k+1);
5782 UpdateBinContent(bin, cont[i + nx * (j + ny * b[a[k]])]);
5783 if (!errors2.empty())
5784 fSumw2.fArray[bin] = errors2[i + nx * (j + ny * b[a[k]])];
5785 }
5786 }
5787 }
5788 }
5789 }
5790 }
5791 // need to set to zero the statistics if axis has been sorted
5792 // see for example TH3::PutStats for definition of s vector
5793 bool labelsAreSorted = kFALSE;
5794 for (i = 0; i < n; ++i) {
5795 if (a[i] != i) {
5796 labelsAreSorted = kTRUE;
5797 break;
5798 }
5799 }
5800 if (labelsAreSorted) {
5801 double s[TH1::kNstat];
5802 GetStats(s);
5803 if (iaxis == 1) {
5804 s[2] = 0; // fTsumwx
5805 s[3] = 0; // fTsumwx2
5806 s[6] = 0; // fTsumwxy
5807 s[9] = 0; // fTsumwxz
5808 } else if (iaxis == 2) {
5809 s[4] = 0; // fTsumwy
5810 s[5] = 0; // fTsumwy2
5811 s[6] = 0; // fTsumwxy
5812 s[10] = 0; // fTsumwyz
5813 } else if (iaxis == 3) {
5814 s[7] = 0; // fTsumwz
5815 s[8] = 0; // fTsumwz2
5816 s[9] = 0; // fTsumwxz
5817 s[10] = 0; // fTsumwyz
5818 }
5819 PutStats(s);
5820 }
5821 delete labold;
5822}
5823
5824////////////////////////////////////////////////////////////////////////////////
5825/// Test if two double are almost equal.
5826
5827static inline Bool_t AlmostEqual(Double_t a, Double_t b, Double_t epsilon = 0.00000001)
5828{
5829 return TMath::Abs(a - b) < epsilon;
5830}
5831
5832////////////////////////////////////////////////////////////////////////////////
5833/// Test if a double is almost an integer.
5834
5835static inline Bool_t AlmostInteger(Double_t a, Double_t epsilon = 0.00000001)
5836{
5837 return AlmostEqual(a - TMath::Floor(a), 0, epsilon) ||
5839}
5840
5841////////////////////////////////////////////////////////////////////////////////
5842/// Test if the binning is equidistant.
5843
5844static inline bool IsEquidistantBinning(const TAxis& axis)
5845{
5846 // check if axis bin are equals
5847 if (!axis.GetXbins()->fN) return true; //
5848 // not able to check if there is only one axis entry
5849 bool isEquidistant = true;
5850 const Double_t firstBinWidth = axis.GetBinWidth(1);
5851 for (int i = 1; i < axis.GetNbins(); ++i) {
5852 const Double_t binWidth = axis.GetBinWidth(i);
5853 const bool match = TMath::AreEqualRel(firstBinWidth, binWidth, 1.E-10);
5854 isEquidistant &= match;
5855 if (!match)
5856 break;
5857 }
5858 return isEquidistant;
5859}
5860
5861////////////////////////////////////////////////////////////////////////////////
5862/// Same limits and bins.
5863
5864Bool_t TH1::SameLimitsAndNBins(const TAxis &axis1, const TAxis &axis2){
5865 return axis1.GetNbins() == axis2.GetNbins() &&
5866 TMath::AreEqualAbs(axis1.GetXmin(), axis2.GetXmin(), axis1.GetBinWidth(axis1.GetNbins()) * 1.E-10) &&
5867 TMath::AreEqualAbs(axis1.GetXmax(), axis2.GetXmax(), axis1.GetBinWidth(axis1.GetNbins()) * 1.E-10);
5868}
5869
5870////////////////////////////////////////////////////////////////////////////////
5871/// Finds new limits for the axis for the Merge function.
5872/// returns false if the limits are incompatible
5873
5874Bool_t TH1::RecomputeAxisLimits(TAxis &destAxis, const TAxis &anAxis)
5875{
5876 if (SameLimitsAndNBins(destAxis, anAxis))
5877 return kTRUE;
5878
5879 if (!IsEquidistantBinning(destAxis) || !IsEquidistantBinning(anAxis))
5880 return kFALSE; // not equidistant user binning not supported
5881
5882 Double_t width1 = destAxis.GetBinWidth(0);
5883 Double_t width2 = anAxis.GetBinWidth(0);
5884 if (width1 == 0 || width2 == 0)
5885 return kFALSE; // no binning not supported
5886
5887 Double_t xmin = TMath::Min(destAxis.GetXmin(), anAxis.GetXmin());
5888 Double_t xmax = TMath::Max(destAxis.GetXmax(), anAxis.GetXmax());
5889 Double_t width = TMath::Max(width1, width2);
5890
5891 // check the bin size
5892 if (!AlmostInteger(width/width1) || !AlmostInteger(width/width2))
5893 return kFALSE;
5894
5895 // std::cout << "Find new limit using given axis " << anAxis.GetXmin() << " , " << anAxis.GetXmax() << " bin width " << width2 << std::endl;
5896 // std::cout << " and destination axis " << destAxis.GetXmin() << " , " << destAxis.GetXmax() << " bin width " << width1 << std::endl;
5897
5898
5899 // check the limits
5900 Double_t delta;
5901 delta = (destAxis.GetXmin() - xmin)/width1;
5902 if (!AlmostInteger(delta))
5903 xmin -= (TMath::Ceil(delta) - delta)*width1;
5904
5905 delta = (anAxis.GetXmin() - xmin)/width2;
5906 if (!AlmostInteger(delta))
5907 xmin -= (TMath::Ceil(delta) - delta)*width2;
5908
5909
5910 delta = (destAxis.GetXmin() - xmin)/width1;
5911 if (!AlmostInteger(delta))
5912 return kFALSE;
5913
5914
5915 delta = (xmax - destAxis.GetXmax())/width1;
5916 if (!AlmostInteger(delta))
5917 xmax += (TMath::Ceil(delta) - delta)*width1;
5918
5919
5920 delta = (xmax - anAxis.GetXmax())/width2;
5921 if (!AlmostInteger(delta))
5922 xmax += (TMath::Ceil(delta) - delta)*width2;
5923
5924
5925 delta = (xmax - destAxis.GetXmax())/width1;
5926 if (!AlmostInteger(delta))
5927 return kFALSE;
5928#ifdef DEBUG
5929 if (!AlmostInteger((xmax - xmin) / width)) { // unnecessary check
5930 printf("TH1::RecomputeAxisLimits - Impossible\n");
5931 return kFALSE;
5932 }
5933#endif
5934
5935
5936 destAxis.Set(TMath::Nint((xmax - xmin)/width), xmin, xmax);
5937
5938 //std::cout << "New re-computed axis : [ " << xmin << " , " << xmax << " ] width = " << width << " nbins " << destAxis.GetNbins() << std::endl;
5939
5940 return kTRUE;
5941}
5942
5943////////////////////////////////////////////////////////////////////////////////
5944/// Add all histograms in the collection to this histogram.
5945/// This function computes the min/max for the x axis,
5946/// compute a new number of bins, if necessary,
5947/// add bin contents, errors and statistics.
5948/// If all histograms have bin labels, bins with identical labels
5949/// will be merged, no matter what their order is.
5950/// If overflows are present and limits are different the function will fail.
5951/// The function returns the total number of entries in the result histogram
5952/// if the merge is successful, -1 otherwise.
5953///
5954/// Possible option:
5955/// -NOL : the merger will ignore the labels and merge the histograms bin by bin using bin center values to match bins
5956/// -NOCHECK: the histogram will not perform a check for duplicate labels in case of axes with labels. The check
5957/// (enabled by default) slows down the merging
5958///
5959/// IMPORTANT remark. The axis x may have different number
5960/// of bins and different limits, BUT the largest bin width must be
5961/// a multiple of the smallest bin width and the upper limit must also
5962/// be a multiple of the bin width.
5963/// Example:
5964///
5965/// ~~~ {.cpp}
5966/// void atest() {
5967/// TH1F *h1 = new TH1F("h1","h1",110,-110,0);
5968/// TH1F *h2 = new TH1F("h2","h2",220,0,110);
5969/// TH1F *h3 = new TH1F("h3","h3",330,-55,55);
5970/// TRandom r;
5971/// for (Int_t i=0;i<10000;i++) {
5972/// h1->Fill(r.Gaus(-55,10));
5973/// h2->Fill(r.Gaus(55,10));
5974/// h3->Fill(r.Gaus(0,10));
5975/// }
5976///
5977/// TList *list = new TList;
5978/// list->Add(h1);
5979/// list->Add(h2);
5980/// list->Add(h3);
5981/// TH1F *h = (TH1F*)h1->Clone("h");
5982/// h->Reset();
5983/// h->Merge(list);
5984/// h->Draw();
5985/// }
5986/// ~~~
5987
5989{
5990 if (!li) return 0;
5991 if (li->IsEmpty()) return (Long64_t) GetEntries();
5992
5993 // use TH1Merger class
5994 TH1Merger merger(*this,*li,opt);
5995 Bool_t ret = merger();
5996
5997 return (ret) ? GetEntries() : -1;
5998}
5999
6000
6001////////////////////////////////////////////////////////////////////////////////
6002/// Performs the operation:
6003///
6004/// `this = this*c1*f1`
6005///
6006/// If errors are defined (see TH1::Sumw2), errors are also recalculated.
6007///
6008/// Only bins inside the function range are recomputed.
6009/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
6010/// you should call Sumw2 before making this operation.
6011/// This is particularly important if you fit the histogram after TH1::Multiply
6012///
6013/// The function return kFALSE if the Multiply operation failed
6014
6016{
6017 if (!f1) {
6018 Error("Multiply","Attempt to multiply by a non-existing function");
6019 return kFALSE;
6020 }
6021
6022 // delete buffer if it is there since it will become invalid
6023 if (fBuffer) BufferEmpty(1);
6024
6025 Int_t nx = GetNbinsX() + 2; // normal bins + uf / of (cells)
6026 Int_t ny = GetNbinsY() + 2;
6027 Int_t nz = GetNbinsZ() + 2;
6028 if (fDimension < 2) ny = 1;
6029 if (fDimension < 3) nz = 1;
6030
6031 // reset min-maximum
6032 SetMinimum();
6033 SetMaximum();
6034
6035 // - Loop on bins (including underflows/overflows)
6036 Double_t xx[3];
6037 Double_t *params = 0;
6038 f1->InitArgs(xx,params);
6039
6040 for (Int_t binz = 0; binz < nz; ++binz) {
6041 xx[2] = fZaxis.GetBinCenter(binz);
6042 for (Int_t biny = 0; biny < ny; ++biny) {
6043 xx[1] = fYaxis.GetBinCenter(biny);
6044 for (Int_t binx = 0; binx < nx; ++binx) {
6045 xx[0] = fXaxis.GetBinCenter(binx);
6046 if (!f1->IsInside(xx)) continue;
6048 Int_t bin = binx + nx * (biny + ny *binz);
6049 Double_t cu = c1*f1->EvalPar(xx);
6050 if (TF1::RejectedPoint()) continue;
6051 UpdateBinContent(bin, RetrieveBinContent(bin) * cu);
6052 if (fSumw2.fN) {
6053 fSumw2.fArray[bin] = cu * cu * GetBinErrorSqUnchecked(bin);
6054 }
6055 }
6056 }
6057 }
6058 ResetStats();
6059 return kTRUE;
6060}
6061
6062////////////////////////////////////////////////////////////////////////////////
6063/// Multiply this histogram by h1.
6064///
6065/// `this = this*h1`
6066///
6067/// If errors of this are available (TH1::Sumw2), errors are recalculated.
6068/// Note that if h1 has Sumw2 set, Sumw2 is automatically called for this
6069/// if not already set.
6070///
6071/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
6072/// you should call Sumw2 before making this operation.
6073/// This is particularly important if you fit the histogram after TH1::Multiply
6074///
6075/// The function return kFALSE if the Multiply operation failed
6076
6077Bool_t TH1::Multiply(const TH1 *h1)
6078{
6079 if (!h1) {
6080 Error("Multiply","Attempt to multiply by a non-existing histogram");
6081 return kFALSE;
6082 }
6083
6084 // delete buffer if it is there since it will become invalid
6085 if (fBuffer) BufferEmpty(1);
6086
6087 try {
6088 CheckConsistency(this,h1);
6089 } catch(DifferentNumberOfBins&) {
6090 Error("Multiply","Attempt to multiply histograms with different number of bins");
6091 return kFALSE;
6092 } catch(DifferentAxisLimits&) {
6093 Warning("Multiply","Attempt to multiply histograms with different axis limits");
6094 } catch(DifferentBinLimits&) {
6095 Warning("Multiply","Attempt to multiply histograms with different bin limits");
6096 } catch(DifferentLabels&) {
6097 Warning("Multiply","Attempt to multiply histograms with different labels");
6098 }
6099
6100 // Create Sumw2 if h1 has Sumw2 set
6101 if (fSumw2.fN == 0 && h1->GetSumw2N() != 0) Sumw2();
6102
6103 // - Reset min- maximum
6104 SetMinimum();
6105 SetMaximum();
6106
6107 // - Loop on bins (including underflows/overflows)
6108 for (Int_t i = 0; i < fNcells; ++i) {
6111 UpdateBinContent(i, c0 * c1);
6112 if (fSumw2.fN) {
6114 }
6115 }
6116 ResetStats();
6117 return kTRUE;
6118}
6119
6120////////////////////////////////////////////////////////////////////////////////
6121/// Replace contents of this histogram by multiplication of h1 by h2.
6122///
6123/// `this = (c1*h1)*(c2*h2)`
6124///
6125/// If errors of this are available (TH1::Sumw2), errors are recalculated.
6126/// Note that if h1 or h2 have Sumw2 set, Sumw2 is automatically called for this
6127/// if not already set.
6128///
6129/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
6130/// you should call Sumw2 before making this operation.
6131/// This is particularly important if you fit the histogram after TH1::Multiply
6132///
6133/// The function return kFALSE if the Multiply operation failed
6134
6136{
6137 TString opt = option;
6138 opt.ToLower();
6139 // Bool_t binomial = kFALSE;
6140 // if (opt.Contains("b")) binomial = kTRUE;
6141 if (!h1 || !h2) {
6142 Error("Multiply","Attempt to multiply by a non-existing histogram");
6143 return kFALSE;
6144 }
6145
6146 // delete buffer if it is there since it will become invalid
6147 if (fBuffer) BufferEmpty(1);
6148
6149 try {
6150 CheckConsistency(h1,h2);
6151 CheckConsistency(this,h1);
6152 } catch(DifferentNumberOfBins&) {
6153 Error("Multiply","Attempt to multiply histograms with different number of bins");
6154 return kFALSE;
6155 } catch(DifferentAxisLimits&) {
6156 Warning("Multiply","Attempt to multiply histograms with different axis limits");
6157 } catch(DifferentBinLimits&) {
6158 Warning("Multiply","Attempt to multiply histograms with different bin limits");
6159 } catch(DifferentLabels&) {
6160 Warning("Multiply","Attempt to multiply histograms with different labels");
6161 }
6162
6163 // Create Sumw2 if h1 or h2 have Sumw2 set
6164 if (fSumw2.fN == 0 && (h1->GetSumw2N() != 0 || h2->GetSumw2N() != 0)) Sumw2();
6165
6166 // - Reset min - maximum
6167 SetMinimum();
6168 SetMaximum();
6169
6170 // - Loop on bins (including underflows/overflows)
6171 Double_t c1sq = c1 * c1; Double_t c2sq = c2 * c2;
6172 for (Int_t i = 0; i < fNcells; ++i) {
6174 Double_t b2 = h2->RetrieveBinContent(i);
6175 UpdateBinContent(i, c1 * b1 * c2 * b2);
6176 if (fSumw2.fN) {
6177 fSumw2.fArray[i] = c1sq * c2sq * (h1->GetBinErrorSqUnchecked(i) * b2 * b2 + h2->GetBinErrorSqUnchecked(i) * b1 * b1);
6178 }
6179 }
6180 ResetStats();
6181 return kTRUE;
6182}
6183
6184////////////////////////////////////////////////////////////////////////////////
6185/// Control routine to paint any kind of histograms.
6186///
6187/// This function is automatically called by TCanvas::Update.
6188/// (see TH1::Draw for the list of options)
6189
6191{
6193
6194 if (fPainter) {
6195 if (option && strlen(option) > 0)
6197 else
6199 }
6200}
6201
6202////////////////////////////////////////////////////////////////////////////////
6203/// Rebin this histogram
6204///
6205/// #### case 1 xbins=0
6206///
6207/// If newname is blank (default), the current histogram is modified and
6208/// a pointer to it is returned.
6209///
6210/// If newname is not blank, the current histogram is not modified, and a
6211/// new histogram is returned which is a Clone of the current histogram
6212/// with its name set to newname.
6213///
6214/// The parameter ngroup indicates how many bins of this have to be merged
6215/// into one bin of the result.
6216///
6217/// If the original histogram has errors stored (via Sumw2), the resulting
6218/// histograms has new errors correctly calculated.
6219///
6220/// examples: if h1 is an existing TH1F histogram with 100 bins
6221///
6222/// ~~~ {.cpp}
6223/// h1->Rebin(); //merges two bins in one in h1: previous contents of h1 are lost
6224/// h1->Rebin(5); //merges five bins in one in h1
6225/// TH1F *hnew = dynamic_cast<TH1F*>(h1->Rebin(5,"hnew")); // creates a new histogram hnew
6226/// // merging 5 bins of h1 in one bin
6227/// ~~~
6228///
6229/// NOTE: If ngroup is not an exact divider of the number of bins,
6230/// the top limit of the rebinned histogram is reduced
6231/// to the upper edge of the last bin that can make a complete
6232/// group. The remaining bins are added to the overflow bin.
6233/// Statistics will be recomputed from the new bin contents.
6234///
6235/// #### case 2 xbins!=0
6236///
6237/// A new histogram is created (you should specify newname).
6238/// The parameter ngroup is the number of variable size bins in the created histogram.
6239/// The array xbins must contain ngroup+1 elements that represent the low-edges
6240/// of the bins.
6241/// If the original histogram has errors stored (via Sumw2), the resulting
6242/// histograms has new errors correctly calculated.
6243///
6244/// NOTE: The bin edges specified in xbins should correspond to bin edges
6245/// in the original histogram. If a bin edge in the new histogram is
6246/// in the middle of a bin in the original histogram, all entries in
6247/// the split bin in the original histogram will be transfered to the
6248/// lower of the two possible bins in the new histogram. This is
6249/// probably not what you want. A warning message is emitted in this
6250/// case
6251///
6252/// examples: if h1 is an existing TH1F histogram with 100 bins
6253///
6254/// ~~~ {.cpp}
6255/// Double_t xbins[25] = {...} array of low-edges (xbins[25] is the upper edge of last bin
6256/// h1->Rebin(24,"hnew",xbins); //creates a new variable bin size histogram hnew
6257/// ~~~
6258
6259TH1 *TH1::Rebin(Int_t ngroup, const char*newname, const Double_t *xbins)
6260{
6261 Int_t nbins = fXaxis.GetNbins();
6264 if ((ngroup <= 0) || (ngroup > nbins)) {
6265 Error("Rebin", "Illegal value of ngroup=%d",ngroup);
6266 return 0;
6267 }
6268
6269 if (fDimension > 1 || InheritsFrom(TProfile::Class())) {
6270 Error("Rebin", "Operation valid on 1-D histograms only");
6271 return 0;
6272 }
6273 if (!newname && xbins) {
6274 Error("Rebin","if xbins is specified, newname must be given");
6275 return 0;
6276 }
6277
6278 Int_t newbins = nbins/ngroup;
6279 if (!xbins) {
6280 Int_t nbg = nbins/ngroup;
6281 if (nbg*ngroup != nbins) {
6282 Warning("Rebin", "ngroup=%d is not an exact divider of nbins=%d.",ngroup,nbins);
6283 }
6284 }
6285 else {
6286 // in the case that xbins is given (rebinning in variable bins), ngroup is
6287 // the new number of bins and number of grouped bins is not constant.
6288 // when looping for setting the contents for the new histogram we
6289 // need to loop on all bins of original histogram. Then set ngroup=nbins
6290 newbins = ngroup;
6291 ngroup = nbins;
6292 }
6293
6294 // Save old bin contents into a new array
6295 Double_t entries = fEntries;
6296 Double_t *oldBins = new Double_t[nbins+2];
6297 Int_t bin, i;
6298 for (bin=0;bin<nbins+2;bin++) oldBins[bin] = RetrieveBinContent(bin);
6299 Double_t *oldErrors = 0;
6300 if (fSumw2.fN != 0) {
6301 oldErrors = new Double_t[nbins+2];
6302 for (bin=0;bin<nbins+2;bin++) oldErrors[bin] = GetBinError(bin);
6303 }
6304 // rebin will not include underflow/overflow if new axis range is larger than old axis range
6305 if (xbins) {
6306 if (xbins[0] < fXaxis.GetXmin() && oldBins[0] != 0 )
6307 Warning("Rebin","underflow entries will not be used when rebinning");
6308 if (xbins[newbins] > fXaxis.GetXmax() && oldBins[nbins+1] != 0 )
6309 Warning("Rebin","overflow entries will not be used when rebinning");
6310 }
6311
6312
6313 // create a clone of the old histogram if newname is specified
6314 TH1 *hnew = this;
6315 if ((newname && strlen(newname) > 0) || xbins) {
6316 hnew = (TH1*)Clone(newname);
6317 }
6318
6319 //reset can extend bit to avoid an axis extension in SetBinContent
6320 UInt_t oldExtendBitMask = hnew->SetCanExtend(kNoAxis);
6321
6322 // save original statistics
6323 Double_t stat[kNstat];
6324 GetStats(stat);
6325 bool resetStat = false;
6326 // change axis specs and rebuild bin contents array::RebinAx
6327 if(!xbins && (newbins*ngroup != nbins)) {
6328 xmax = fXaxis.GetBinUpEdge(newbins*ngroup);
6329 resetStat = true; //stats must be reset because top bins will be moved to overflow bin
6330 }
6331 // save the TAttAxis members (reset by SetBins)
6332 Int_t nDivisions = fXaxis.GetNdivisions();
6333 Color_t axisColor = fXaxis.GetAxisColor();
6334 Color_t labelColor = fXaxis.GetLabelColor();
6335 Style_t labelFont = fXaxis.GetLabelFont();
6336 Float_t labelOffset = fXaxis.GetLabelOffset();
6337 Float_t labelSize = fXaxis.GetLabelSize();
6338 Float_t tickLength = fXaxis.GetTickLength();
6339 Float_t titleOffset = fXaxis.GetTitleOffset();
6340 Float_t titleSize = fXaxis.GetTitleSize();
6341 Color_t titleColor = fXaxis.GetTitleColor();
6342 Style_t titleFont = fXaxis.GetTitleFont();
6343
6344 if(!xbins && (fXaxis.GetXbins()->GetSize() > 0)){ // variable bin sizes
6345 Double_t *bins = new Double_t[newbins+1];
6346 for(i = 0; i <= newbins; ++i) bins[i] = fXaxis.GetBinLowEdge(1+i*ngroup);
6347 hnew->SetBins(newbins,bins); //this also changes errors array (if any)
6348 delete [] bins;
6349 } else if (xbins) {
6350 hnew->SetBins(newbins,xbins);
6351 } else {
6352 hnew->SetBins(newbins,xmin,xmax);
6353 }
6354
6355 // Restore axis attributes
6356 fXaxis.SetNdivisions(nDivisions);
6357 fXaxis.SetAxisColor(axisColor);
6358 fXaxis.SetLabelColor(labelColor);
6359 fXaxis.SetLabelFont(labelFont);
6360 fXaxis.SetLabelOffset(labelOffset);
6361 fXaxis.SetLabelSize(labelSize);
6362 fXaxis.SetTickLength(tickLength);
6363 fXaxis.SetTitleOffset(titleOffset);
6364 fXaxis.SetTitleSize(titleSize);
6365 fXaxis.SetTitleColor(titleColor);
6366 fXaxis.SetTitleFont(titleFont);
6367
6368 // copy merged bin contents (ignore under/overflows)
6369 // Start merging only once the new lowest edge is reached
6370 Int_t startbin = 1;
6371 const Double_t newxmin = hnew->GetXaxis()->GetBinLowEdge(1);
6372 while( fXaxis.GetBinCenter(startbin) < newxmin && startbin <= nbins ) {
6373 startbin++;
6374 }
6375 Int_t oldbin = startbin;
6376 Double_t binContent, binError;
6377 for (bin = 1;bin<=newbins;bin++) {
6378 binContent = 0;
6379 binError = 0;
6380 Int_t imax = ngroup;
6381 Double_t xbinmax = hnew->GetXaxis()->GetBinUpEdge(bin);
6382 // check bin edges for the cases when we provide an array of bins
6383 // be careful in case bins can have zero width
6384 if (xbins && !TMath::AreEqualAbs(fXaxis.GetBinLowEdge(oldbin),
6385 hnew->GetXaxis()->GetBinLowEdge(bin),
6386 TMath::Max(1.E-8 * fXaxis.GetBinWidth(oldbin), 1.E-16 )) )
6387 {
6388 Warning("Rebin","Bin edge %d of rebinned histogram does not match any bin edges of the old histogram. Result can be inconsistent",bin);
6389 }
6390 for (i=0;i<ngroup;i++) {
6391 if( (oldbin+i > nbins) ||
6392 ( hnew != this && (fXaxis.GetBinCenter(oldbin+i) > xbinmax)) ) {
6393 imax = i;
6394 break;
6395 }
6396 binContent += oldBins[oldbin+i];
6397 if (oldErrors) binError += oldErrors[oldbin+i]*oldErrors[oldbin+i];
6398 }
6399 hnew->SetBinContent(bin,binContent);
6400 if (oldErrors) hnew->SetBinError(bin,TMath::Sqrt(binError));
6401 oldbin += imax;
6402 }
6403
6404 // sum underflow and overflow contents until startbin
6405 binContent = 0;
6406 binError = 0;
6407 for (i = 0; i < startbin; ++i) {
6408 binContent += oldBins[i];
6409 if (oldErrors) binError += oldErrors[i]*oldErrors[i];
6410 }
6411 hnew->SetBinContent(0,binContent);
6412 if (oldErrors) hnew->SetBinError(0,TMath::Sqrt(binError));
6413 // sum overflow
6414 binContent = 0;
6415 binError = 0;
6416 for (i = oldbin; i <= nbins+1; ++i) {
6417 binContent += oldBins[i];
6418 if (oldErrors) binError += oldErrors[i]*oldErrors[i];
6419 }
6420 hnew->SetBinContent(newbins+1,binContent);
6421 if (oldErrors) hnew->SetBinError(newbins+1,TMath::Sqrt(binError));
6422
6423 hnew->SetCanExtend(oldExtendBitMask); // restore previous state
6424
6425 // restore statistics and entries modified by SetBinContent
6426 hnew->SetEntries(entries);
6427 if (!resetStat) hnew->PutStats(stat);
6428 delete [] oldBins;
6429 if (oldErrors) delete [] oldErrors;
6430 return hnew;
6431}
6432
6433////////////////////////////////////////////////////////////////////////////////
6434/// finds new limits for the axis so that *point* is within the range and
6435/// the limits are compatible with the previous ones (see TH1::Merge).
6436/// new limits are put into *newMin* and *newMax* variables.
6437/// axis - axis whose limits are to be recomputed
6438/// point - point that should fit within the new axis limits
6439/// newMin - new minimum will be stored here
6440/// newMax - new maximum will be stored here.
6441/// false if failed (e.g. if the initial axis limits are wrong
6442/// or the new range is more than \f$ 2^{64} \f$ times the old one).
6443
6444Bool_t TH1::FindNewAxisLimits(const TAxis* axis, const Double_t point, Double_t& newMin, Double_t &newMax)
6445{
6446 Double_t xmin = axis->GetXmin();
6447 Double_t xmax = axis->GetXmax();
6448 if (xmin >= xmax) return kFALSE;
6449 Double_t range = xmax-xmin;
6450
6451 //recompute new axis limits by doubling the current range
6452 Int_t ntimes = 0;
6453 while (point < xmin) {
6454 if (ntimes++ > 64)
6455 return kFALSE;
6456 xmin = xmin - range;
6457 range *= 2;
6458 }
6459 while (point >= xmax) {
6460 if (ntimes++ > 64)
6461 return kFALSE;
6462 xmax = xmax + range;
6463 range *= 2;
6464 }
6465 newMin = xmin;
6466 newMax = xmax;
6467 // Info("FindNewAxisLimits", "OldAxis: (%lf, %lf), new: (%lf, %lf), point: %lf",
6468 // axis->GetXmin(), axis->GetXmax(), xmin, xmax, point);
6469
6470 return kTRUE;
6471}
6472
6473////////////////////////////////////////////////////////////////////////////////
6474/// Histogram is resized along axis such that x is in the axis range.
6475/// The new axis limits are recomputed by doubling iteratively
6476/// the current axis range until the specified value x is within the limits.
6477/// The algorithm makes a copy of the histogram, then loops on all bins
6478/// of the old histogram to fill the extended histogram.
6479/// Takes into account errors (Sumw2) if any.
6480/// The algorithm works for 1-d, 2-D and 3-D histograms.
6481/// The axis must be extendable before invoking this function.
6482/// Ex:
6483///
6484/// ~~~ {.cpp}
6485/// h->GetXaxis()->SetCanExtend(kTRUE);
6486/// ~~~
6487
6488void TH1::ExtendAxis(Double_t x, TAxis *axis)
6489{
6490 if (!axis->CanExtend()) return;
6491 if (TMath::IsNaN(x)) { // x may be a NaN
6493 return;
6494 }
6495
6496 if (axis->GetXmin() >= axis->GetXmax()) return;
6497 if (axis->GetNbins() <= 0) return;
6498
6500 if (!FindNewAxisLimits(axis, x, xmin, xmax))
6501 return;
6502
6503 //save a copy of this histogram
6504 TH1 *hold = (TH1*)IsA()->New();
6505 hold->SetDirectory(nullptr);
6506 Copy(*hold);
6507 //set new axis limits
6508 axis->SetLimits(xmin,xmax);
6509
6510
6511 //now loop on all bins and refill
6512 Int_t errors = GetSumw2N();
6513
6514 Reset("ICE"); //reset only Integral, contents and Errors
6515
6516 int iaxis = 0;
6517 if (axis == &fXaxis) iaxis = 1;
6518 if (axis == &fYaxis) iaxis = 2;
6519 if (axis == &fZaxis) iaxis = 3;
6520 bool firstw = kTRUE;
6521 Int_t binx,biny, binz = 0;
6522 Int_t ix = 0,iy = 0,iz = 0;
6523 Double_t bx,by,bz;
6524 Int_t ncells = hold->GetNcells();
6525 for (Int_t bin = 0; bin < ncells; ++bin) {
6526 hold->GetBinXYZ(bin,binx,biny,binz);
6527 bx = hold->GetXaxis()->GetBinCenter(binx);
6528 ix = fXaxis.FindFixBin(bx);
6529 if (fDimension > 1) {
6530 by = hold->GetYaxis()->GetBinCenter(biny);
6531 iy = fYaxis.FindFixBin(by);
6532 if (fDimension > 2) {
6533 bz = hold->GetZaxis()->GetBinCenter(binz);
6534 iz = fZaxis.FindFixBin(bz);
6535 }
6536 }
6537 // exclude underflow/overflow
6538 double content = hold->RetrieveBinContent(bin);
6539 if (content == 0) continue;
6540 if (IsBinUnderflow(bin,iaxis) || IsBinOverflow(bin,iaxis) ) {
6541 if (firstw) {
6542 Warning("ExtendAxis","Histogram %s has underflow or overflow in the axis that is extendable"
6543 " their content will be lost",GetName() );
6544 firstw= kFALSE;
6545 }
6546 continue;
6547 }
6548 Int_t ibin= GetBin(ix,iy,iz);
6549 AddBinContent(ibin, content);
6550 if (errors) {
6551 fSumw2.fArray[ibin] += hold->GetBinErrorSqUnchecked(bin);
6552 }
6553 }
6554 delete hold;
6555}
6556
6557////////////////////////////////////////////////////////////////////////////////
6558/// Recursively remove object from the list of functions
6559
6561{
6562 // Rely on TROOT::RecursiveRemove to take the readlock.
6563
6564 if (fFunctions) {
6566 }
6567}
6568
6569////////////////////////////////////////////////////////////////////////////////
6570/// Multiply this histogram by a constant c1.
6571///
6572/// `this = c1*this`
6573///
6574/// Note that both contents and errors (if any) are scaled.
6575/// This function uses the services of TH1::Add
6576///
6577/// IMPORTANT NOTE: Sumw2() is called automatically when scaling.
6578/// If you are not interested in the histogram statistics you can call
6579/// Sumw2(kFALSE) or use the option "nosw2"
6580///
6581/// One can scale a histogram such that the bins integral is equal to
6582/// the normalization parameter via TH1::Scale(Double_t norm), where norm
6583/// is the desired normalization divided by the integral of the histogram.
6584///
6585/// If option contains "width" the bin contents and errors are divided
6586/// by the bin width.
6587
6589{
6590
6591 TString opt = option; opt.ToLower();
6592 // store bin errors when scaling since cannot anymore be computed as sqrt(N)
6593 if (!opt.Contains("nosw2") && GetSumw2N() == 0) Sumw2();
6594 if (opt.Contains("width")) Add(this, this, c1, -1);
6595 else {
6596 if (fBuffer) BufferEmpty(1);
6597 for(Int_t i = 0; i < fNcells; ++i) UpdateBinContent(i, c1 * RetrieveBinContent(i));
6598 if (fSumw2.fN) for(Int_t i = 0; i < fNcells; ++i) fSumw2.fArray[i] *= (c1 * c1); // update errors
6599 // update global histograms statistics
6600 Double_t s[kNstat] = {0};
6601 GetStats(s);
6602 for (Int_t i=0 ; i < kNstat; i++) {
6603 if (i == 1) s[i] = c1*c1*s[i];
6604 else s[i] = c1*s[i];
6605 }
6606 PutStats(s);
6607 SetMinimum(); SetMaximum(); // minimum and maximum value will be recalculated the next time
6608 }
6609
6610 // if contours set, must also scale contours
6611 Int_t ncontours = GetContour();
6612 if (ncontours == 0) return;
6613 Double_t* levels = fContour.GetArray();
6614 for (Int_t i = 0; i < ncontours; ++i) levels[i] *= c1;
6615}
6616
6617////////////////////////////////////////////////////////////////////////////////
6618/// Returns true if all axes are extendable.
6619
6621{
6622 Bool_t canExtend = fXaxis.CanExtend();
6623 if (GetDimension() > 1) canExtend &= fYaxis.CanExtend();
6624 if (GetDimension() > 2) canExtend &= fZaxis.CanExtend();
6625
6626 return canExtend;
6627}
6628
6629////////////////////////////////////////////////////////////////////////////////
6630/// Make the histogram axes extendable / not extendable according to the bit mask
6631/// returns the previous bit mask specifying which axes are extendable
6632
6633UInt_t TH1::SetCanExtend(UInt_t extendBitMask)
6634{
6635 UInt_t oldExtendBitMask = kNoAxis;
6636
6637 if (fXaxis.CanExtend()) oldExtendBitMask |= kXaxis;
6638 if (extendBitMask & kXaxis) fXaxis.SetCanExtend(kTRUE);
6640
6641 if (GetDimension() > 1) {
6642 if (fYaxis.CanExtend()) oldExtendBitMask |= kYaxis;
6643 if (extendBitMask & kYaxis) fYaxis.SetCanExtend(kTRUE);
6645 }
6646
6647 if (GetDimension() > 2) {
6648 if (fZaxis.CanExtend()) oldExtendBitMask |= kZaxis;
6649 if (extendBitMask & kZaxis) fZaxis.SetCanExtend(kTRUE);
6651 }
6652
6653 return oldExtendBitMask;
6654}
6655
6656///////////////////////////////////////////////////////////////////////////////
6657/// Internal function used in TH1::Fill to see which axis is full alphanumeric
6658/// i.e. can be extended and is alphanumeric
6660{
6661 UInt_t bitMask = kNoAxis;
6662 if (fXaxis.CanExtend() && fXaxis.IsAlphanumeric() ) bitMask |= kXaxis;
6664 bitMask |= kYaxis;
6666 bitMask |= kZaxis;
6667
6668 return bitMask;
6669}
6670
6671////////////////////////////////////////////////////////////////////////////////
6672/// Static function to set the default buffer size for automatic histograms.
6673/// When a histogram is created with one of its axis lower limit greater
6674/// or equal to its upper limit, the function SetBuffer is automatically
6675/// called with the default buffer size.
6676
6677void TH1::SetDefaultBufferSize(Int_t buffersize)
6678{
6679 fgBufferSize = buffersize > 0 ? buffersize : 0;
6680}
6681
6682////////////////////////////////////////////////////////////////////////////////
6683/// When this static function is called with `sumw2=kTRUE`, all new
6684/// histograms will automatically activate the storage
6685/// of the sum of squares of errors, ie TH1::Sumw2 is automatically called.
6686
6687void TH1::SetDefaultSumw2(Bool_t sumw2)
6688{
6689 fgDefaultSumw2 = sumw2;
6690}
6691
6692////////////////////////////////////////////////////////////////////////////////
6693/// Change (i.e. set) the title
6694///
6695/// if title is in the form `stringt;stringx;stringy;stringz`
6696/// the histogram title is set to `stringt`, the x axis title to `stringx`,
6697/// the y axis title to `stringy`, and the z axis title to `stringz`.
6698///
6699/// To insert the character `;` in one of the titles, one should use `#;`
6700/// or `#semicolon`.
6701
6702void TH1::SetTitle(const char *title)
6703{
6704 fTitle = title;
6705 fTitle.ReplaceAll("#;",2,"#semicolon",10);
6706
6707 // Decode fTitle. It may contain X, Y and Z titles
6708 TString str1 = fTitle, str2;
6709 Int_t isc = str1.Index(";");
6710 Int_t lns = str1.Length();
6711
6712 if (isc >=0 ) {
6713 fTitle = str1(0,isc);
6714 str1 = str1(isc+1, lns);
6715 isc = str1.Index(";");
6716 if (isc >=0 ) {
6717 str2 = str1(0,isc);
6718 str2.ReplaceAll("#semicolon",10,";",1);
6719 fXaxis.SetTitle(str2.Data());
6720 lns = str1.Length();
6721 str1 = str1(isc+1, lns);
6722 isc = str1.Index(";");
6723 if (isc >=0 ) {
6724 str2 = str1(0,isc);
6725 str2.ReplaceAll("#semicolon",10,";",1);
6726 fYaxis.SetTitle(str2.Data());
6727 lns = str1.Length();
6728 str1 = str1(isc+1, lns);
6729 str1.ReplaceAll("#semicolon",10,";",1);
6730 fZaxis.SetTitle(str1.Data());
6731 } else {
6732 str1.ReplaceAll("#semicolon",10,";",1);
6733 fYaxis.SetTitle(str1.Data());
6734 }
6735 } else {
6736 str1.ReplaceAll("#semicolon",10,";",1);
6737 fXaxis.SetTitle(str1.Data());
6738 }
6739 }
6740
6741 fTitle.ReplaceAll("#semicolon",10,";",1);
6742
6743 if (gPad && TestBit(kMustCleanup)) gPad->Modified();
6744}
6745
6746////////////////////////////////////////////////////////////////////////////////
6747/// Smooth array xx, translation of Hbook routine hsmoof.F
6748/// based on algorithm 353QH twice presented by J. Friedman
6749/// in Proc.of the 1974 CERN School of Computing, Norway, 11-24 August, 1974.
6750
6751void TH1::SmoothArray(Int_t nn, Double_t *xx, Int_t ntimes)
6752{
6753 if (nn < 3 ) {
6754 ::Error("SmoothArray","Need at least 3 points for smoothing: n = %d",nn);
6755 return;
6756 }
6757
6758 Int_t ii;
6759 Double_t hh[6] = {0,0,0,0,0,0};
6760
6761 std::vector<double> yy(nn);
6762 std::vector<double> zz(nn);
6763 std::vector<double> rr(nn);
6764
6765 for (Int_t pass=0;pass<ntimes;pass++) {
6766 // first copy original data into temp array
6767 std::copy(xx, xx+nn, zz.begin() );
6768
6769 for (int noent = 0; noent < 2; ++noent) { // run algorithm two times
6770
6771 // do 353 i.e. running median 3, 5, and 3 in a single loop
6772 for (int kk = 0; kk < 3; kk++) {
6773 std::copy(zz.begin(), zz.end(), yy.begin());
6774 int medianType = (kk != 1) ? 3 : 5;
6775 int ifirst = (kk != 1 ) ? 1 : 2;
6776 int ilast = (kk != 1 ) ? nn-1 : nn -2;
6777 //nn2 = nn - ik - 1;
6778 // do all elements beside the first and last point for median 3
6779 // and first two and last 2 for median 5
6780 for ( ii = ifirst; ii < ilast; ii++) {
6781 assert(ii - ifirst >= 0);
6782 for (int jj = 0; jj < medianType; jj++) {
6783 hh[jj] = yy[ii - ifirst + jj ];
6784 }
6785 zz[ii] = TMath::Median(medianType, hh);
6786 }
6787
6788 if (kk == 0) { // first median 3
6789 // first point
6790 hh[0] = zz[1];
6791 hh[1] = zz[0];
6792 hh[2] = 3*zz[1] - 2*zz[2];
6793 zz[0] = TMath::Median(3, hh);
6794 // last point
6795 hh[0] = zz[nn - 2];
6796 hh[1] = zz[nn - 1];
6797 hh[2] = 3*zz[nn - 2] - 2*zz[nn - 3];
6798 zz[nn - 1] = TMath::Median(3, hh);
6799 }
6800
6801 if (kk == 1) { // median 5
6802 for (ii = 0; ii < 3; ii++) {
6803 hh[ii] = yy[ii];
6804 }
6805 zz[1] = TMath::Median(3, hh);
6806 // last two points
6807 for (ii = 0; ii < 3; ii++) {
6808 hh[ii] = yy[nn - 3 + ii];
6809 }
6810 zz[nn - 2] = TMath::Median(3, hh);
6811 }
6812
6813 }
6814
6815 std::copy ( zz.begin(), zz.end(), yy.begin() );
6816
6817 // quadratic interpolation for flat segments
6818 for (ii = 2; ii < (nn - 2); ii++) {
6819 if (zz[ii - 1] != zz[ii]) continue;
6820 if (zz[ii] != zz[ii + 1]) continue;
6821 hh[0] = zz[ii - 2] - zz[ii];
6822 hh[1] = zz[ii + 2] - zz[ii];
6823 if (hh[0] * hh[1] <= 0) continue;
6824 int jk = 1;
6825 if ( TMath::Abs(hh[1]) > TMath::Abs(hh[0]) ) jk = -1;
6826 yy[ii] = -0.5*zz[ii - 2*jk] + zz[ii]/0.75 + zz[ii + 2*jk] /6.;
6827 yy[ii + jk] = 0.5*(zz[ii + 2*jk] - zz[ii - 2*jk]) + zz[ii];
6828 }
6829
6830 // running means
6831 //std::copy(zz.begin(), zz.end(), yy.begin());
6832 for (ii = 1; ii < nn - 1; ii++) {
6833 zz[ii] = 0.25*yy[ii - 1] + 0.5*yy[ii] + 0.25*yy[ii + 1];
6834 }
6835 zz[0] = yy[0];
6836 zz[nn - 1] = yy[nn - 1];
6837
6838 if (noent == 0) {
6839
6840 // save computed values
6841 std::copy(zz.begin(), zz.end(), rr.begin());
6842
6843 // COMPUTE residuals
6844 for (ii = 0; ii < nn; ii++) {
6845 zz[ii] = xx[ii] - zz[ii];
6846 }
6847 }
6848
6849 } // end loop on noent
6850
6851
6852 double xmin = TMath::MinElement(nn,xx);
6853 for (ii = 0; ii < nn; ii++) {
6854 if (xmin < 0) xx[ii] = rr[ii] + zz[ii];
6855 // make smoothing defined positive - not better using 0 ?
6856 else xx[ii] = TMath::Max((rr[ii] + zz[ii]),0.0 );
6857 }
6858 }
6859}
6860
6861////////////////////////////////////////////////////////////////////////////////
6862/// Smooth bin contents of this histogram.
6863/// if option contains "R" smoothing is applied only to the bins
6864/// defined in the X axis range (default is to smooth all bins)
6865/// Bin contents are replaced by their smooth values.
6866/// Errors (if any) are not modified.
6867/// the smoothing procedure is repeated ntimes (default=1)
6868
6869void TH1::Smooth(Int_t ntimes, Option_t *option)
6870{
6871 if (fDimension != 1) {
6872 Error("Smooth","Smooth only supported for 1-d histograms");
6873 return;
6874 }
6875 Int_t nbins = fXaxis.GetNbins();
6876 if (nbins < 3) {
6877 Error("Smooth","Smooth only supported for histograms with >= 3 bins. Nbins = %d",nbins);
6878 return;
6879 }
6880
6881 // delete buffer if it is there since it will become invalid
6882 if (fBuffer) BufferEmpty(1);
6883
6884 Int_t firstbin = 1, lastbin = nbins;
6885 TString opt = option;
6886 opt.ToLower();
6887 if (opt.Contains("r")) {
6888 firstbin= fXaxis.GetFirst();
6889 lastbin = fXaxis.GetLast();
6890 }
6891 nbins = lastbin - firstbin + 1;
6892 Double_t *xx = new Double_t[nbins];
6893 Double_t nent = fEntries;
6894 Int_t i;
6895 for (i=0;i<nbins;i++) {
6896 xx[i] = RetrieveBinContent(i+firstbin);
6897 }
6898
6899 TH1::SmoothArray(nbins,xx,ntimes);
6900
6901 for (i=0;i<nbins;i++) {
6902 UpdateBinContent(i+firstbin,xx[i]);
6903 }
6904 fEntries = nent;
6905 delete [] xx;
6906
6907 if (gPad) gPad->Modified();
6908}
6909
6910////////////////////////////////////////////////////////////////////////////////
6911/// if flag=kTRUE, underflows and overflows are used by the Fill functions
6912/// in the computation of statistics (mean value, StdDev).
6913/// By default, underflows or overflows are not used.
6914
6915void TH1::StatOverflows(Bool_t flag)
6916{
6917 fgStatOverflows = flag;
6918}
6919
6920////////////////////////////////////////////////////////////////////////////////
6921/// Stream a class object.
6922
6923void TH1::Streamer(TBuffer &b)
6924{
6925 if (b.IsReading()) {
6926 UInt_t R__s, R__c;
6927 Version_t R__v = b.ReadVersion(&R__s, &R__c);
6928 if (fDirectory) fDirectory->Remove(this);
6929 fDirectory = nullptr;
6930 if (R__v > 2) {
6931 b.ReadClassBuffer(TH1::Class(), this, R__v, R__s, R__c);
6932
6934 fXaxis.SetParent(this);
6935 fYaxis.SetParent(this);
6936 fZaxis.SetParent(this);
6937 TIter next(fFunctions);
6938 TObject *obj;
6939 while ((obj=next())) {
6940 if (obj->InheritsFrom(TF1::Class())) ((TF1*)obj)->SetParent(this);
6941 }
6942 return;
6943 }
6944 //process old versions before automatic schema evolution
6949 b >> fNcells;
6950 fXaxis.Streamer(b);
6951 fYaxis.Streamer(b);
6952 fZaxis.Streamer(b);
6953 fXaxis.SetParent(this);
6954 fYaxis.SetParent(this);
6955 fZaxis.SetParent(this);
6956 b >> fBarOffset;
6957 b >> fBarWidth;
6958 b >> fEntries;
6959 b >> fTsumw;
6960 b >> fTsumw2;
6961 b >> fTsumwx;
6962 b >> fTsumwx2;
6963 if (R__v < 2) {
6964 Float_t maximum, minimum, norm;
6965 Float_t *contour=0;
6966 b >> maximum; fMaximum = maximum;
6967 b >> minimum; fMinimum = minimum;
6968 b >> norm; fNormFactor = norm;
6969 Int_t n = b.ReadArray(contour);
6970 fContour.Set(n);
6971 for (Int_t i=0;i<n;i++) fContour.fArray[i] = contour[i];
6972 delete [] contour;
6973 } else {
6974 b >> fMaximum;
6975 b >> fMinimum;
6976 b >> fNormFactor;
6978 }
6979 fSumw2.Streamer(b);
6981 fFunctions->Delete();
6983 b.CheckByteCount(R__s, R__c, TH1::IsA());
6984
6985 } else {
6986 b.WriteClassBuffer(TH1::Class(),this);
6987 }
6988}
6989
6990////////////////////////////////////////////////////////////////////////////////
6991/// Print some global quantities for this histogram.
6992/// \param[in] option
6993/// - "base" is given, number of bins and ranges are also printed
6994/// - "range" is given, bin contents and errors are also printed
6995/// for all bins in the current range (default 1-->nbins)
6996/// - "all" is given, bin contents and errors are also printed
6997/// for all bins including under and overflows.
6998
6999void TH1::Print(Option_t *option) const
7000{
7001 if (fBuffer) const_cast<TH1*>(this)->BufferEmpty();
7002 printf( "TH1.Print Name = %s, Entries= %d, Total sum= %g\n",GetName(),Int_t(fEntries),GetSumOfWeights());
7003 TString opt = option;
7004 opt.ToLower();
7005 Int_t all;
7006 if (opt.Contains("all")) all = 0;
7007 else if (opt.Contains("range")) all = 1;
7008 else if (opt.Contains("base")) all = 2;
7009 else return;
7010
7011 Int_t bin, binx, biny, binz;
7012 Int_t firstx=0,lastx=0,firsty=0,lasty=0,firstz=0,lastz=0;
7013 if (all == 0) {
7014 lastx = fXaxis.GetNbins()+1;
7015 if (fDimension > 1) lasty = fYaxis.GetNbins()+1;
7016 if (fDimension > 2) lastz = fZaxis.GetNbins()+1;
7017 } else {
7018 firstx = fXaxis.GetFirst(); lastx = fXaxis.GetLast();
7019 if (fDimension > 1) {firsty = fYaxis.GetFirst(); lasty = fYaxis.GetLast();}
7020 if (fDimension > 2) {firstz = fZaxis.GetFirst(); lastz = fZaxis.GetLast();}
7021 }
7022
7023 if (all== 2) {
7024 printf(" Title = %s\n", GetTitle());
7025 printf(" NbinsX= %d, xmin= %g, xmax=%g", fXaxis.GetNbins(), fXaxis.GetXmin(), fXaxis.GetXmax());
7026 if( fDimension > 1) printf(", NbinsY= %d, ymin= %g, ymax=%g", fYaxis.GetNbins(), fYaxis.GetXmin(), fYaxis.GetXmax());
7027 if( fDimension > 2) printf(", NbinsZ= %d, zmin= %g, zmax=%g", fZaxis.GetNbins(), fZaxis.GetXmin(), fZaxis.GetXmax());
7028 printf("\n");
7029 return;
7030 }
7031
7032 Double_t w,e;
7033 Double_t x,y,z;
7034 if (fDimension == 1) {
7035 for (binx=firstx;binx<=lastx;binx++) {
7036 x = fXaxis.GetBinCenter(binx);
7037 w = RetrieveBinContent(binx);
7038 e = GetBinError(binx);
7039 if(fSumw2.fN) printf(" fSumw[%d]=%g, x=%g, error=%g\n",binx,w,x,e);
7040 else printf(" fSumw[%d]=%g, x=%g\n",binx,w,x);
7041 }
7042 }
7043 if (fDimension == 2) {
7044 for (biny=firsty;biny<=lasty;biny++) {
7045 y = fYaxis.GetBinCenter(biny);
7046 for (binx=firstx;binx<=lastx;binx++) {
7047 bin = GetBin(binx,biny);
7048 x = fXaxis.GetBinCenter(binx);
7049 w = RetrieveBinContent(bin);
7050 e = GetBinError(bin);
7051 if(fSumw2.fN) printf(" fSumw[%d][%d]=%g, x=%g, y=%g, error=%g\n",binx,biny,w,x,y,e);
7052 else printf(" fSumw[%d][%d]=%g, x=%g, y=%g\n",binx,biny,w,x,y);
7053 }
7054 }
7055 }
7056 if (fDimension == 3) {
7057 for (binz=firstz;binz<=lastz;binz++) {
7058 z = fZaxis.GetBinCenter(binz);
7059 for (biny=firsty;biny<=lasty;biny++) {
7060 y = fYaxis.GetBinCenter(biny);
7061 for (binx=firstx;binx<=lastx;binx++) {
7062 bin = GetBin(binx,biny,binz);
7063 x = fXaxis.GetBinCenter(binx);
7064 w = RetrieveBinContent(bin);
7065 e = GetBinError(bin);
7066 if(fSumw2.fN) printf(" fSumw[%d][%d][%d]=%g, x=%g, y=%g, z=%g, error=%g\n",binx,biny,binz,w,x,y,z,e);
7067 else printf(" fSumw[%d][%d][%d]=%g, x=%g, y=%g, z=%g\n",binx,biny,binz,w,x,y,z);
7068 }
7069 }
7070 }
7071 }
7072}
7073
7074////////////////////////////////////////////////////////////////////////////////
7075/// Using the current bin info, recompute the arrays for contents and errors
7076
7077void TH1::Rebuild(Option_t *)
7078{
7079 SetBinsLength();
7080 if (fSumw2.fN) {
7082 }
7083}
7084
7085////////////////////////////////////////////////////////////////////////////////
7086/// Reset this histogram: contents, errors, etc.
7087/// \param[in] option
7088/// - if "ICE" is specified, resets only Integral, Contents and Errors.
7089/// - if "ICES" is specified, resets only Integral, Contents, Errors and Statistics
7090/// This option is used
7091/// - if "M" is specified, resets also Minimum and Maximum
7092
7094{
7095 // The option "ICE" is used when extending the histogram (in ExtendAxis, LabelInflate, etc..)
7096 // The option "ICES is used in combination with the buffer (see BufferEmpty and BufferFill)
7097
7098 TString opt = option;
7099 opt.ToUpper();
7100 fSumw2.Reset();
7101 if (fIntegral) {
7102 delete [] fIntegral;
7103 fIntegral = nullptr;
7104 }
7105
7106 if (opt.Contains("M")) {
7107 SetMinimum();
7108 SetMaximum();
7109 }
7110
7111 if (opt.Contains("ICE") && !opt.Contains("S")) return;
7112
7113 // Setting fBuffer[0] = 0 is like resetting the buffer but not deleting it
7114 // But what is the sense of calling BufferEmpty() ? For making the axes ?
7115 // BufferEmpty will update contents that later will be
7116 // reset in calling TH1D::Reset. For this we need to reset the stats afterwards
7117 // It may be needed for computing the axis limits....
7118 if (fBuffer) {BufferEmpty(); fBuffer[0] = 0;}
7119
7120 // need to reset also the statistics
7121 // (needs to be done after calling BufferEmpty() )
7122 fTsumw = 0;
7123 fTsumw2 = 0;
7124 fTsumwx = 0;
7125 fTsumwx2 = 0;
7126 fEntries = 0;
7127
7128 if (opt == "ICES") return;
7129
7130
7131 TObject *stats = fFunctions->FindObject("stats");
7132 fFunctions->Remove(stats);
7133 //special logic to support the case where the same object is
7134 //added multiple times in fFunctions.
7135 //This case happens when the same object is added with different
7136 //drawing modes
7137 TObject *obj;
7138 while ((obj = fFunctions->First())) {
7139 while(fFunctions->Remove(obj)) { }
7140 delete obj;
7141 }
7142 if(stats) fFunctions->Add(stats);
7143 fContour.Set(0);
7144}
7145
7146////////////////////////////////////////////////////////////////////////////////
7147/// Save primitive as a C++ statement(s) on output stream out
7148
7149void TH1::SavePrimitive(std::ostream &out, Option_t *option /*= ""*/)
7150{
7151 // empty the buffer before if it exists
7152 if (fBuffer) BufferEmpty();
7153
7154 Bool_t nonEqiX = kFALSE;
7155 Bool_t nonEqiY = kFALSE;
7156 Bool_t nonEqiZ = kFALSE;
7157 Int_t i;
7158 static Int_t nxaxis = 0;
7159 static Int_t nyaxis = 0;
7160 static Int_t nzaxis = 0;
7161 TString sxaxis="xAxis",syaxis="yAxis",szaxis="zAxis";
7162
7163 // Check if the histogram has equidistant X bins or not. If not, we
7164 // create an array holding the bins.
7165 if (GetXaxis()->GetXbins()->fN && GetXaxis()->GetXbins()->fArray) {
7166 nonEqiX = kTRUE;
7167 nxaxis++;
7168 sxaxis += nxaxis;
7169 out << " Double_t "<<sxaxis<<"[" << GetXaxis()->GetXbins()->fN
7170 << "] = {";
7171 for (i = 0; i < GetXaxis()->GetXbins()->fN; i++) {
7172 if (i != 0) out << ", ";
7173 out << GetXaxis()->GetXbins()->fArray[i];
7174 }
7175 out << "}; " << std::endl;
7176 }
7177 // If the histogram is 2 or 3 dimensional, check if the histogram
7178 // has equidistant Y bins or not. If not, we create an array
7179 // holding the bins.
7180 if (fDimension > 1 && GetYaxis()->GetXbins()->fN &&
7181 GetYaxis()->GetXbins()->fArray) {
7182 nonEqiY = kTRUE;
7183 nyaxis++;
7184 syaxis += nyaxis;
7185 out << " Double_t "<<syaxis<<"[" << GetYaxis()->GetXbins()->fN
7186 << "] = {";
7187 for (i = 0; i < GetYaxis()->GetXbins()->fN; i++) {
7188 if (i != 0) out << ", ";
7189 out << GetYaxis()->GetXbins()->fArray[i];
7190 }
7191 out << "}; " << std::endl;
7192 }
7193 // IF the histogram is 3 dimensional, check if the histogram
7194 // has equidistant Z bins or not. If not, we create an array
7195 // holding the bins.
7196 if (fDimension > 2 && GetZaxis()->GetXbins()->fN &&
7197 GetZaxis()->GetXbins()->fArray) {
7198 nonEqiZ = kTRUE;
7199 nzaxis++;
7200 szaxis += nzaxis;
7201 out << " Double_t "<<szaxis<<"[" << GetZaxis()->GetXbins()->fN
7202 << "] = {";
7203 for (i = 0; i < GetZaxis()->GetXbins()->fN; i++) {
7204 if (i != 0) out << ", ";
7205 out << GetZaxis()->GetXbins()->fArray[i];
7206 }
7207 out << "}; " << std::endl;
7208 }
7209
7210 char quote = '"';
7211 out <<" "<<std::endl;
7212 out <<" "<< ClassName() <<" *";
7213
7214 // Histogram pointer has by default the histogram name with an incremental suffix.
7215 // If the histogram belongs to a graph or a stack the suffix is not added because
7216 // the graph and stack objects are not aware of this new name. Same thing if
7217 // the histogram is drawn with the option COLZ because the TPaletteAxis drawn
7218 // when this option is selected, does not know this new name either.
7219 TString opt = option;
7220 opt.ToLower();
7221 static Int_t hcounter = 0;
7222 TString histName = GetName();
7223 if ( !histName.Contains("Graph")
7224 && !histName.Contains("_stack_")
7225 && !opt.Contains("colz")) {
7226 hcounter++;
7227 histName += "__";
7228 histName += hcounter;
7229 }
7230 histName = gInterpreter-> MapCppName(histName);
7231 const char *hname = histName.Data();
7232 if (!strlen(hname)) hname = "unnamed";
7233 TString savedName = GetName();
7234 this->SetName(hname);
7235 TString t(GetTitle());
7236 t.ReplaceAll("\\","\\\\");
7237 t.ReplaceAll("\"","\\\"");
7238 out << hname << " = new " << ClassName() << "(" << quote
7239 << hname << quote << "," << quote<< t.Data() << quote
7240 << "," << GetXaxis()->GetNbins();
7241 if (nonEqiX)
7242 out << ", "<<sxaxis;
7243 else
7244 out << "," << GetXaxis()->GetXmin()
7245 << "," << GetXaxis()->GetXmax();
7246 if (fDimension > 1) {
7247 out << "," << GetYaxis()->GetNbins();
7248 if (nonEqiY)
7249 out << ", "<<syaxis;
7250 else
7251 out << "," << GetYaxis()->GetXmin()
7252 << "," << GetYaxis()->GetXmax();
7253 }
7254 if (fDimension > 2) {
7255 out << "," << GetZaxis()->GetNbins();
7256 if (nonEqiZ)
7257 out << ", "<<szaxis;
7258 else
7259 out << "," << GetZaxis()->GetXmin()
7260 << "," << GetZaxis()->GetXmax();
7261 }
7262 out << ");" << std::endl;
7263
7264 // save bin contents
7265 Int_t bin;
7266 for (bin=0;bin<fNcells;bin++) {
7267 Double_t bc = RetrieveBinContent(bin);
7268 if (bc) {
7269 out<<" "<<hname<<"->SetBinContent("<<bin<<","<<bc<<");"<<std::endl;
7270 }
7271 }
7272
7273 // save bin errors
7274 if (fSumw2.fN) {
7275 for (bin=0;bin<fNcells;bin++) {
7276 Double_t be = GetBinError(bin);
7277 if (be) {
7278 out<<" "<<hname<<"->SetBinError("<<bin<<","<<be<<");"<<std::endl;
7279 }
7280 }
7281 }
7282
7283 TH1::SavePrimitiveHelp(out, hname, option);
7284 this->SetName(savedName.Data());
7285}
7286
7287////////////////////////////////////////////////////////////////////////////////
7288/// Helper function for the SavePrimitive functions from TH1
7289/// or classes derived from TH1, eg TProfile, TProfile2D.
7290
7291void TH1::SavePrimitiveHelp(std::ostream &out, const char *hname, Option_t *option /*= ""*/)
7292{
7293 char quote = '"';
7294 if (TMath::Abs(GetBarOffset()) > 1e-5) {
7295 out<<" "<<hname<<"->SetBarOffset("<<GetBarOffset()<<");"<<std::endl;
7296 }
7297 if (TMath::Abs(GetBarWidth()-1) > 1e-5) {
7298 out<<" "<<hname<<"->SetBarWidth("<<GetBarWidth()<<");"<<std::endl;
7299 }
7300 if (fMinimum != -1111) {
7301 out<<" "<<hname<<"->SetMinimum("<<fMinimum<<");"<<std::endl;
7302 }
7303 if (fMaximum != -1111) {
7304 out<<" "<<hname<<"->SetMaximum("<<fMaximum<<");"<<std::endl;
7305 }
7306 if (fNormFactor != 0) {
7307 out<<" "<<hname<<"->SetNormFactor("<<fNormFactor<<");"<<std::endl;
7308 }
7309 if (fEntries != 0) {
7310 out<<" "<<hname<<"->SetEntries("<<fEntries<<");"<<std::endl;
7311 }
7312 if (!fDirectory) {
7313 out<<" "<<hname<<"->SetDirectory(nullptr);"<<std::endl;
7314 }
7315 if (TestBit(kNoStats)) {
7316 out<<" "<<hname<<"->SetStats(0);"<<std::endl;
7317 }
7318 if (fOption.Length() != 0) {
7319 out<<" "<<hname<<"->SetOption("<<quote<<fOption.Data()<<quote<<");"<<std::endl;
7320 }
7321
7322 // save contour levels
7323 Int_t ncontours = GetContour();
7324 if (ncontours > 0) {
7325 out<<" "<<hname<<"->SetContour("<<ncontours<<");"<<std::endl;
7326 Double_t zlevel;
7327 for (Int_t bin=0;bin<ncontours;bin++) {
7328 if (gPad->GetLogz()) {
7329 zlevel = TMath::Power(10,GetContourLevel(bin));
7330 } else {
7331 zlevel = GetContourLevel(bin);
7332 }
7333 out<<" "<<hname<<"->SetContourLevel("<<bin<<","<<zlevel<<");"<<std::endl;
7334 }
7335 }
7336
7337 // save list of functions
7338 auto lnk = fFunctions->FirstLink();
7339 static Int_t funcNumber = 0;
7340 while (lnk) {
7341 auto obj = lnk->GetObject();
7342 obj->SavePrimitive(out, TString::Format("nodraw #%d\n",++funcNumber).Data());
7343 if (obj->InheritsFrom(TF1::Class())) {
7344 TString fname;
7345 fname.Form("%s%d",obj->GetName(),funcNumber);
7346 out << " " << fname << "->SetParent(" << hname << ");\n";
7347 out<<" "<<hname<<"->GetListOfFunctions()->Add("
7348 << fname <<");"<<std::endl;
7349 } else if (obj->InheritsFrom("TPaveStats")) {
7350 out<<" "<<hname<<"->GetListOfFunctions()->Add(ptstats);"<<std::endl;
7351 out<<" ptstats->SetParent("<<hname<<");"<<std::endl;
7352 } else if (obj->InheritsFrom("TPolyMarker")) {
7353 out<<" "<<hname<<"->GetListOfFunctions()->Add("
7354 <<"pmarker ,"<<quote<<lnk->GetOption()<<quote<<");"<<std::endl;
7355 } else {
7356 out<<" "<<hname<<"->GetListOfFunctions()->Add("
7357 <<obj->GetName()
7358 <<","<<quote<<lnk->GetOption()<<quote<<");"<<std::endl;
7359 }
7360 lnk = lnk->Next();
7361 }
7362
7363 // save attributes
7364 SaveFillAttributes(out,hname,0,1001);
7365 SaveLineAttributes(out,hname,1,1,1);
7366 SaveMarkerAttributes(out,hname,1,1,1);
7367 fXaxis.SaveAttributes(out,hname,"->GetXaxis()");
7368 fYaxis.SaveAttributes(out,hname,"->GetYaxis()");
7369 fZaxis.SaveAttributes(out,hname,"->GetZaxis()");
7370 TString opt = option;
7371 opt.ToLower();
7372 if (!opt.Contains("nodraw")) {
7373 out<<" "<<hname<<"->Draw("
7374 <<quote<<option<<quote<<");"<<std::endl;
7375 }
7376}
7377
7378////////////////////////////////////////////////////////////////////////////////
7379/// Copy current attributes from/to current style
7380
7382{
7383 if (!gStyle) return;
7384 if (gStyle->IsReading()) {
7385 fXaxis.ResetAttAxis("X");
7386 fYaxis.ResetAttAxis("Y");
7387 fZaxis.ResetAttAxis("Z");
7398 Int_t dostat = gStyle->GetOptStat();
7399 if (gStyle->GetOptFit() && !dostat) dostat = 1000000001;
7400 SetStats(dostat);
7401 } else {
7413 }
7414 TIter next(GetListOfFunctions());
7415 TObject *obj;
7416
7417 while ((obj = next())) {
7418 obj->UseCurrentStyle();
7419 }
7420}
7421
7422////////////////////////////////////////////////////////////////////////////////
7423/// For axis = 1,2 or 3 returns the mean value of the histogram along
7424/// X,Y or Z axis.
7425///
7426/// For axis = 11, 12, 13 returns the standard error of the mean value
7427/// of the histogram along X, Y or Z axis
7428///
7429/// Note that the mean value/StdDev is computed using the bins in the currently
7430/// defined range (see TAxis::SetRange). By default the range includes
7431/// all bins from 1 to nbins included, excluding underflows and overflows.
7432/// To force the underflows and overflows in the computation, one must
7433/// call the static function TH1::StatOverflows(kTRUE) before filling
7434/// the histogram.
7435///
7436/// IMPORTANT NOTE: The returned value depends on how the histogram statistics
7437/// are calculated. By default, if no range has been set, the returned mean is
7438/// the (unbinned) one calculated at fill time. If a range has been set, however,
7439/// the mean is calculated using the bins in range, as described above; THIS
7440/// IS TRUE EVEN IF THE RANGE INCLUDES ALL BINS--use TAxis::SetRange(0, 0) to unset
7441/// the range. To ensure that the returned mean (and all other statistics) is
7442/// always that of the binned data stored in the histogram, call TH1::ResetStats.
7443/// See TH1::GetStats.
7444///
7445/// Return mean value of this histogram along the X axis.
7446
7447Double_t TH1::GetMean(Int_t axis) const
7448{
7449 if (axis<1 || (axis>3 && axis<11) || axis>13) return 0;
7450 Double_t stats[kNstat];
7451 for (Int_t i=4;i<kNstat;i++) stats[i] = 0;
7452 GetStats(stats);
7453 if (stats[0] == 0) return 0;
7454 if (axis<4){
7455 Int_t ax[3] = {2,4,7};
7456 return stats[ax[axis-1]]/stats[0];
7457 } else {
7458 // mean error = StdDev / sqrt( Neff )
7459 Double_t stddev = GetStdDev(axis-10);
7461 return ( neff > 0 ? stddev/TMath::Sqrt(neff) : 0. );
7462 }
7463}
7464
7465////////////////////////////////////////////////////////////////////////////////
7466/// Return standard error of mean of this histogram along the X axis.
7467///
7468/// Note that the mean value/StdDev is computed using the bins in the currently
7469/// defined range (see TAxis::SetRange). By default the range includes
7470/// all bins from 1 to nbins included, excluding underflows and overflows.
7471/// To force the underflows and overflows in the computation, one must
7472/// call the static function TH1::StatOverflows(kTRUE) before filling
7473/// the histogram.
7474///
7475/// Also note, that although the definition of standard error doesn't include the
7476/// assumption of normality, many uses of this feature implicitly assume it.
7477///
7478/// IMPORTANT NOTE: The returned value depends on how the histogram statistics
7479/// are calculated. By default, if no range has been set, the returned value is
7480/// the (unbinned) one calculated at fill time. If a range has been set, however,
7481/// the value is calculated using the bins in range, as described above; THIS
7482/// IS TRUE EVEN IF THE RANGE INCLUDES ALL BINS--use TAxis::SetRange(0, 0) to unset
7483/// the range. To ensure that the returned value (and all other statistics) is
7484/// always that of the binned data stored in the histogram, call TH1::ResetStats.
7485/// See TH1::GetStats.
7486
7488{
7489 return GetMean(axis+10);
7490}
7491
7492////////////////////////////////////////////////////////////////////////////////
7493/// Returns the Standard Deviation (Sigma).
7494/// The Sigma estimate is computed as
7495/// \f[
7496/// \sqrt{\frac{1}{N}(\sum(x_i-x_{mean})^2)}
7497/// \f]
7498/// For axis = 1,2 or 3 returns the Sigma value of the histogram along
7499/// X, Y or Z axis
7500/// For axis = 11, 12 or 13 returns the error of StdDev estimation along
7501/// X, Y or Z axis for Normal distribution
7502///
7503/// Note that the mean value/sigma is computed using the bins in the currently
7504/// defined range (see TAxis::SetRange). By default the range includes
7505/// all bins from 1 to nbins included, excluding underflows and overflows.
7506/// To force the underflows and overflows in the computation, one must
7507/// call the static function TH1::StatOverflows(kTRUE) before filling
7508/// the histogram.
7509///
7510/// IMPORTANT NOTE: The returned value depends on how the histogram statistics
7511/// are calculated. By default, if no range has been set, the returned standard
7512/// deviation is the (unbinned) one calculated at fill time. If a range has been
7513/// set, however, the standard deviation is calculated using the bins in range,
7514/// as described above; THIS IS TRUE EVEN IF THE RANGE INCLUDES ALL BINS--use
7515/// TAxis::SetRange(0, 0) to unset the range. To ensure that the returned standard
7516/// deviation (and all other statistics) is always that of the binned data stored
7517/// in the histogram, call TH1::ResetStats. See TH1::GetStats.
7518
7519Double_t TH1::GetStdDev(Int_t axis) const
7520{
7521 if (axis<1 || (axis>3 && axis<11) || axis>13) return 0;
7522
7523 Double_t x, stddev2, stats[kNstat];
7524 for (Int_t i=4;i<kNstat;i++) stats[i] = 0;
7525 GetStats(stats);
7526 if (stats[0] == 0) return 0;
7527 Int_t ax[3] = {2,4,7};
7528 Int_t axm = ax[axis%10 - 1];
7529 x = stats[axm]/stats[0];
7530 // for negative stddev (e.g. when having negative weights) - return stdev=0
7531 stddev2 = TMath::Max( stats[axm+1]/stats[0] -x*x, 0.0 );
7532 if (axis<10)
7533 return TMath::Sqrt(stddev2);
7534 else {
7535 // The right formula for StdDev error depends on 4th momentum (see Kendall-Stuart Vol 1 pag 243)
7536 // formula valid for only gaussian distribution ( 4-th momentum = 3 * sigma^4 )
7538 return ( neff > 0 ? TMath::Sqrt(stddev2/(2*neff) ) : 0. );
7539 }
7540}
7541
7542////////////////////////////////////////////////////////////////////////////////
7543/// Return error of standard deviation estimation for Normal distribution
7544///
7545/// Note that the mean value/StdDev is computed using the bins in the currently
7546/// defined range (see TAxis::SetRange). By default the range includes
7547/// all bins from 1 to nbins included, excluding underflows and overflows.
7548/// To force the underflows and overflows in the computation, one must
7549/// call the static function TH1::StatOverflows(kTRUE) before filling
7550/// the histogram.
7551///
7552/// Value returned is standard deviation of sample standard deviation.
7553/// Note that it is an approximated value which is valid only in the case that the
7554/// original data distribution is Normal. The correct one would require
7555/// the 4-th momentum value, which cannot be accurately estimated from a histogram since
7556/// the x-information for all entries is not kept.
7557///
7558/// IMPORTANT NOTE: The returned value depends on how the histogram statistics
7559/// are calculated. By default, if no range has been set, the returned value is
7560/// the (unbinned) one calculated at fill time. If a range has been set, however,
7561/// the value is calculated using the bins in range, as described above; THIS
7562/// IS TRUE EVEN IF THE RANGE INCLUDES ALL BINS--use TAxis::SetRange(0, 0) to unset
7563/// the range. To ensure that the returned value (and all other statistics) is
7564/// always that of the binned data stored in the histogram, call TH1::ResetStats.
7565/// See TH1::GetStats.
7566
7568{
7569 return GetStdDev(axis+10);
7570}
7571
7572////////////////////////////////////////////////////////////////////////////////
7573/// - For axis = 1, 2 or 3 returns skewness of the histogram along x, y or z axis.
7574/// - For axis = 11, 12 or 13 returns the approximate standard error of skewness
7575/// of the histogram along x, y or z axis
7576///
7577///Note, that since third and fourth moment are not calculated
7578///at the fill time, skewness and its standard error are computed bin by bin
7579///
7580/// IMPORTANT NOTE: The returned value depends on how the histogram statistics
7581/// are calculated. See TH1::GetMean and TH1::GetStdDev.
7582
7584{
7585
7586 if (axis > 0 && axis <= 3){
7587
7588 Double_t mean = GetMean(axis);
7589 Double_t stddev = GetStdDev(axis);
7590 Double_t stddev3 = stddev*stddev*stddev;
7591
7592 Int_t firstBinX = fXaxis.GetFirst();
7593 Int_t lastBinX = fXaxis.GetLast();
7594 Int_t firstBinY = fYaxis.GetFirst();
7595 Int_t lastBinY = fYaxis.GetLast();
7596 Int_t firstBinZ = fZaxis.GetFirst();
7597 Int_t lastBinZ = fZaxis.GetLast();
7598 // include underflow/overflow if TH1::StatOverflows(kTRUE) in case no range is set on the axis
7601 if (firstBinX == 1) firstBinX = 0;
7602 if (lastBinX == fXaxis.GetNbins() ) lastBinX += 1;
7603 }
7605 if (firstBinY == 1) firstBinY = 0;
7606 if (lastBinY == fYaxis.GetNbins() ) lastBinY += 1;
7607 }
7609 if (firstBinZ == 1) firstBinZ = 0;
7610 if (lastBinZ == fZaxis.GetNbins() ) lastBinZ += 1;
7611 }
7612 }
7613
7614 Double_t x = 0;
7615 Double_t sum=0;
7616 Double_t np=0;
7617 for (Int_t binx = firstBinX; binx <= lastBinX; binx++) {
7618 for (Int_t biny = firstBinY; biny <= lastBinY; biny++) {
7619 for (Int_t binz = firstBinZ; binz <= lastBinZ; binz++) {
7620 if (axis==1 ) x = fXaxis.GetBinCenter(binx);
7621 else if (axis==2 ) x = fYaxis.GetBinCenter(biny);
7622 else if (axis==3 ) x = fZaxis.GetBinCenter(binz);
7623 Double_t w = GetBinContent(binx,biny,binz);
7624 np+=w;
7625 sum+=w*(x-mean)*(x-mean)*(x-mean);
7626 }
7627 }
7628 }
7629 sum/=np*stddev3;
7630 return sum;
7631 }
7632 else if (axis > 10 && axis <= 13) {
7633 //compute standard error of skewness
7634 // assume parent normal distribution use formula from Kendall-Stuart, Vol 1 pag 243, second edition
7636 return ( neff > 0 ? TMath::Sqrt(6./neff ) : 0. );
7637 }
7638 else {
7639 Error("GetSkewness", "illegal value of parameter");
7640 return 0;
7641 }
7642}
7643
7644////////////////////////////////////////////////////////////////////////////////
7645/// - For axis =1, 2 or 3 returns kurtosis of the histogram along x, y or z axis.
7646/// Kurtosis(gaussian(0, 1)) = 0.
7647/// - For axis =11, 12 or 13 returns the approximate standard error of kurtosis
7648/// of the histogram along x, y or z axis
7649////
7650/// Note, that since third and fourth moment are not calculated
7651/// at the fill time, kurtosis and its standard error are computed bin by bin
7652///
7653/// IMPORTANT NOTE: The returned value depends on how the histogram statistics
7654/// are calculated. See TH1::GetMean and TH1::GetStdDev.
7655
7657{
7658 if (axis > 0 && axis <= 3){
7659
7660 Double_t mean = GetMean(axis);
7661 Double_t stddev = GetStdDev(axis);
7662 Double_t stddev4 = stddev*stddev*stddev*stddev;
7663
7664 Int_t firstBinX = fXaxis.GetFirst();
7665 Int_t lastBinX = fXaxis.GetLast();
7666 Int_t firstBinY = fYaxis.GetFirst();
7667 Int_t lastBinY = fYaxis.GetLast();
7668 Int_t firstBinZ = fZaxis.GetFirst();
7669 Int_t lastBinZ = fZaxis.GetLast();
7670 // include underflow/overflow if TH1::StatOverflows(kTRUE) in case no range is set on the axis
7673 if (firstBinX == 1) firstBinX = 0;
7674 if (lastBinX == fXaxis.GetNbins() ) lastBinX += 1;
7675 }
7677 if (firstBinY == 1) firstBinY = 0;
7678 if (lastBinY == fYaxis.GetNbins() ) lastBinY += 1;
7679 }
7681 if (firstBinZ == 1) firstBinZ = 0;
7682 if (lastBinZ == fZaxis.GetNbins() ) lastBinZ += 1;
7683 }
7684 }
7685
7686 Double_t x = 0;
7687 Double_t sum=0;
7688 Double_t np=0;
7689 for (Int_t binx = firstBinX; binx <= lastBinX; binx++) {
7690 for (Int_t biny = firstBinY; biny <= lastBinY; biny++) {
7691 for (Int_t binz = firstBinZ; binz <= lastBinZ; binz++) {
7692 if (axis==1 ) x = fXaxis.GetBinCenter(binx);
7693 else if (axis==2 ) x = fYaxis.GetBinCenter(biny);
7694 else if (axis==3 ) x = fZaxis.GetBinCenter(binz);
7695 Double_t w = GetBinContent(binx,biny,binz);
7696 np+=w;
7697 sum+=w*(x-mean)*(x-mean)*(x-mean)*(x-mean);
7698 }
7699 }
7700 }
7701 sum/=(np*stddev4);
7702 return sum-3;
7703
7704 } else if (axis > 10 && axis <= 13) {
7705 //compute standard error of skewness
7706 // assume parent normal distribution use formula from Kendall-Stuart, Vol 1 pag 243, second edition
7708 return ( neff > 0 ? TMath::Sqrt(24./neff ) : 0. );
7709 }
7710 else {
7711 Error("GetKurtosis", "illegal value of parameter");
7712 return 0;
7713 }
7714}
7715
7716////////////////////////////////////////////////////////////////////////////////
7717/// fill the array stats from the contents of this histogram
7718/// The array stats must be correctly dimensioned in the calling program.
7719///
7720/// ~~~ {.cpp}
7721/// stats[0] = sumw
7722/// stats[1] = sumw2
7723/// stats[2] = sumwx
7724/// stats[3] = sumwx2
7725/// ~~~
7726///
7727/// If no axis-subrange is specified (via TAxis::SetRange), the array stats
7728/// is simply a copy of the statistics quantities computed at filling time.
7729/// If a sub-range is specified, the function recomputes these quantities
7730/// from the bin contents in the current axis range.
7731///
7732/// IMPORTANT NOTE: This means that the returned statistics are context-dependent.
7733/// If TAxis::kAxisRange, the returned statistics are dependent on the binning;
7734/// otherwise, they are a copy of the histogram statistics computed at fill time,
7735/// which are unbinned by default (calling TH1::ResetStats forces them to use
7736/// binned statistics). You can reset TAxis::kAxisRange using TAxis::SetRange(0, 0).
7737///
7738/// Note that the mean value/StdDev is computed using the bins in the currently
7739/// defined range (see TAxis::SetRange). By default the range includes
7740/// all bins from 1 to nbins included, excluding underflows and overflows.
7741/// To force the underflows and overflows in the computation, one must
7742/// call the static function TH1::StatOverflows(kTRUE) before filling
7743/// the histogram.
7744
7745void TH1::GetStats(Double_t *stats) const
7746{
7747 if (fBuffer) ((TH1*)this)->BufferEmpty();
7748
7749 // Loop on bins (possibly including underflows/overflows)
7750 Int_t bin, binx;
7751 Double_t w,err;
7752 Double_t x;
7753 // identify the case of labels with extension of axis range
7754 // in this case the statistics in x does not make any sense
7755 Bool_t labelHist = ((const_cast<TAxis&>(fXaxis)).GetLabels() && fXaxis.CanExtend() );
7756 // fTsumw == 0 && fEntries > 0 is a special case when uses SetBinContent or calls ResetStats before
7757 if ( (fTsumw == 0 && fEntries > 0) || fXaxis.TestBit(TAxis::kAxisRange) ) {
7758 for (bin=0;bin<4;bin++) stats[bin] = 0;
7759
7760 Int_t firstBinX = fXaxis.GetFirst();
7761 Int_t lastBinX = fXaxis.GetLast();
7762 // include underflow/overflow if TH1::StatOverflows(kTRUE) in case no range is set on the axis
7764 if (firstBinX == 1) firstBinX = 0;
7765 if (lastBinX == fXaxis.GetNbins() ) lastBinX += 1;
7766 }
7767 for (binx = firstBinX; binx <= lastBinX; binx++) {
7768 x = fXaxis.GetBinCenter(binx);
7769 //w = TMath::Abs(RetrieveBinContent(binx));
7770 // not sure what to do here if w < 0
7771 w = RetrieveBinContent(binx);
7772 err = TMath::Abs(GetBinError(binx));
7773 stats[0] += w;
7774 stats[1] += err*err;
7775 // statistics in x makes sense only for not labels histograms
7776 if (!labelHist) {
7777 stats[2] += w*x;
7778 stats[3] += w*x*x;
7779 }
7780 }
7781 // if (stats[0] < 0) {
7782 // // in case total is negative do something ??
7783 // stats[0] = 0;
7784 // }
7785 } else {
7786 stats[0] = fTsumw;
7787 stats[1] = fTsumw2;
7788 stats[2] = fTsumwx;
7789 stats[3] = fTsumwx2;
7790 }
7791}
7792
7793////////////////////////////////////////////////////////////////////////////////
7794/// Replace current statistics with the values in array stats
7795
7796void TH1::PutStats(Double_t *stats)
7797{
7798 fTsumw = stats[0];
7799 fTsumw2 = stats[1];
7800 fTsumwx = stats[2];
7801 fTsumwx2 = stats[3];
7802}
7803
7804////////////////////////////////////////////////////////////////////////////////
7805/// Reset the statistics including the number of entries
7806/// and replace with values calculated from bin content
7807///
7808/// The number of entries is set to the total bin content or (in case of weighted histogram)
7809/// to number of effective entries
7810///
7811/// Note that, by default, before calling this function, statistics are those
7812/// computed at fill time, which are unbinned. See TH1::GetStats.
7813
7814void TH1::ResetStats()
7815{
7816 Double_t stats[kNstat] = {0};
7817 fTsumw = 0;
7818 fEntries = 1; // to force re-calculation of the statistics in TH1::GetStats
7819 GetStats(stats);
7820 PutStats(stats);
7822 // use effective entries for weighted histograms: (sum_w) ^2 / sum_w2
7823 if (fSumw2.fN > 0 && fTsumw > 0 && stats[1] > 0 ) fEntries = stats[0]*stats[0]/ stats[1];
7824}
7825
7826////////////////////////////////////////////////////////////////////////////////
7827/// Return the sum of weights excluding under/overflows.
7828
7830{
7831 if (fBuffer) const_cast<TH1*>(this)->BufferEmpty();
7832
7833 Int_t bin,binx,biny,binz;
7834 Double_t sum =0;
7835 for(binz=1; binz<=fZaxis.GetNbins(); binz++) {
7836 for(biny=1; biny<=fYaxis.GetNbins(); biny++) {
7837 for(binx=1; binx<=fXaxis.GetNbins(); binx++) {
7838 bin = GetBin(binx,biny,binz);
7839 sum += RetrieveBinContent(bin);
7840 }
7841 }
7842 }
7843 return sum;
7844}
7845
7846////////////////////////////////////////////////////////////////////////////////
7847///Return integral of bin contents. Only bins in the bins range are considered.
7848///
7849/// By default the integral is computed as the sum of bin contents in the range.
7850/// if option "width" is specified, the integral is the sum of
7851/// the bin contents multiplied by the bin width in x.
7852
7854{
7856}
7857
7858////////////////////////////////////////////////////////////////////////////////
7859/// Return integral of bin contents in range [binx1,binx2].
7860///
7861/// By default the integral is computed as the sum of bin contents in the range.
7862/// if option "width" is specified, the integral is the sum of
7863/// the bin contents multiplied by the bin width in x.
7864
7865Double_t TH1::Integral(Int_t binx1, Int_t binx2, Option_t *option) const
7866{
7867 double err = 0;
7868 return DoIntegral(binx1,binx2,0,-1,0,-1,err,option);
7869}
7870
7871////////////////////////////////////////////////////////////////////////////////
7872/// Return integral of bin contents in range [binx1,binx2] and its error.
7873///
7874/// By default the integral is computed as the sum of bin contents in the range.
7875/// if option "width" is specified, the integral is the sum of
7876/// the bin contents multiplied by the bin width in x.
7877/// the error is computed using error propagation from the bin errors assuming that
7878/// all the bins are uncorrelated
7879
7880Double_t TH1::IntegralAndError(Int_t binx1, Int_t binx2, Double_t & error, Option_t *option) const
7881{
7882 return DoIntegral(binx1,binx2,0,-1,0,-1,error,option,kTRUE);
7883}
7884
7885////////////////////////////////////////////////////////////////////////////////
7886/// Internal function compute integral and optionally the error between the limits
7887/// specified by the bin number values working for all histograms (1D, 2D and 3D)
7888
7889Double_t TH1::DoIntegral(Int_t binx1, Int_t binx2, Int_t biny1, Int_t biny2, Int_t binz1, Int_t binz2, Double_t & error ,
7890 Option_t *option, Bool_t doError) const
7891{
7892 if (fBuffer) ((TH1*)this)->BufferEmpty();
7893
7894 Int_t nx = GetNbinsX() + 2;
7895 if (binx1 < 0) binx1 = 0;
7896 if (binx2 >= nx || binx2 < binx1) binx2 = nx - 1;
7897
7898 if (GetDimension() > 1) {
7899 Int_t ny = GetNbinsY() + 2;
7900 if (biny1 < 0) biny1 = 0;
7901 if (biny2 >= ny || biny2 < biny1) biny2 = ny - 1;
7902 } else {
7903 biny1 = 0; biny2 = 0;
7904 }
7905
7906 if (GetDimension() > 2) {
7907 Int_t nz = GetNbinsZ() + 2;
7908 if (binz1 < 0) binz1 = 0;
7909 if (binz2 >= nz || binz2 < binz1) binz2 = nz - 1;
7910 } else {
7911 binz1 = 0; binz2 = 0;
7912 }
7913
7914 // - Loop on bins in specified range
7915 TString opt = option;
7916 opt.ToLower();
7918 if (opt.Contains("width")) width = kTRUE;
7919
7920
7921 Double_t dx = 1., dy = .1, dz =.1;
7922 Double_t integral = 0;
7923 Double_t igerr2 = 0;
7924 for (Int_t binx = binx1; binx <= binx2; ++binx) {
7925 if (width) dx = fXaxis.GetBinWidth(binx);
7926 for (Int_t biny = biny1; biny <= biny2; ++biny) {
7927 if (width) dy = fYaxis.GetBinWidth(biny);
7928 for (Int_t binz = binz1; binz <= binz2; ++binz) {
7929 Int_t bin = GetBin(binx, biny, binz);
7930 Double_t dv = 0.0;
7931 if (width) {
7932 dz = fZaxis.GetBinWidth(binz);
7933 dv = dx * dy * dz;
7934 integral += RetrieveBinContent(bin) * dv;
7935 } else {
7936 integral += RetrieveBinContent(bin);
7937 }
7938 if (doError) {
7939 if (width) igerr2 += GetBinErrorSqUnchecked(bin) * dv * dv;
7940 else igerr2 += GetBinErrorSqUnchecked(bin);
7941 }
7942 }
7943 }
7944 }
7945
7946 if (doError) error = TMath::Sqrt(igerr2);
7947 return integral;
7948}
7949
7950////////////////////////////////////////////////////////////////////////////////
7951/// Statistical test of compatibility in shape between
7952/// this histogram and h2, using the Anderson-Darling 2 sample test.
7953///
7954/// The AD 2 sample test formula are derived from the paper
7955/// F.W Scholz, M.A. Stephens "k-Sample Anderson-Darling Test".
7956///
7957/// The test is implemented in root in the ROOT::Math::GoFTest class
7958/// It is the same formula ( (6) in the paper), and also shown in
7959/// [this preprint](http://arxiv.org/pdf/0804.0380v1.pdf)
7960///
7961/// Binned data are considered as un-binned data
7962/// with identical observation happening in the bin center.
7963///
7964/// \param[in] h2 Pointer to 1D histogram
7965/// \param[in] option is a character string to specify options
7966/// - "D" Put out a line of "Debug" printout
7967/// - "T" Return the normalized A-D test statistic
7968///
7969/// - Note1: Underflow and overflow are not considered in the test
7970/// - Note2: The test works only for un-weighted histogram (i.e. representing counts)
7971/// - Note3: The histograms are not required to have the same X axis
7972/// - Note4: The test works only for 1-dimensional histograms
7973
7975{
7976 Double_t advalue = 0;
7977 Double_t pvalue = AndersonDarlingTest(h2, advalue);
7978
7979 TString opt = option;
7980 opt.ToUpper();
7981 if (opt.Contains("D") ) {
7982 printf(" AndersonDarlingTest Prob = %g, AD TestStatistic = %g\n",pvalue,advalue);
7983 }
7984 if (opt.Contains("T") ) return advalue;
7985
7986 return pvalue;
7987}
7988
7989////////////////////////////////////////////////////////////////////////////////
7990/// Same function as above but returning also the test statistic value
7991
7992Double_t TH1::AndersonDarlingTest(const TH1 *h2, Double_t & advalue) const
7993{
7994 if (GetDimension() != 1 || h2->GetDimension() != 1) {
7995 Error("AndersonDarlingTest","Histograms must be 1-D");
7996 return -1;
7997 }
7998
7999 // empty the buffer. Probably we could add as an unbinned test
8000 if (fBuffer) ((TH1*)this)->BufferEmpty();
8001
8002 // use the BinData class
8003 ROOT::Fit::BinData data1;
8004 ROOT::Fit::BinData data2;
8005
8006 ROOT::Fit::FillData(data1, this, 0);
8007 ROOT::Fit::FillData(data2, h2, 0);
8008
8009 double pvalue;
8010 ROOT::Math::GoFTest::AndersonDarling2SamplesTest(data1,data2, pvalue,advalue);
8011
8012 return pvalue;
8013}
8014
8015////////////////////////////////////////////////////////////////////////////////
8016/// Statistical test of compatibility in shape between
8017/// this histogram and h2, using Kolmogorov test.
8018/// Note that the KolmogorovTest (KS) test should in theory be used only for unbinned data
8019/// and not for binned data as in the case of the histogram (see NOTE 3 below).
8020/// So, before using this method blindly, read the NOTE 3.
8021///
8022/// Default: Ignore under- and overflow bins in comparison
8023///
8024/// \param[in] h2 histogram
8025/// \param[in] option is a character string to specify options
8026/// - "U" include Underflows in test (also for 2-dim)
8027/// - "O" include Overflows (also valid for 2-dim)
8028/// - "N" include comparison of normalizations
8029/// - "D" Put out a line of "Debug" printout
8030/// - "M" Return the Maximum Kolmogorov distance instead of prob
8031/// - "X" Run the pseudo experiments post-processor with the following procedure:
8032/// make pseudoexperiments based on random values from the parent distribution,
8033/// compare the KS distance of the pseudoexperiment to the parent
8034/// distribution, and count all the KS values above the value
8035/// obtained from the original data to Monte Carlo distribution.
8036/// The number of pseudo-experiments nEXPT is currently fixed at 1000.
8037/// The function returns the probability.
8038/// (thanks to Ben Kilminster to submit this procedure). Note that
8039/// this option "X" is much slower.
8040///
8041/// The returned function value is the probability of test
8042/// (much less than one means NOT compatible)
8043///
8044/// Code adapted by Rene Brun from original HBOOK routine HDIFF
8045///
8046/// NOTE1
8047/// A good description of the Kolmogorov test can be seen at:
8048/// http://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm
8049///
8050/// NOTE2
8051/// see also alternative function TH1::Chi2Test
8052/// The Kolmogorov test is assumed to give better results than Chi2Test
8053/// in case of histograms with low statistics.
8054///
8055/// NOTE3 (Jan Conrad, Fred James)
8056/// "The returned value PROB is calculated such that it will be
8057/// uniformly distributed between zero and one for compatible histograms,
8058/// provided the data are not binned (or the number of bins is very large
8059/// compared with the number of events). Users who have access to unbinned
8060/// data and wish exact confidence levels should therefore not put their data
8061/// into histograms, but should call directly TMath::KolmogorovTest. On
8062/// the other hand, since TH1 is a convenient way of collecting data and
8063/// saving space, this function has been provided. However, the values of
8064/// PROB for binned data will be shifted slightly higher than expected,
8065/// depending on the effects of the binning. For example, when comparing two
8066/// uniform distributions of 500 events in 100 bins, the values of PROB,
8067/// instead of being exactly uniformly distributed between zero and one, have
8068/// a mean value of about 0.56. We can apply a useful
8069/// rule: As long as the bin width is small compared with any significant
8070/// physical effect (for example the experimental resolution) then the binning
8071/// cannot have an important effect. Therefore, we believe that for all
8072/// practical purposes, the probability value PROB is calculated correctly
8073/// provided the user is aware that:
8074///
8075/// 1. The value of PROB should not be expected to have exactly the correct
8076/// distribution for binned data.
8077/// 2. The user is responsible for seeing to it that the bin widths are
8078/// small compared with any physical phenomena of interest.
8079/// 3. The effect of binning (if any) is always to make the value of PROB
8080/// slightly too big. That is, setting an acceptance criterion of (PROB>0.05
8081/// will assure that at most 5% of truly compatible histograms are rejected,
8082/// and usually somewhat less."
8083///
8084/// Note also that for GoF test of unbinned data ROOT provides also the class
8085/// ROOT::Math::GoFTest. The class has also method for doing one sample tests
8086/// (i.e. comparing the data with a given distribution).
8087
8089{
8090 TString opt = option;
8091 opt.ToUpper();
8092
8093 Double_t prob = 0;
8094 TH1 *h1 = (TH1*)this;
8095 if (h2 == 0) return 0;
8096 const TAxis *axis1 = h1->GetXaxis();
8097 const TAxis *axis2 = h2->GetXaxis();
8098 Int_t ncx1 = axis1->GetNbins();
8099 Int_t ncx2 = axis2->GetNbins();
8100
8101 // Check consistency of dimensions
8102 if (h1->GetDimension() != 1 || h2->GetDimension() != 1) {
8103 Error("KolmogorovTest","Histograms must be 1-D\n");
8104 return 0;
8105 }
8106
8107 // Check consistency in number of channels
8108 if (ncx1 != ncx2) {
8109 Error("KolmogorovTest","Histograms have different number of bins, %d and %d\n",ncx1,ncx2);
8110 return 0;
8111 }
8112
8113 // empty the buffer. Probably we could add as an unbinned test
8114 if (fBuffer) ((TH1*)this)->BufferEmpty();
8115
8116 // Check consistency in bin edges
8117 for(Int_t i = 1; i <= axis1->GetNbins() + 1; ++i) {
8118 if(!TMath::AreEqualRel(axis1->GetBinLowEdge(i), axis2->GetBinLowEdge(i), 1.E-15)) {
8119 Error("KolmogorovTest","Histograms are not consistent: they have different bin edges");
8120 return 0;
8121 }
8122 }
8123
8124 Bool_t afunc1 = kFALSE;
8125 Bool_t afunc2 = kFALSE;
8126 Double_t sum1 = 0, sum2 = 0;
8127 Double_t ew1, ew2, w1 = 0, w2 = 0;
8128 Int_t bin;
8129 Int_t ifirst = 1;
8130 Int_t ilast = ncx1;
8131 // integral of all bins (use underflow/overflow if option)
8132 if (opt.Contains("U")) ifirst = 0;
8133 if (opt.Contains("O")) ilast = ncx1 +1;
8134 for (bin = ifirst; bin <= ilast; bin++) {
8135 sum1 += h1->RetrieveBinContent(bin);
8136 sum2 += h2->RetrieveBinContent(bin);
8137 ew1 = h1->GetBinError(bin);
8138 ew2 = h2->GetBinError(bin);
8139 w1 += ew1*ew1;
8140 w2 += ew2*ew2;
8141 }
8142 if (sum1 == 0) {
8143 Error("KolmogorovTest","Histogram1 %s integral is zero\n",h1->GetName());
8144 return 0;
8145 }
8146 if (sum2 == 0) {
8147 Error("KolmogorovTest","Histogram2 %s integral is zero\n",h2->GetName());
8148 return 0;
8149 }
8150
8151 // calculate the effective entries.
8152 // the case when errors are zero (w1 == 0 or w2 ==0) are equivalent to
8153 // compare to a function. In that case the rescaling is done only on sqrt(esum2) or sqrt(esum1)
8154 Double_t esum1 = 0, esum2 = 0;
8155 if (w1 > 0)
8156 esum1 = sum1 * sum1 / w1;
8157 else
8158 afunc1 = kTRUE; // use later for calculating z
8159
8160 if (w2 > 0)
8161 esum2 = sum2 * sum2 / w2;
8162 else
8163 afunc2 = kTRUE; // use later for calculating z
8164
8165 if (afunc2 && afunc1) {
8166 Error("KolmogorovTest","Errors are zero for both histograms\n");
8167 return 0;
8168 }
8169
8170
8171 Double_t s1 = 1/sum1;
8172 Double_t s2 = 1/sum2;
8173
8174 // Find largest difference for Kolmogorov Test
8175 Double_t dfmax =0, rsum1 = 0, rsum2 = 0;
8176
8177 for (bin=ifirst;bin<=ilast;bin++) {
8178 rsum1 += s1*h1->RetrieveBinContent(bin);
8179 rsum2 += s2*h2->RetrieveBinContent(bin);
8180 dfmax = TMath::Max(dfmax,TMath::Abs(rsum1-rsum2));
8181 }
8182
8183 // Get Kolmogorov probability
8184 Double_t z, prb1=0, prb2=0, prb3=0;
8185
8186 // case h1 is exact (has zero errors)
8187 if (afunc1)
8188 z = dfmax*TMath::Sqrt(esum2);
8189 // case h2 has zero errors
8190 else if (afunc2)
8191 z = dfmax*TMath::Sqrt(esum1);
8192 else
8193 // for comparison between two data sets
8194 z = dfmax*TMath::Sqrt(esum1*esum2/(esum1+esum2));
8195
8196 prob = TMath::KolmogorovProb(z);
8197
8198 // option N to combine normalization makes sense if both afunc1 and afunc2 are false
8199 if (opt.Contains("N") && !(afunc1 || afunc2 ) ) {
8200 // Combine probabilities for shape and normalization,
8201 prb1 = prob;
8202 Double_t d12 = esum1-esum2;
8203 Double_t chi2 = d12*d12/(esum1+esum2);
8204 prb2 = TMath::Prob(chi2,1);
8205 // see Eadie et al., section 11.6.2
8206 if (prob > 0 && prb2 > 0) prob *= prb2*(1-TMath::Log(prob*prb2));
8207 else prob = 0;
8208 }
8209 // X option. Pseudo-experiments post-processor to determine KS probability
8210 const Int_t nEXPT = 1000;
8211 if (opt.Contains("X") && !(afunc1 || afunc2 ) ) {
8212 Double_t dSEXPT;
8213 TH1 *h1_cpy = (TH1 *)(gDirectory ? gDirectory->CloneObject(this, kFALSE) : gROOT->CloneObject(this, kFALSE));
8214 TH1 *h1Expt = (TH1*)(gDirectory ? gDirectory->CloneObject(this,kFALSE) : gROOT->CloneObject(this,kFALSE));
8215 TH1 *h2Expt = (TH1*)(gDirectory ? gDirectory->CloneObject(this,kFALSE) : gROOT->CloneObject(this,kFALSE));
8216
8217 if (GetMinimum() < 0.0) {
8218 // we need to create a new histogram
8219 // With negative bins we can't draw random samples in a meaningful way.
8220 Warning("KolmogorovTest", "Detected bins with negative weights, these have been ignored and output might be "
8221 "skewed. Reduce number of bins for histogram?");
8222 while (h1_cpy->GetMinimum() < 0.0) {
8223 Int_t idx = h1_cpy->GetMinimumBin();
8224 h1_cpy->SetBinContent(idx, 0.0);
8225 }
8226 }
8227
8228 // make nEXPT experiments (this should be a parameter)
8229 prb3 = 0;
8230 for (Int_t i=0; i < nEXPT; i++) {
8231 h1Expt->Reset();
8232 h2Expt->Reset();
8233 h1Expt->FillRandom(h1_cpy, (Int_t)esum1);
8234 h2Expt->FillRandom(h1_cpy, (Int_t)esum2);
8235 dSEXPT = h1Expt->KolmogorovTest(h2Expt,"M");
8236 if (dSEXPT>dfmax) prb3 += 1.0;
8237 }
8238 prb3 /= (Double_t)nEXPT;
8239 delete h1_cpy;
8240 delete h1Expt;
8241 delete h2Expt;
8242 }
8243
8244 // debug printout
8245 if (opt.Contains("D")) {
8246 printf(" Kolmo Prob h1 = %s, sum bin content =%g effective entries =%g\n",h1->GetName(),sum1,esum1);
8247 printf(" Kolmo Prob h2 = %s, sum bin content =%g effective entries =%g\n",h2->GetName(),sum2,esum2);
8248 printf(" Kolmo Prob = %g, Max Dist = %g\n",prob,dfmax);
8249 if (opt.Contains("N"))
8250 printf(" Kolmo Prob = %f for shape alone, =%f for normalisation alone\n",prb1,prb2);
8251 if (opt.Contains("X"))
8252 printf(" Kolmo Prob = %f with %d pseudo-experiments\n",prb3,nEXPT);
8253 }
8254 // This numerical error condition should never occur:
8255 if (TMath::Abs(rsum1-1) > 0.002) Warning("KolmogorovTest","Numerical problems with h1=%s\n",h1->GetName());
8256 if (TMath::Abs(rsum2-1) > 0.002) Warning("KolmogorovTest","Numerical problems with h2=%s\n",h2->GetName());
8257
8258 if(opt.Contains("M")) return dfmax;
8259 else if(opt.Contains("X")) return prb3;
8260 else return prob;
8261}
8262
8263////////////////////////////////////////////////////////////////////////////////
8264/// Replace bin contents by the contents of array content
8265
8266void TH1::SetContent(const Double_t *content)
8267{
8268 fEntries = fNcells;
8269 fTsumw = 0;
8270 for (Int_t i = 0; i < fNcells; ++i) UpdateBinContent(i, content[i]);
8271}
8272
8273////////////////////////////////////////////////////////////////////////////////
8274/// Return contour values into array levels if pointer levels is non zero.
8275///
8276/// The function returns the number of contour levels.
8277/// see GetContourLevel to return one contour only
8278
8280{
8281 Int_t nlevels = fContour.fN;
8282 if (levels) {
8283 if (nlevels == 0) {
8284 nlevels = 20;
8285 SetContour(nlevels);
8286 } else {
8287 if (TestBit(kUserContour) == 0) SetContour(nlevels);
8288 }
8289 for (Int_t level=0; level<nlevels; level++) levels[level] = fContour.fArray[level];
8290 }
8291 return nlevels;
8292}
8293
8294////////////////////////////////////////////////////////////////////////////////
8295/// Return value of contour number level.
8296/// Use GetContour to return the array of all contour levels
8297
8299{
8300 return (level >= 0 && level < fContour.fN) ? fContour.fArray[level] : 0.0;
8301}
8302
8303////////////////////////////////////////////////////////////////////////////////
8304/// Return the value of contour number "level" in Pad coordinates.
8305/// ie: if the Pad is in log scale along Z it returns le log of the contour level
8306/// value. See GetContour to return the array of all contour levels
8307
8309{
8310 if (level <0 || level >= fContour.fN) return 0;
8311 Double_t zlevel = fContour.fArray[level];
8312
8313 // In case of user defined contours and Pad in log scale along Z,
8314 // fContour.fArray doesn't contain the log of the contour whereas it does
8315 // in case of equidistant contours.
8316 if (gPad && gPad->GetLogz() && TestBit(kUserContour)) {
8317 if (zlevel <= 0) return 0;
8318 zlevel = TMath::Log10(zlevel);
8319 }
8320 return zlevel;
8321}
8322
8323////////////////////////////////////////////////////////////////////////////////
8324/// Set the maximum number of entries to be kept in the buffer.
8325
8326void TH1::SetBuffer(Int_t buffersize, Option_t * /*option*/)
8327{
8328 if (fBuffer) {
8329 BufferEmpty();
8330 delete [] fBuffer;
8331 fBuffer = nullptr;
8332 }
8333 if (buffersize <= 0) {
8334 fBufferSize = 0;
8335 return;
8336 }
8337 if (buffersize < 100) buffersize = 100;
8338 fBufferSize = 1 + buffersize*(fDimension+1);
8340 memset(fBuffer, 0, sizeof(Double_t)*fBufferSize);
8341}
8342
8343////////////////////////////////////////////////////////////////////////////////
8344/// Set the number and values of contour levels.
8345///
8346/// By default the number of contour levels is set to 20. The contours values
8347/// in the array "levels" should be specified in increasing order.
8348///
8349/// if argument levels = 0 or missing, equidistant contours are computed
8350
8351void TH1::SetContour(Int_t nlevels, const Double_t *levels)
8352{
8353 Int_t level;
8355 if (nlevels <=0 ) {
8356 fContour.Set(0);
8357 return;
8358 }
8359 fContour.Set(nlevels);
8360
8361 // - Contour levels are specified
8362 if (levels) {
8364 for (level=0; level<nlevels; level++) fContour.fArray[level] = levels[level];
8365 } else {
8366 // - contour levels are computed automatically as equidistant contours
8367 Double_t zmin = GetMinimum();
8368 Double_t zmax = GetMaximum();
8369 if ((zmin == zmax) && (zmin != 0)) {
8370 zmax += 0.01*TMath::Abs(zmax);
8371 zmin -= 0.01*TMath::Abs(zmin);
8372 }
8373 Double_t dz = (zmax-zmin)/Double_t(nlevels);
8374 if (gPad && gPad->GetLogz()) {
8375 if (zmax <= 0) return;
8376 if (zmin <= 0) zmin = 0.001*zmax;
8377 zmin = TMath::Log10(zmin);
8378 zmax = TMath::Log10(zmax);
8379 dz = (zmax-zmin)/Double_t(nlevels);
8380 }
8381 for (level=0; level<nlevels; level++) {
8382 fContour.fArray[level] = zmin + dz*Double_t(level);
8383 }
8384 }
8385}
8386
8387////////////////////////////////////////////////////////////////////////////////
8388/// Set value for one contour level.
8389
8391{
8392 if (level < 0 || level >= fContour.fN) return;
8394 fContour.fArray[level] = value;
8395}
8396
8397////////////////////////////////////////////////////////////////////////////////
8398/// Return maximum value smaller than maxval of bins in the range,
8399/// unless the value has been overridden by TH1::SetMaximum,
8400/// in which case it returns that value. This happens, for example,
8401/// when the histogram is drawn and the y or z axis limits are changed
8402///
8403/// To get the maximum value of bins in the histogram regardless of
8404/// whether the value has been overridden (using TH1::SetMaximum), use
8405///
8406/// ~~~ {.cpp}
8407/// h->GetBinContent(h->GetMaximumBin())
8408/// ~~~
8409///
8410/// TH1::GetMaximumBin can be used to get the location of the maximum
8411/// value.
8412
8413Double_t TH1::GetMaximum(Double_t maxval) const
8414{
8415 if (fMaximum != -1111) return fMaximum;
8416
8417 // empty the buffer
8418 if (fBuffer) ((TH1*)this)->BufferEmpty();
8419
8420 Int_t bin, binx, biny, binz;
8421 Int_t xfirst = fXaxis.GetFirst();
8422 Int_t xlast = fXaxis.GetLast();
8423 Int_t yfirst = fYaxis.GetFirst();
8424 Int_t ylast = fYaxis.GetLast();
8425 Int_t zfirst = fZaxis.GetFirst();
8426 Int_t zlast = fZaxis.GetLast();
8427 Double_t maximum = -FLT_MAX, value;
8428 for (binz=zfirst;binz<=zlast;binz++) {
8429 for (biny=yfirst;biny<=ylast;biny++) {
8430 for (binx=xfirst;binx<=xlast;binx++) {
8431 bin = GetBin(binx,biny,binz);
8433 if (value > maximum && value < maxval) maximum = value;
8434 }
8435 }
8436 }
8437 return maximum;
8438}
8439
8440////////////////////////////////////////////////////////////////////////////////
8441/// Return location of bin with maximum value in the range.
8442///
8443/// TH1::GetMaximum can be used to get the maximum value.
8444
8446{
8447 Int_t locmax, locmay, locmaz;
8448 return GetMaximumBin(locmax, locmay, locmaz);
8449}
8450
8451////////////////////////////////////////////////////////////////////////////////
8452/// Return location of bin with maximum value in the range.
8453
8454Int_t TH1::GetMaximumBin(Int_t &locmax, Int_t &locmay, Int_t &locmaz) const
8455{
8456 // empty the buffer
8457 if (fBuffer) ((TH1*)this)->BufferEmpty();
8458
8459 Int_t bin, binx, biny, binz;
8460 Int_t locm;
8461 Int_t xfirst = fXaxis.GetFirst();
8462 Int_t xlast = fXaxis.GetLast();
8463 Int_t yfirst = fYaxis.GetFirst();
8464 Int_t ylast = fYaxis.GetLast();
8465 Int_t zfirst = fZaxis.GetFirst();
8466 Int_t zlast = fZaxis.GetLast();
8467 Double_t maximum = -FLT_MAX, value;
8468 locm = locmax = locmay = locmaz = 0;
8469 for (binz=zfirst;binz<=zlast;binz++) {
8470 for (biny=yfirst;biny<=ylast;biny++) {
8471 for (binx=xfirst;binx<=xlast;binx++) {
8472 bin = GetBin(binx,biny,binz);
8474 if (value > maximum) {
8475 maximum = value;
8476 locm = bin;
8477 locmax = binx;
8478 locmay = biny;
8479 locmaz = binz;
8480 }
8481 }
8482 }
8483 }
8484 return locm;
8485}
8486
8487////////////////////////////////////////////////////////////////////////////////
8488/// Return minimum value larger than minval of bins in the range,
8489/// unless the value has been overridden by TH1::SetMinimum,
8490/// in which case it returns that value. This happens, for example,
8491/// when the histogram is drawn and the y or z axis limits are changed
8492///
8493/// To get the minimum value of bins in the histogram regardless of
8494/// whether the value has been overridden (using TH1::SetMinimum), use
8495///
8496/// ~~~ {.cpp}
8497/// h->GetBinContent(h->GetMinimumBin())
8498/// ~~~
8499///
8500/// TH1::GetMinimumBin can be used to get the location of the
8501/// minimum value.
8502
8503Double_t TH1::GetMinimum(Double_t minval) const
8504{
8505 if (fMinimum != -1111) return fMinimum;
8506
8507 // empty the buffer
8508 if (fBuffer) ((TH1*)this)->BufferEmpty();
8509
8510 Int_t bin, binx, biny, binz;
8511 Int_t xfirst = fXaxis.GetFirst();
8512 Int_t xlast = fXaxis.GetLast();
8513 Int_t yfirst = fYaxis.GetFirst();
8514 Int_t ylast = fYaxis.GetLast();
8515 Int_t zfirst = fZaxis.GetFirst();
8516 Int_t zlast = fZaxis.GetLast();
8517 Double_t minimum=FLT_MAX, value;
8518 for (binz=zfirst;binz<=zlast;binz++) {
8519 for (biny=yfirst;biny<=ylast;biny++) {
8520 for (binx=xfirst;binx<=xlast;binx++) {
8521 bin = GetBin(binx,biny,binz);
8523 if (value < minimum && value > minval) minimum = value;
8524 }
8525 }
8526 }
8527 return minimum;
8528}
8529
8530////////////////////////////////////////////////////////////////////////////////
8531/// Return location of bin with minimum value in the range.
8532
8534{
8535 Int_t locmix, locmiy, locmiz;
8536 return GetMinimumBin(locmix, locmiy, locmiz);
8537}
8538
8539////////////////////////////////////////////////////////////////////////////////
8540/// Return location of bin with minimum value in the range.
8541
8542Int_t TH1::GetMinimumBin(Int_t &locmix, Int_t &locmiy, Int_t &locmiz) const
8543{
8544 // empty the buffer
8545 if (fBuffer) ((TH1*)this)->BufferEmpty();
8546
8547 Int_t bin, binx, biny, binz;
8548 Int_t locm;
8549 Int_t xfirst = fXaxis.GetFirst();
8550 Int_t xlast = fXaxis.GetLast();
8551 Int_t yfirst = fYaxis.GetFirst();
8552 Int_t ylast = fYaxis.GetLast();
8553 Int_t zfirst = fZaxis.GetFirst();
8554 Int_t zlast = fZaxis.GetLast();
8555 Double_t minimum = FLT_MAX, value;
8556 locm = locmix = locmiy = locmiz = 0;
8557 for (binz=zfirst;binz<=zlast;binz++) {
8558 for (biny=yfirst;biny<=ylast;biny++) {
8559 for (binx=xfirst;binx<=xlast;binx++) {
8560 bin = GetBin(binx,biny,binz);
8562 if (value < minimum) {
8563 minimum = value;
8564 locm = bin;
8565 locmix = binx;
8566 locmiy = biny;
8567 locmiz = binz;
8568 }
8569 }
8570 }
8571 }
8572 return locm;
8573}
8574
8575///////////////////////////////////////////////////////////////////////////////
8576/// Retrieve the minimum and maximum values in the histogram
8577///
8578/// This will not return a cached value and will always search the
8579/// histogram for the min and max values. The user can condition whether
8580/// or not to call this with the GetMinimumStored() and GetMaximumStored()
8581/// methods. If the cache is empty, then the value will be -1111. Users
8582/// can then use the SetMinimum() or SetMaximum() methods to cache the results.
8583/// For example, the following recipe will make efficient use of this method
8584/// and the cached minimum and maximum values.
8585//
8586/// \code{.cpp}
8587/// Double_t currentMin = pHist->GetMinimumStored();
8588/// Double_t currentMax = pHist->GetMaximumStored();
8589/// if ((currentMin == -1111) || (currentMax == -1111)) {
8590/// pHist->GetMinimumAndMaximum(currentMin, currentMax);
8591/// pHist->SetMinimum(currentMin);
8592/// pHist->SetMaximum(currentMax);
8593/// }
8594/// \endcode
8595///
8596/// \param min reference to variable that will hold found minimum value
8597/// \param max reference to variable that will hold found maximum value
8598
8599void TH1::GetMinimumAndMaximum(Double_t& min, Double_t& max) const
8600{
8601 // empty the buffer
8602 if (fBuffer) ((TH1*)this)->BufferEmpty();
8603
8604 Int_t bin, binx, biny, binz;
8605 Int_t xfirst = fXaxis.GetFirst();
8606 Int_t xlast = fXaxis.GetLast();
8607 Int_t yfirst = fYaxis.GetFirst();
8608 Int_t ylast = fYaxis.GetLast();
8609 Int_t zfirst = fZaxis.GetFirst();
8610 Int_t zlast = fZaxis.GetLast();
8611 min=TMath::Infinity();
8612 max=-TMath::Infinity();
8614 for (binz=zfirst;binz<=zlast;binz++) {
8615 for (biny=yfirst;biny<=ylast;biny++) {
8616 for (binx=xfirst;binx<=xlast;binx++) {
8617 bin = GetBin(binx,biny,binz);
8619 if (value < min) min = value;
8620 if (value > max) max = value;
8621 }
8622 }
8623 }
8624}
8625
8626////////////////////////////////////////////////////////////////////////////////
8627/// Redefine x axis parameters.
8628///
8629/// The X axis parameters are modified.
8630/// The bins content array is resized
8631/// if errors (Sumw2) the errors array is resized
8632/// The previous bin contents are lost
8633/// To change only the axis limits, see TAxis::SetRange
8634
8636{
8637 if (GetDimension() != 1) {
8638 Error("SetBins","Operation only valid for 1-d histograms");
8639 return;
8640 }
8641 fXaxis.SetRange(0,0);
8642 fXaxis.Set(nx,xmin,xmax);
8643 fYaxis.Set(1,0,1);
8644 fZaxis.Set(1,0,1);
8645 fNcells = nx+2;
8647 if (fSumw2.fN) {
8649 }
8650}
8651
8652////////////////////////////////////////////////////////////////////////////////
8653/// Redefine x axis parameters with variable bin sizes.
8654///
8655/// The X axis parameters are modified.
8656/// The bins content array is resized
8657/// if errors (Sumw2) the errors array is resized
8658/// The previous bin contents are lost
8659/// To change only the axis limits, see TAxis::SetRange
8660/// xBins is supposed to be of length nx+1
8661
8662void TH1::SetBins(Int_t nx, const Double_t *xBins)
8663{
8664 if (GetDimension() != 1) {
8665 Error("SetBins","Operation only valid for 1-d histograms");
8666 return;
8667 }
8668 fXaxis.SetRange(0,0);
8669 fXaxis.Set(nx,xBins);
8670 fYaxis.Set(1,0,1);
8671 fZaxis.Set(1,0,1);
8672 fNcells = nx+2;
8674 if (fSumw2.fN) {
8676 }
8677}
8678
8679////////////////////////////////////////////////////////////////////////////////
8680/// Redefine x and y axis parameters.
8681///
8682/// The X and Y axis parameters are modified.
8683/// The bins content array is resized
8684/// if errors (Sumw2) the errors array is resized
8685/// The previous bin contents are lost
8686/// To change only the axis limits, see TAxis::SetRange
8687
8689{
8690 if (GetDimension() != 2) {
8691 Error("SetBins","Operation only valid for 2-D histograms");
8692 return;
8693 }
8694 fXaxis.SetRange(0,0);
8695 fYaxis.SetRange(0,0);
8696 fXaxis.Set(nx,xmin,xmax);
8697 fYaxis.Set(ny,ymin,ymax);
8698 fZaxis.Set(1,0,1);
8699 fNcells = (nx+2)*(ny+2);
8701 if (fSumw2.fN) {
8703 }
8704}
8705
8706////////////////////////////////////////////////////////////////////////////////
8707/// Redefine x and y axis parameters with variable bin sizes.
8708///
8709/// The X and Y axis parameters are modified.
8710/// The bins content array is resized
8711/// if errors (Sumw2) the errors array is resized
8712/// The previous bin contents are lost
8713/// To change only the axis limits, see TAxis::SetRange
8714/// xBins is supposed to be of length nx+1, yBins is supposed to be of length ny+1
8715
8716void TH1::SetBins(Int_t nx, const Double_t *xBins, Int_t ny, const Double_t *yBins)
8717{
8718 if (GetDimension() != 2) {
8719 Error("SetBins","Operation only valid for 2-D histograms");
8720 return;
8721 }
8722 fXaxis.SetRange(0,0);
8723 fYaxis.SetRange(0,0);
8724 fXaxis.Set(nx,xBins);
8725 fYaxis.Set(ny,yBins);
8726 fZaxis.Set(1,0,1);
8727 fNcells = (nx+2)*(ny+2);
8729 if (fSumw2.fN) {
8731 }
8732}
8733
8734////////////////////////////////////////////////////////////////////////////////
8735/// Redefine x, y and z axis parameters.
8736///
8737/// The X, Y and Z axis parameters are modified.
8738/// The bins content array is resized
8739/// if errors (Sumw2) the errors array is resized
8740/// The previous bin contents are lost
8741/// To change only the axis limits, see TAxis::SetRange
8742
8744{
8745 if (GetDimension() != 3) {
8746 Error("SetBins","Operation only valid for 3-D histograms");
8747 return;
8748 }
8749 fXaxis.SetRange(0,0);
8750 fYaxis.SetRange(0,0);
8751 fZaxis.SetRange(0,0);
8752 fXaxis.Set(nx,xmin,xmax);
8753 fYaxis.Set(ny,ymin,ymax);
8754 fZaxis.Set(nz,zmin,zmax);
8755 fNcells = (nx+2)*(ny+2)*(nz+2);
8757 if (fSumw2.fN) {
8759 }
8760}
8761
8762////////////////////////////////////////////////////////////////////////////////
8763/// Redefine x, y and z axis parameters with variable bin sizes.
8764///
8765/// The X, Y and Z axis parameters are modified.
8766/// The bins content array is resized
8767/// if errors (Sumw2) the errors array is resized
8768/// The previous bin contents are lost
8769/// To change only the axis limits, see TAxis::SetRange
8770/// xBins is supposed to be of length nx+1, yBins is supposed to be of length ny+1,
8771/// zBins is supposed to be of length nz+1
8772
8773void TH1::SetBins(Int_t nx, const Double_t *xBins, Int_t ny, const Double_t *yBins, Int_t nz, const Double_t *zBins)
8774{
8775 if (GetDimension() != 3) {
8776 Error("SetBins","Operation only valid for 3-D histograms");
8777 return;
8778 }
8779 fXaxis.SetRange(0,0);
8780 fYaxis.SetRange(0,0);
8781 fZaxis.SetRange(0,0);
8782 fXaxis.Set(nx,xBins);
8783 fYaxis.Set(ny,yBins);
8784 fZaxis.Set(nz,zBins);
8785 fNcells = (nx+2)*(ny+2)*(nz+2);
8787 if (fSumw2.fN) {
8789 }
8790}
8791
8792////////////////////////////////////////////////////////////////////////////////
8793/// By default, when a histogram is created, it is added to the list
8794/// of histogram objects in the current directory in memory.
8795/// Remove reference to this histogram from current directory and add
8796/// reference to new directory dir. dir can be 0 in which case the
8797/// histogram does not belong to any directory.
8798///
8799/// Note that the directory is not a real property of the histogram and
8800/// it will not be copied when the histogram is copied or cloned.
8801/// If the user wants to have the copied (cloned) histogram in the same
8802/// directory, he needs to set again the directory using SetDirectory to the
8803/// copied histograms
8804
8806{
8807 if (fDirectory == dir) return;
8808 if (fDirectory) fDirectory->Remove(this);
8809 fDirectory = dir;
8810 if (fDirectory) {
8812 fDirectory->Append(this);
8813 }
8814}
8815
8816////////////////////////////////////////////////////////////////////////////////
8817/// Replace bin errors by values in array error.
8818
8819void TH1::SetError(const Double_t *error)
8820{
8821 for (Int_t i = 0; i < fNcells; ++i) SetBinError(i, error[i]);
8822}
8823
8824////////////////////////////////////////////////////////////////////////////////
8825/// Change the name of this histogram
8827
8828void TH1::SetName(const char *name)
8829{
8830 // Histograms are named objects in a THashList.
8831 // We must update the hashlist if we change the name
8832 // We protect this operation
8834 if (fDirectory) fDirectory->Remove(this);
8835 fName = name;
8836 if (fDirectory) fDirectory->Append(this);
8837}
8838
8839////////////////////////////////////////////////////////////////////////////////
8840/// Change the name and title of this histogram
8841
8842void TH1::SetNameTitle(const char *name, const char *title)
8843{
8844 // Histograms are named objects in a THashList.
8845 // We must update the hashlist if we change the name
8846 SetName(name);
8847 SetTitle(title);
8848}
8849
8850////////////////////////////////////////////////////////////////////////////////
8851/// Set statistics option on/off.
8852///
8853/// By default, the statistics box is drawn.
8854/// The paint options can be selected via gStyle->SetOptStat.
8855/// This function sets/resets the kNoStats bit in the histogram object.
8856/// It has priority over the Style option.
8857
8858void TH1::SetStats(Bool_t stats)
8859{
8861 if (!stats) {
8863 //remove the "stats" object from the list of functions
8864 if (fFunctions) {
8865 TObject *obj = fFunctions->FindObject("stats");
8866 if (obj) {
8867 fFunctions->Remove(obj);
8868 delete obj;
8869 }
8870 }
8871 }
8872}
8873
8874////////////////////////////////////////////////////////////////////////////////
8875/// Create structure to store sum of squares of weights.
8876///
8877/// if histogram is already filled, the sum of squares of weights
8878/// is filled with the existing bin contents
8879///
8880/// The error per bin will be computed as sqrt(sum of squares of weight)
8881/// for each bin.
8882///
8883/// This function is automatically called when the histogram is created
8884/// if the static function TH1::SetDefaultSumw2 has been called before.
8885/// If flag = false the structure containing the sum of the square of weights
8886/// is rest and it will be empty, but it is not deleted (i.e. GetSumw2()->fN = 0)
8887
8888void TH1::Sumw2(Bool_t flag)
8889{
8890 if (!flag) {
8891 // clear the array if existing - do nothing otherwise
8892 if (fSumw2.fN > 0 ) fSumw2.Set(0);
8893 return;
8894 }
8895
8896 if (fSumw2.fN == fNcells) {
8897 if (!fgDefaultSumw2 )
8898 Warning("Sumw2","Sum of squares of weights structure already created");
8899 return;
8900 }
8901
8903
8904 // empty the buffer
8905 if (fBuffer) BufferEmpty();
8906
8907 if (fEntries > 0)
8908 for (Int_t i = 0; i < fNcells; ++i)
8910}
8911
8912////////////////////////////////////////////////////////////////////////////////
8913/// Return pointer to function with name.
8914///
8915///
8916/// Functions such as TH1::Fit store the fitted function in the list of
8917/// functions of this histogram.
8918
8919TF1 *TH1::GetFunction(const char *name) const
8920{
8921 return (TF1*)fFunctions->FindObject(name);
8922}
8923
8924////////////////////////////////////////////////////////////////////////////////
8925/// Return value of error associated to bin number bin.
8926///
8927/// if the sum of squares of weights has been defined (via Sumw2),
8928/// this function returns the sqrt(sum of w2).
8929/// otherwise it returns the sqrt(contents) for this bin.
8930
8932{
8933 if (bin < 0) bin = 0;
8934 if (bin >= fNcells) bin = fNcells-1;
8935 if (fBuffer) ((TH1*)this)->BufferEmpty();
8936 if (fSumw2.fN) return TMath::Sqrt(fSumw2.fArray[bin]);
8937
8939}
8940
8941////////////////////////////////////////////////////////////////////////////////
8942/// Return lower error associated to bin number bin.
8943///
8944/// The error will depend on the statistic option used will return
8945/// the binContent - lower interval value
8946
8948{
8949 if (fBinStatErrOpt == kNormal) return GetBinError(bin);
8950 // in case of weighted histogram check if it is really weighted
8951 if (fSumw2.fN && fTsumw != fTsumw2) return GetBinError(bin);
8952
8953 if (bin < 0) bin = 0;
8954 if (bin >= fNcells) bin = fNcells-1;
8955 if (fBuffer) ((TH1*)this)->BufferEmpty();
8956
8957 Double_t alpha = 1.- 0.682689492;
8958 if (fBinStatErrOpt == kPoisson2) alpha = 0.05;
8959
8961 Int_t n = int(c);
8962 if (n < 0) {
8963 Warning("GetBinErrorLow","Histogram has negative bin content-force usage to normal errors");
8964 ((TH1*)this)->fBinStatErrOpt = kNormal;
8965 return GetBinError(bin);
8966 }
8967
8968 if (n == 0) return 0;
8969 return c - ROOT::Math::gamma_quantile( alpha/2, n, 1.);
8970}
8971
8972////////////////////////////////////////////////////////////////////////////////
8973/// Return upper error associated to bin number bin.
8974///
8975/// The error will depend on the statistic option used will return
8976/// the binContent - upper interval value
8977
8979{
8980 if (fBinStatErrOpt == kNormal) return GetBinError(bin);
8981 // in case of weighted histogram check if it is really weighted
8982 if (fSumw2.fN && fTsumw != fTsumw2) return GetBinError(bin);
8983 if (bin < 0) bin = 0;
8984 if (bin >= fNcells) bin = fNcells-1;
8985 if (fBuffer) ((TH1*)this)->BufferEmpty();
8986
8987 Double_t alpha = 1.- 0.682689492;
8988 if (fBinStatErrOpt == kPoisson2) alpha = 0.05;
8989
8991 Int_t n = int(c);
8992 if (n < 0) {
8993 Warning("GetBinErrorUp","Histogram has negative bin content-force usage to normal errors");
8994 ((TH1*)this)->fBinStatErrOpt = kNormal;
8995 return GetBinError(bin);
8996 }
8997
8998 // for N==0 return an upper limit at 0.68 or (1-alpha)/2 ?
8999 // decide to return always (1-alpha)/2 upper interval
9000 //if (n == 0) return ROOT::Math::gamma_quantile_c(alpha,n+1,1);
9001 return ROOT::Math::gamma_quantile_c( alpha/2, n+1, 1) - c;
9002}
9003
9004//L.M. These following getters are useless and should be probably deprecated
9005////////////////////////////////////////////////////////////////////////////////
9006/// Return bin center for 1D histogram.
9007/// Better to use h1.GetXaxis()->GetBinCenter(bin)
9008
9010{
9011 if (fDimension == 1) return fXaxis.GetBinCenter(bin);
9012 Error("GetBinCenter","Invalid method for a %d-d histogram - return a NaN",fDimension);
9013 return TMath::QuietNaN();
9014}
9015
9016////////////////////////////////////////////////////////////////////////////////
9017/// Return bin lower edge for 1D histogram.
9018/// Better to use h1.GetXaxis()->GetBinLowEdge(bin)
9019
9021{
9022 if (fDimension == 1) return fXaxis.GetBinLowEdge(bin);
9023 Error("GetBinLowEdge","Invalid method for a %d-d histogram - return a NaN",fDimension);
9024 return TMath::QuietNaN();
9025}
9026
9027////////////////////////////////////////////////////////////////////////////////
9028/// Return bin width for 1D histogram.
9029/// Better to use h1.GetXaxis()->GetBinWidth(bin)
9030
9032{
9033 if (fDimension == 1) return fXaxis.GetBinWidth(bin);
9034 Error("GetBinWidth","Invalid method for a %d-d histogram - return a NaN",fDimension);
9035 return TMath::QuietNaN();
9036}
9037
9038////////////////////////////////////////////////////////////////////////////////
9039/// Fill array with center of bins for 1D histogram
9040/// Better to use h1.GetXaxis()->GetCenter(center)
9041
9042void TH1::GetCenter(Double_t *center) const
9043{
9044 if (fDimension == 1) {
9045 fXaxis.GetCenter(center);
9046 return;
9047 }
9048 Error("GetCenter","Invalid method for a %d-d histogram ",fDimension);
9049}
9050
9051////////////////////////////////////////////////////////////////////////////////
9052/// Fill array with low edge of bins for 1D histogram
9053/// Better to use h1.GetXaxis()->GetLowEdge(edge)
9054
9055void TH1::GetLowEdge(Double_t *edge) const
9056{
9057 if (fDimension == 1) {
9058 fXaxis.GetLowEdge(edge);
9059 return;
9060 }
9061 Error("GetLowEdge","Invalid method for a %d-d histogram ",fDimension);
9062}
9063
9064////////////////////////////////////////////////////////////////////////////////
9065/// Set the bin Error
9066/// Note that this resets the bin eror option to be of Normal Type and for the
9067/// non-empty bin the bin error is set by default to the square root of their content.
9068/// Note that in case the user sets after calling SetBinError explicitly a new bin content (e.g. using SetBinContent)
9069/// he needs then to provide also the corresponding bin error (using SetBinError) since the bin error
9070/// will not be recalculated after setting the content and a default error = 0 will be used for those bins.
9071///
9072/// See convention for numbering bins in TH1::GetBin
9073
9074void TH1::SetBinError(Int_t bin, Double_t error)
9075{
9076 if (bin < 0 || bin>= fNcells) return;
9077 if (!fSumw2.fN) Sumw2();
9078 fSumw2.fArray[bin] = error * error;
9079 // reset the bin error option
9081}
9082
9083////////////////////////////////////////////////////////////////////////////////
9084/// Set bin content
9085/// see convention for numbering bins in TH1::GetBin
9086/// In case the bin number is greater than the number of bins and
9087/// the timedisplay option is set or CanExtendAllAxes(),
9088/// the number of bins is automatically doubled to accommodate the new bin
9089
9090void TH1::SetBinContent(Int_t bin, Double_t content)
9091{
9092 fEntries++;
9093 fTsumw = 0;
9094 if (bin < 0) return;
9095 if (bin >= fNcells-1) {
9097 while (bin >= fNcells-1) LabelsInflate();
9098 } else {
9099 if (bin == fNcells-1) UpdateBinContent(bin, content);
9100 return;
9101 }
9102 }
9103 UpdateBinContent(bin, content);
9104}
9105
9106////////////////////////////////////////////////////////////////////////////////
9107/// See convention for numbering bins in TH1::GetBin
9108
9109void TH1::SetBinError(Int_t binx, Int_t biny, Double_t error)
9110{
9111 if (binx < 0 || binx > fXaxis.GetNbins() + 1) return;
9112 if (biny < 0 || biny > fYaxis.GetNbins() + 1) return;
9113 SetBinError(GetBin(binx, biny), error);
9114}
9115
9116////////////////////////////////////////////////////////////////////////////////
9117/// See convention for numbering bins in TH1::GetBin
9118
9119void TH1::SetBinError(Int_t binx, Int_t biny, Int_t binz, Double_t error)
9120{
9121 if (binx < 0 || binx > fXaxis.GetNbins() + 1) return;
9122 if (biny < 0 || biny > fYaxis.GetNbins() + 1) return;
9123 if (binz < 0 || binz > fZaxis.GetNbins() + 1) return;
9124 SetBinError(GetBin(binx, biny, binz), error);
9125}
9126
9127////////////////////////////////////////////////////////////////////////////////
9128/// This function calculates the background spectrum in this histogram.
9129/// The background is returned as a histogram.
9130///
9131/// \param[in] niter number of iterations (default value = 2)
9132/// Increasing niter make the result smoother and lower.
9133/// \param[in] option may contain one of the following options
9134/// - to set the direction parameter
9135/// "BackDecreasingWindow". By default the direction is BackIncreasingWindow
9136/// - filterOrder-order of clipping filter (default "BackOrder2")
9137/// possible values= "BackOrder4" "BackOrder6" "BackOrder8"
9138/// - "nosmoothing" - if selected, the background is not smoothed
9139/// By default the background is smoothed.
9140/// - smoothWindow - width of smoothing window, (default is "BackSmoothing3")
9141/// possible values= "BackSmoothing5" "BackSmoothing7" "BackSmoothing9"
9142/// "BackSmoothing11" "BackSmoothing13" "BackSmoothing15"
9143/// - "nocompton" - if selected the estimation of Compton edge
9144/// will be not be included (by default the compton estimation is set)
9145/// - "same" if this option is specified, the resulting background
9146/// histogram is superimposed on the picture in the current pad.
9147/// This option is given by default.
9148///
9149/// NOTE that the background is only evaluated in the current range of this histogram.
9150/// i.e., if this has a bin range (set via h->GetXaxis()->SetRange(binmin, binmax),
9151/// the returned histogram will be created with the same number of bins
9152/// as this input histogram, but only bins from binmin to binmax will be filled
9153/// with the estimated background.
9154
9156{
9157 return (TH1*)gROOT->ProcessLineFast(TString::Format("TSpectrum::StaticBackground((TH1*)0x%zx,%d,\"%s\")",
9158 (size_t)this, niter, option).Data());
9159}
9160
9161////////////////////////////////////////////////////////////////////////////////
9162/// Interface to TSpectrum::Search.
9163/// The function finds peaks in this histogram where the width is > sigma
9164/// and the peak maximum greater than threshold*maximum bin content of this.
9165/// For more details see TSpectrum::Search.
9166/// Note the difference in the default value for option compared to TSpectrum::Search
9167/// option="" by default (instead of "goff").
9168
9170{
9171 return (Int_t)gROOT->ProcessLineFast(TString::Format("TSpectrum::StaticSearch((TH1*)0x%zx,%g,\"%s\",%g)",
9172 (size_t)this, sigma, option, threshold).Data());
9173}
9174
9175////////////////////////////////////////////////////////////////////////////////
9176/// For a given transform (first parameter), fills the histogram (second parameter)
9177/// with the transform output data, specified in the third parameter
9178/// If the 2nd parameter h_output is empty, a new histogram (TH1D or TH2D) is created
9179/// and the user is responsible for deleting it.
9180///
9181/// Available options:
9182/// - "RE" - real part of the output
9183/// - "IM" - imaginary part of the output
9184/// - "MAG" - magnitude of the output
9185/// - "PH" - phase of the output
9186
9188{
9189 if (!fft || !fft->GetN() ) {
9190 ::Error("TransformHisto","Invalid FFT transform class");
9191 return 0;
9192 }
9193
9194 if (fft->GetNdim()>2){
9195 ::Error("TransformHisto","Only 1d and 2D transform are supported");
9196 return 0;
9197 }
9198 Int_t binx,biny;
9199 TString opt = option;
9200 opt.ToUpper();
9201 Int_t *n = fft->GetN();
9202 TH1 *hout=0;
9203 if (h_output) {
9204 hout = h_output;
9205 }
9206 else {
9207 TString name = TString::Format("out_%s", opt.Data());
9208 if (fft->GetNdim()==1)
9209 hout = new TH1D(name, name,n[0], 0, n[0]);
9210 else if (fft->GetNdim()==2)
9211 hout = new TH2D(name, name, n[0], 0, n[0], n[1], 0, n[1]);
9212 }
9213 R__ASSERT(hout != 0);
9214 TString type=fft->GetType();
9215 Int_t ind[2];
9216 if (opt.Contains("RE")){
9217 if (type.Contains("2C") || type.Contains("2HC")) {
9218 Double_t re, im;
9219 for (binx = 1; binx<=hout->GetNbinsX(); binx++) {
9220 for (biny=1; biny<=hout->GetNbinsY(); biny++) {
9221 ind[0] = binx-1; ind[1] = biny-1;
9222 fft->GetPointComplex(ind, re, im);
9223 hout->SetBinContent(binx, biny, re);
9224 }
9225 }
9226 } else {
9227 for (binx = 1; binx<=hout->GetNbinsX(); binx++) {
9228 for (biny=1; biny<=hout->GetNbinsY(); biny++) {
9229 ind[0] = binx-1; ind[1] = biny-1;
9230 hout->SetBinContent(binx, biny, fft->GetPointReal(ind));
9231 }
9232 }
9233 }
9234 }
9235 if (opt.Contains("IM")) {
9236 if (type.Contains("2C") || type.Contains("2HC")) {
9237 Double_t re, im;
9238 for (binx = 1; binx<=hout->GetNbinsX(); binx++) {
9239 for (biny=1; biny<=hout->GetNbinsY(); biny++) {
9240 ind[0] = binx-1; ind[1] = biny-1;
9241 fft->GetPointComplex(ind, re, im);
9242 hout->SetBinContent(binx, biny, im);
9243 }
9244 }
9245 } else {
9246 ::Error("TransformHisto","No complex numbers in the output");
9247 return 0;
9248 }
9249 }
9250 if (opt.Contains("MA")) {
9251 if (type.Contains("2C") || type.Contains("2HC")) {
9252 Double_t re, im;
9253 for (binx = 1; binx<=hout->GetNbinsX(); binx++) {
9254 for (biny=1; biny<=hout->GetNbinsY(); biny++) {
9255 ind[0] = binx-1; ind[1] = biny-1;
9256 fft->GetPointComplex(ind, re, im);
9257 hout->SetBinContent(binx, biny, TMath::Sqrt(re*re + im*im));
9258 }
9259 }
9260 } else {
9261 for (binx = 1; binx<=hout->GetNbinsX(); binx++) {
9262 for (biny=1; biny<=hout->GetNbinsY(); biny++) {
9263 ind[0] = binx-1; ind[1] = biny-1;
9264 hout->SetBinContent(binx, biny, TMath::Abs(fft->GetPointReal(ind)));
9265 }
9266 }
9267 }
9268 }
9269 if (opt.Contains("PH")) {
9270 if (type.Contains("2C") || type.Contains("2HC")){
9271 Double_t re, im, ph;
9272 for (binx = 1; binx<=hout->GetNbinsX(); binx++){
9273 for (biny=1; biny<=hout->GetNbinsY(); biny++){
9274 ind[0] = binx-1; ind[1] = biny-1;
9275 fft->GetPointComplex(ind, re, im);
9276 if (TMath::Abs(re) > 1e-13){
9277 ph = TMath::ATan(im/re);
9278 //find the correct quadrant
9279 if (re<0 && im<0)
9280 ph -= TMath::Pi();
9281 if (re<0 && im>=0)
9282 ph += TMath::Pi();
9283 } else {
9284 if (TMath::Abs(im) < 1e-13)
9285 ph = 0;
9286 else if (im>0)
9287 ph = TMath::Pi()*0.5;
9288 else
9289 ph = -TMath::Pi()*0.5;
9290 }
9291 hout->SetBinContent(binx, biny, ph);
9292 }
9293 }
9294 } else {
9295 printf("Pure real output, no phase");
9296 return 0;
9297 }
9298 }
9299
9300 return hout;
9301}
9302
9303////////////////////////////////////////////////////////////////////////////////
9304/// Raw retrieval of bin content on internal data structure
9305/// see convention for numbering bins in TH1::GetBin
9306
9308{
9309 AbstractMethod("RetrieveBinContent");
9310 return 0;
9311}
9312
9313////////////////////////////////////////////////////////////////////////////////
9314/// Raw update of bin content on internal data structure
9315/// see convention for numbering bins in TH1::GetBin
9316
9318{
9319 AbstractMethod("UpdateBinContent");
9320}
9321
9322////////////////////////////////////////////////////////////////////////////////
9323/// Print value overload
9324
9325std::string cling::printValue(TH1 *val) {
9326 std::ostringstream strm;
9327 strm << cling::printValue((TObject*)val) << " NbinsX: " << val->GetNbinsX();
9328 return strm.str();
9329}
9330
9331//______________________________________________________________________________
9332// TH1C methods
9333// TH1C : histograms with one byte per channel. Maximum bin content = 127
9334//______________________________________________________________________________
9335
9336ClassImp(TH1C);
9337
9338////////////////////////////////////////////////////////////////////////////////
9339/// Constructor.
9340
9341TH1C::TH1C(): TH1(), TArrayC()
9342{
9343 fDimension = 1;
9344 SetBinsLength(3);
9345 if (fgDefaultSumw2) Sumw2();
9346}
9347
9348////////////////////////////////////////////////////////////////////////////////
9349/// Create a 1-Dim histogram with fix bins of type char (one byte per channel)
9350/// (see TH1::TH1 for explanation of parameters)
9351
9352TH1C::TH1C(const char *name,const char *title,Int_t nbins,Double_t xlow,Double_t xup)
9353: TH1(name,title,nbins,xlow,xup)
9354{
9355 fDimension = 1;
9357
9358 if (xlow >= xup) SetBuffer(fgBufferSize);
9359 if (fgDefaultSumw2) Sumw2();
9360}
9361
9362////////////////////////////////////////////////////////////////////////////////
9363/// Create a 1-Dim histogram with variable bins of type char (one byte per channel)
9364/// (see TH1::TH1 for explanation of parameters)
9365
9366TH1C::TH1C(const char *name,const char *title,Int_t nbins,const Float_t *xbins)
9367: TH1(name,title,nbins,xbins)
9368{
9369 fDimension = 1;
9371 if (fgDefaultSumw2) Sumw2();
9372}
9373
9374////////////////////////////////////////////////////////////////////////////////
9375/// Create a 1-Dim histogram with variable bins of type char (one byte per channel)
9376/// (see TH1::TH1 for explanation of parameters)
9377
9378TH1C::TH1C(const char *name,const char *title,Int_t nbins,const Double_t *xbins)
9379: TH1(name,title,nbins,xbins)
9380{
9381 fDimension = 1;
9383 if (fgDefaultSumw2) Sumw2();
9384}
9385
9386////////////////////////////////////////////////////////////////////////////////
9387/// Destructor.
9388
9390{
9391}
9392
9393////////////////////////////////////////////////////////////////////////////////
9394/// Copy constructor.
9395/// The list of functions is not copied. (Use Clone() if needed)
9396
9397TH1C::TH1C(const TH1C &h1c) : TH1(), TArrayC()
9398{
9399 h1c.TH1C::Copy(*this);
9400}
9401
9402////////////////////////////////////////////////////////////////////////////////
9403/// Increment bin content by 1.
9404
9405void TH1C::AddBinContent(Int_t bin)
9406{
9407 if (fArray[bin] < 127) fArray[bin]++;
9408}
9409
9410////////////////////////////////////////////////////////////////////////////////
9411/// Increment bin content by w.
9412
9414{
9415 Int_t newval = fArray[bin] + Int_t(w);
9416 if (newval > -128 && newval < 128) {fArray[bin] = Char_t(newval); return;}
9417 if (newval < -127) fArray[bin] = -127;
9418 if (newval > 127) fArray[bin] = 127;
9419}
9420
9421////////////////////////////////////////////////////////////////////////////////
9422/// Copy this to newth1
9423
9424void TH1C::Copy(TObject &newth1) const
9425{
9426 TH1::Copy(newth1);
9427}
9428
9429////////////////////////////////////////////////////////////////////////////////
9430/// Reset.
9431
9433{
9436}
9437
9438////////////////////////////////////////////////////////////////////////////////
9439/// Set total number of bins including under/overflow
9440/// Reallocate bin contents array
9441
9443{
9444 if (n < 0) n = fXaxis.GetNbins() + 2;
9445 fNcells = n;
9446 TArrayC::Set(n);
9447}
9448
9449////////////////////////////////////////////////////////////////////////////////
9450/// Operator =
9451
9452TH1C& TH1C::operator=(const TH1C &h1)
9453{
9454 if (this != &h1)
9455 h1.TH1C::Copy(*this);
9456 return *this;
9457}
9458
9459////////////////////////////////////////////////////////////////////////////////
9460/// Operator *
9461
9463{
9464 TH1C hnew = h1;
9465 hnew.Scale(c1);
9466 hnew.SetDirectory(nullptr);
9467 return hnew;
9468}
9469
9470////////////////////////////////////////////////////////////////////////////////
9471/// Operator +
9472
9473TH1C operator+(const TH1C &h1, const TH1C &h2)
9474{
9475 TH1C hnew = h1;
9476 hnew.Add(&h2,1);
9477 hnew.SetDirectory(nullptr);
9478 return hnew;
9479}
9480
9481////////////////////////////////////////////////////////////////////////////////
9482/// Operator -
9483
9484TH1C operator-(const TH1C &h1, const TH1C &h2)
9485{
9486 TH1C hnew = h1;
9487 hnew.Add(&h2,-1);
9488 hnew.SetDirectory(nullptr);
9489 return hnew;
9490}
9491
9492////////////////////////////////////////////////////////////////////////////////
9493/// Operator *
9494
9495TH1C operator*(const TH1C &h1, const TH1C &h2)
9496{
9497 TH1C hnew = h1;
9498 hnew.Multiply(&h2);
9499 hnew.SetDirectory(nullptr);
9500 return hnew;
9501}
9502
9503////////////////////////////////////////////////////////////////////////////////
9504/// Operator /
9505
9506TH1C operator/(const TH1C &h1, const TH1C &h2)
9507{
9508 TH1C hnew = h1;
9509 hnew.Divide(&h2);
9510 hnew.SetDirectory(nullptr);
9511 return hnew;
9512}
9513
9514//______________________________________________________________________________
9515// TH1S methods
9516// TH1S : histograms with one short per channel. Maximum bin content = 32767
9517//______________________________________________________________________________
9518
9519ClassImp(TH1S);
9520
9521////////////////////////////////////////////////////////////////////////////////
9522/// Constructor.
9523
9524TH1S::TH1S(): TH1(), TArrayS()
9525{
9526 fDimension = 1;
9527 SetBinsLength(3);
9528 if (fgDefaultSumw2) Sumw2();
9529}
9530
9531////////////////////////////////////////////////////////////////////////////////
9532/// Create a 1-Dim histogram with fix bins of type short
9533/// (see TH1::TH1 for explanation of parameters)
9534
9535TH1S::TH1S(const char *name,const char *title,Int_t nbins,Double_t xlow,Double_t xup)
9536: TH1(name,title,nbins,xlow,xup)
9537{
9538 fDimension = 1;
9540
9541 if (xlow >= xup) SetBuffer(fgBufferSize);
9542 if (fgDefaultSumw2) Sumw2();
9543}
9544
9545////////////////////////////////////////////////////////////////////////////////
9546/// Create a 1-Dim histogram with variable bins of type short
9547/// (see TH1::TH1 for explanation of parameters)
9548
9549TH1S::TH1S(const char *name,const char *title,Int_t nbins,const Float_t *xbins)
9550: TH1(name,title,nbins,xbins)
9551{
9552 fDimension = 1;
9554 if (fgDefaultSumw2) Sumw2();
9555}
9556
9557////////////////////////////////////////////////////////////////////////////////
9558/// Create a 1-Dim histogram with variable bins of type short
9559/// (see TH1::TH1 for explanation of parameters)
9560
9561TH1S::TH1S(const char *name,const char *title,Int_t nbins,const Double_t *xbins)
9562: TH1(name,title,nbins,xbins)
9563{
9564 fDimension = 1;
9566 if (fgDefaultSumw2) Sumw2();
9567}
9568
9569////////////////////////////////////////////////////////////////////////////////
9570/// Destructor.
9571
9573{
9574}
9575
9576////////////////////////////////////////////////////////////////////////////////
9577/// Copy constructor.
9578/// The list of functions is not copied. (Use Clone() if needed)
9579
9580TH1S::TH1S(const TH1S &h1s) : TH1(), TArrayS()
9581{
9582 h1s.TH1S::Copy(*this);
9583}
9584
9585////////////////////////////////////////////////////////////////////////////////
9586/// Increment bin content by 1.
9587
9588void TH1S::AddBinContent(Int_t bin)
9589{
9590 if (fArray[bin] < 32767) fArray[bin]++;
9591}
9592
9593////////////////////////////////////////////////////////////////////////////////
9594/// Increment bin content by w
9595
9597{
9598 Int_t newval = fArray[bin] + Int_t(w);
9599 if (newval > -32768 && newval < 32768) {fArray[bin] = Short_t(newval); return;}
9600 if (newval < -32767) fArray[bin] = -32767;
9601 if (newval > 32767) fArray[bin] = 32767;
9602}
9603
9604////////////////////////////////////////////////////////////////////////////////
9605/// Copy this to newth1
9606
9607void TH1S::Copy(TObject &newth1) const
9608{
9609 TH1::Copy(newth1);
9610}
9611
9612////////////////////////////////////////////////////////////////////////////////
9613/// Reset.
9614
9616{
9619}
9620
9621////////////////////////////////////////////////////////////////////////////////
9622/// Set total number of bins including under/overflow
9623/// Reallocate bin contents array
9624
9626{
9627 if (n < 0) n = fXaxis.GetNbins() + 2;
9628 fNcells = n;
9629 TArrayS::Set(n);
9630}
9631
9632////////////////////////////////////////////////////////////////////////////////
9633/// Operator =
9634
9635TH1S& TH1S::operator=(const TH1S &h1)
9636{
9637 if (this != &h1)
9638 h1.TH1S::Copy(*this);
9639 return *this;
9640}
9641
9642////////////////////////////////////////////////////////////////////////////////
9643/// Operator *
9644
9646{
9647 TH1S hnew = h1;
9648 hnew.Scale(c1);
9649 hnew.SetDirectory(nullptr);
9650 return hnew;
9651}
9652
9653////////////////////////////////////////////////////////////////////////////////
9654/// Operator +
9655
9656TH1S operator+(const TH1S &h1, const TH1S &h2)
9657{
9658 TH1S hnew = h1;
9659 hnew.Add(&h2,1);
9660 hnew.SetDirectory(nullptr);
9661 return hnew;
9662}
9663
9664////////////////////////////////////////////////////////////////////////////////
9665/// Operator -
9666
9667TH1S operator-(const TH1S &h1, const TH1S &h2)
9668{
9669 TH1S hnew = h1;
9670 hnew.Add(&h2,-1);
9671 hnew.SetDirectory(nullptr);
9672 return hnew;
9673}
9674
9675////////////////////////////////////////////////////////////////////////////////
9676/// Operator *
9677
9678TH1S operator*(const TH1S &h1, const TH1S &h2)
9679{
9680 TH1S hnew = h1;
9681 hnew.Multiply(&h2);
9682 hnew.SetDirectory(nullptr);
9683 return hnew;
9684}
9685
9686////////////////////////////////////////////////////////////////////////////////
9687/// Operator /
9688
9689TH1S operator/(const TH1S &h1, const TH1S &h2)
9690{
9691 TH1S hnew = h1;
9692 hnew.Divide(&h2);
9693 hnew.SetDirectory(nullptr);
9694 return hnew;
9695}
9696
9697//______________________________________________________________________________
9698// TH1I methods
9699// TH1I : histograms with one int per channel. Maximum bin content = 2147483647
9700// 2147483647 = INT_MAX
9701//______________________________________________________________________________
9702
9703ClassImp(TH1I);
9704
9705////////////////////////////////////////////////////////////////////////////////
9706/// Constructor.
9707
9708TH1I::TH1I(): TH1(), TArrayI()
9709{
9710 fDimension = 1;
9711 SetBinsLength(3);
9712 if (fgDefaultSumw2) Sumw2();
9713}
9714
9715////////////////////////////////////////////////////////////////////////////////
9716/// Create a 1-Dim histogram with fix bins of type integer
9717/// (see TH1::TH1 for explanation of parameters)
9718
9719TH1I::TH1I(const char *name,const char *title,Int_t nbins,Double_t xlow,Double_t xup)
9720: TH1(name,title,nbins,xlow,xup)
9721{
9722 fDimension = 1;
9724
9725 if (xlow >= xup) SetBuffer(fgBufferSize);
9726 if (fgDefaultSumw2) Sumw2();
9727}
9728
9729////////////////////////////////////////////////////////////////////////////////
9730/// Create a 1-Dim histogram with variable bins of type integer
9731/// (see TH1::TH1 for explanation of parameters)
9732
9733TH1I::TH1I(const char *name,const char *title,Int_t nbins,const Float_t *xbins)
9734: TH1(name,title,nbins,xbins)
9735{
9736 fDimension = 1;
9738 if (fgDefaultSumw2) Sumw2();
9739}
9740
9741////////////////////////////////////////////////////////////////////////////////
9742/// Create a 1-Dim histogram with variable bins of type integer
9743/// (see TH1::TH1 for explanation of parameters)
9744
9745TH1I::TH1I(const char *name,const char *title,Int_t nbins,const Double_t *xbins)
9746: TH1(name,title,nbins,xbins)
9747{
9748 fDimension = 1;
9750 if (fgDefaultSumw2) Sumw2();
9751}
9752
9753////////////////////////////////////////////////////////////////////////////////
9754/// Destructor.
9755
9757{
9758}
9759
9760////////////////////////////////////////////////////////////////////////////////
9761/// Copy constructor.
9762/// The list of functions is not copied. (Use Clone() if needed)
9763
9764TH1I::TH1I(const TH1I &h1i) : TH1(), TArrayI()
9765{
9766 h1i.TH1I::Copy(*this);
9767}
9768
9769////////////////////////////////////////////////////////////////////////////////
9770/// Increment bin content by 1.
9771
9772void TH1I::AddBinContent(Int_t bin)
9773{
9774 if (fArray[bin] < INT_MAX) fArray[bin]++;
9775}
9776
9777////////////////////////////////////////////////////////////////////////////////
9778/// Increment bin content by w
9779
9781{
9782 Long64_t newval = fArray[bin] + Long64_t(w);
9783 if (newval > -INT_MAX && newval < INT_MAX) {fArray[bin] = Int_t(newval); return;}
9784 if (newval < -INT_MAX) fArray[bin] = -INT_MAX;
9785 if (newval > INT_MAX) fArray[bin] = INT_MAX;
9786}
9787
9788////////////////////////////////////////////////////////////////////////////////
9789/// Copy this to newth1
9790
9791void TH1I::Copy(TObject &newth1) const
9792{
9793 TH1::Copy(newth1);
9794}
9795
9796////////////////////////////////////////////////////////////////////////////////
9797/// Reset.
9798
9800{
9803}
9804
9805////////////////////////////////////////////////////////////////////////////////
9806/// Set total number of bins including under/overflow
9807/// Reallocate bin contents array
9808
9810{
9811 if (n < 0) n = fXaxis.GetNbins() + 2;
9812 fNcells = n;
9813 TArrayI::Set(n);
9814}
9815
9816////////////////////////////////////////////////////////////////////////////////
9817/// Operator =
9818
9819TH1I& TH1I::operator=(const TH1I &h1)
9820{
9821 if (this != &h1)
9822 h1.TH1I::Copy(*this);
9823 return *this;
9824}
9825
9826
9827////////////////////////////////////////////////////////////////////////////////
9828/// Operator *
9829
9831{
9832 TH1I hnew = h1;
9833 hnew.Scale(c1);
9834 hnew.SetDirectory(nullptr);
9835 return hnew;
9836}
9837
9838////////////////////////////////////////////////////////////////////////////////
9839/// Operator +
9840
9841TH1I operator+(const TH1I &h1, const TH1I &h2)
9842{
9843 TH1I hnew = h1;
9844 hnew.Add(&h2,1);
9845 hnew.SetDirectory(nullptr);
9846 return hnew;
9847}
9848
9849////////////////////////////////////////////////////////////////////////////////
9850/// Operator -
9851
9852TH1I operator-(const TH1I &h1, const TH1I &h2)
9853{
9854 TH1I hnew = h1;
9855 hnew.Add(&h2,-1);
9856 hnew.SetDirectory(nullptr);
9857 return hnew;
9858}
9859
9860////////////////////////////////////////////////////////////////////////////////
9861/// Operator *
9862
9863TH1I operator*(const TH1I &h1, const TH1I &h2)
9864{
9865 TH1I hnew = h1;
9866 hnew.Multiply(&h2);
9867 hnew.SetDirectory(nullptr);
9868 return hnew;
9869}
9870
9871////////////////////////////////////////////////////////////////////////////////
9872/// Operator /
9873
9874TH1I operator/(const TH1I &h1, const TH1I &h2)
9875{
9876 TH1I hnew = h1;
9877 hnew.Divide(&h2);
9878 hnew.SetDirectory(nullptr);
9879 return hnew;
9880}
9881
9882//______________________________________________________________________________
9883// TH1F methods
9884// TH1F : histograms with one float per channel. Maximum precision 7 digits
9885//______________________________________________________________________________
9886
9887ClassImp(TH1F);
9888
9889////////////////////////////////////////////////////////////////////////////////
9890/// Constructor.
9891
9892TH1F::TH1F(): TH1(), TArrayF()
9893{
9894 fDimension = 1;
9895 SetBinsLength(3);
9896 if (fgDefaultSumw2) Sumw2();
9897}
9898
9899////////////////////////////////////////////////////////////////////////////////
9900/// Create a 1-Dim histogram with fix bins of type float
9901/// (see TH1::TH1 for explanation of parameters)
9902
9903TH1F::TH1F(const char *name,const char *title,Int_t nbins,Double_t xlow,Double_t xup)
9904: TH1(name,title,nbins,xlow,xup)
9905{
9906 fDimension = 1;
9908
9909 if (xlow >= xup) SetBuffer(fgBufferSize);
9910 if (fgDefaultSumw2) Sumw2();
9911}
9912
9913////////////////////////////////////////////////////////////////////////////////
9914/// Create a 1-Dim histogram with variable bins of type float
9915/// (see TH1::TH1 for explanation of parameters)
9916
9917TH1F::TH1F(const char *name,const char *title,Int_t nbins,const Float_t *xbins)
9918: TH1(name,title,nbins,xbins)
9919{
9920 fDimension = 1;
9922 if (fgDefaultSumw2) Sumw2();
9923}
9924
9925////////////////////////////////////////////////////////////////////////////////
9926/// Create a 1-Dim histogram with variable bins of type float
9927/// (see TH1::TH1 for explanation of parameters)
9928
9929TH1F::TH1F(const char *name,const char *title,Int_t nbins,const Double_t *xbins)
9930: TH1(name,title,nbins,xbins)
9931{
9932 fDimension = 1;
9934 if (fgDefaultSumw2) Sumw2();
9935}
9936
9937////////////////////////////////////////////////////////////////////////////////
9938/// Create a histogram from a TVectorF
9939/// by default the histogram name is "TVectorF" and title = ""
9940
9941TH1F::TH1F(const TVectorF &v)
9942: TH1("TVectorF","",v.GetNrows(),0,v.GetNrows())
9943{
9945 fDimension = 1;
9946 Int_t ivlow = v.GetLwb();
9947 for (Int_t i=0;i<fNcells-2;i++) {
9948 SetBinContent(i+1,v(i+ivlow));
9949 }
9951 if (fgDefaultSumw2) Sumw2();
9952}
9953
9954////////////////////////////////////////////////////////////////////////////////
9955/// Copy Constructor.
9956/// The list of functions is not copied. (Use Clone() if needed)
9957
9958TH1F::TH1F(const TH1F &h1f) : TH1(), TArrayF()
9959{
9960 h1f.TH1F::Copy(*this);
9961}
9962
9963////////////////////////////////////////////////////////////////////////////////
9964/// Destructor.
9965
9967{
9968}
9969
9970////////////////////////////////////////////////////////////////////////////////
9971/// Copy this to newth1.
9972
9973void TH1F::Copy(TObject &newth1) const
9974{
9975 TH1::Copy(newth1);
9976}
9977
9978////////////////////////////////////////////////////////////////////////////////
9979/// Reset.
9980
9982{
9985}
9986
9987////////////////////////////////////////////////////////////////////////////////
9988/// Set total number of bins including under/overflow
9989/// Reallocate bin contents array
9990
9992{
9993 if (n < 0) n = fXaxis.GetNbins() + 2;
9994 fNcells = n;
9995 TArrayF::Set(n);
9996}
9997
9998////////////////////////////////////////////////////////////////////////////////
9999/// Operator =
10000
10001TH1F& TH1F::operator=(const TH1F &h1f)
10002{
10003 if (this != &h1f)
10004 h1f.TH1F::Copy(*this);
10005 return *this;
10006}
10007
10008////////////////////////////////////////////////////////////////////////////////
10009/// Operator *
10010
10012{
10013 TH1F hnew = h1;
10014 hnew.Scale(c1);
10015 hnew.SetDirectory(nullptr);
10016 return hnew;
10017}
10018
10019////////////////////////////////////////////////////////////////////////////////
10020/// Operator +
10021
10022TH1F operator+(const TH1F &h1, const TH1F &h2)
10023{
10024 TH1F hnew = h1;
10025 hnew.Add(&h2,1);
10026 hnew.SetDirectory(nullptr);
10027 return hnew;
10028}
10029
10030////////////////////////////////////////////////////////////////////////////////
10031/// Operator -
10032
10033TH1F operator-(const TH1F &h1, const TH1F &h2)
10034{
10035 TH1F hnew = h1;
10036 hnew.Add(&h2,-1);
10037 hnew.SetDirectory(nullptr);
10038 return hnew;
10039}
10040
10041////////////////////////////////////////////////////////////////////////////////
10042/// Operator *
10043
10044TH1F operator*(const TH1F &h1, const TH1F &h2)
10045{
10046 TH1F hnew = h1;
10047 hnew.Multiply(&h2);
10048 hnew.SetDirectory(nullptr);
10049 return hnew;
10050}
10051
10052////////////////////////////////////////////////////////////////////////////////
10053/// Operator /
10054
10055TH1F operator/(const TH1F &h1, const TH1F &h2)
10056{
10057 TH1F hnew = h1;
10058 hnew.Divide(&h2);
10059 hnew.SetDirectory(nullptr);
10060 return hnew;
10061}
10062
10063//______________________________________________________________________________
10064// TH1D methods
10065// TH1D : histograms with one double per channel. Maximum precision 14 digits
10066//______________________________________________________________________________
10067
10068ClassImp(TH1D);
10069
10070////////////////////////////////////////////////////////////////////////////////
10071/// Constructor.
10072
10073TH1D::TH1D(): TH1(), TArrayD()
10074{
10075 fDimension = 1;
10076 SetBinsLength(3);
10077 if (fgDefaultSumw2) Sumw2();
10078}
10079
10080////////////////////////////////////////////////////////////////////////////////
10081/// Create a 1-Dim histogram with fix bins of type double
10082/// (see TH1::TH1 for explanation of parameters)
10083
10084TH1D::TH1D(const char *name,const char *title,Int_t nbins,Double_t xlow,Double_t xup)
10085: TH1(name,title,nbins,xlow,xup)
10086{
10087 fDimension = 1;
10089
10090 if (xlow >= xup) SetBuffer(fgBufferSize);
10091 if (fgDefaultSumw2) Sumw2();
10092}
10093
10094////////////////////////////////////////////////////////////////////////////////
10095/// Create a 1-Dim histogram with variable bins of type double
10096/// (see TH1::TH1 for explanation of parameters)
10097
10098TH1D::TH1D(const char *name,const char *title,Int_t nbins,const Float_t *xbins)
10099: TH1(name,title,nbins,xbins)
10100{
10101 fDimension = 1;
10103 if (fgDefaultSumw2) Sumw2();
10104}
10105
10106////////////////////////////////////////////////////////////////////////////////
10107/// Create a 1-Dim histogram with variable bins of type double
10108/// (see TH1::TH1 for explanation of parameters)
10109
10110TH1D::TH1D(const char *name,const char *title,Int_t nbins,const Double_t *xbins)
10111: TH1(name,title,nbins,xbins)
10112{
10113 fDimension = 1;
10115 if (fgDefaultSumw2) Sumw2();
10116}
10117
10118////////////////////////////////////////////////////////////////////////////////
10119/// Create a histogram from a TVectorD
10120/// by default the histogram name is "TVectorD" and title = ""
10121
10122TH1D::TH1D(const TVectorD &v)
10123: TH1("TVectorD","",v.GetNrows(),0,v.GetNrows())
10124{
10126 fDimension = 1;
10127 Int_t ivlow = v.GetLwb();
10128 for (Int_t i=0;i<fNcells-2;i++) {
10129 SetBinContent(i+1,v(i+ivlow));
10130 }
10132 if (fgDefaultSumw2) Sumw2();
10133}
10134
10135////////////////////////////////////////////////////////////////////////////////
10136/// Destructor.
10137
10139{
10140}
10141
10142////////////////////////////////////////////////////////////////////////////////
10143/// Constructor.
10144
10145TH1D::TH1D(const TH1D &h1d) : TH1(), TArrayD()
10146{
10147 // intentially call virtual method to warn if TProfile is copying
10148 h1d.Copy(*this);
10149}
10150
10151////////////////////////////////////////////////////////////////////////////////
10152/// Copy this to newth1
10153
10154void TH1D::Copy(TObject &newth1) const
10155{
10156 TH1::Copy(newth1);
10157}
10158
10159////////////////////////////////////////////////////////////////////////////////
10160/// Reset.
10161
10163{
10166}
10167
10168////////////////////////////////////////////////////////////////////////////////
10169/// Set total number of bins including under/overflow
10170/// Reallocate bin contents array
10171
10173{
10174 if (n < 0) n = fXaxis.GetNbins() + 2;
10175 fNcells = n;
10176 TArrayD::Set(n);
10177}
10178
10179////////////////////////////////////////////////////////////////////////////////
10180/// Operator =
10181
10182TH1D& TH1D::operator=(const TH1D &h1d)
10183{
10184 // intentially call virtual method to warn if TProfile is copying
10185 if (this != &h1d)
10186 h1d.Copy(*this);
10187 return *this;
10188}
10189
10190////////////////////////////////////////////////////////////////////////////////
10191/// Operator *
10192
10194{
10195 TH1D hnew = h1;
10196 hnew.Scale(c1);
10197 hnew.SetDirectory(nullptr);
10198 return hnew;
10199}
10200
10201////////////////////////////////////////////////////////////////////////////////
10202/// Operator +
10203
10204TH1D operator+(const TH1D &h1, const TH1D &h2)
10205{
10206 TH1D hnew = h1;
10207 hnew.Add(&h2,1);
10208 hnew.SetDirectory(nullptr);
10209 return hnew;
10210}
10211
10212////////////////////////////////////////////////////////////////////////////////
10213/// Operator -
10214
10215TH1D operator-(const TH1D &h1, const TH1D &h2)
10216{
10217 TH1D hnew = h1;
10218 hnew.Add(&h2,-1);
10219 hnew.SetDirectory(nullptr);
10220 return hnew;
10221}
10222
10223////////////////////////////////////////////////////////////////////////////////
10224/// Operator *
10225
10226TH1D operator*(const TH1D &h1, const TH1D &h2)
10227{
10228 TH1D hnew = h1;
10229 hnew.Multiply(&h2);
10230 hnew.SetDirectory(nullptr);
10231 return hnew;
10232}
10233
10234////////////////////////////////////////////////////////////////////////////////
10235/// Operator /
10236
10237TH1D operator/(const TH1D &h1, const TH1D &h2)
10238{
10239 TH1D hnew = h1;
10240 hnew.Divide(&h2);
10241 hnew.SetDirectory(nullptr);
10242 return hnew;
10243}
10244
10245////////////////////////////////////////////////////////////////////////////////
10246///return pointer to histogram with name
10247///hid if id >=0
10248///h_id if id <0
10249
10250TH1 *R__H(Int_t hid)
10251{
10252 TString hname;
10253 if(hid >= 0) hname.Form("h%d",hid);
10254 else hname.Form("h_%d",hid);
10255 return (TH1*)gDirectory->Get(hname);
10256}
10257
10258////////////////////////////////////////////////////////////////////////////////
10259///return pointer to histogram with name hname
10260
10261TH1 *R__H(const char * hname)
10262{
10263 return (TH1*)gDirectory->Get(hname);
10264}
10265
10266
10267/// \fn void TH1::SetBarOffset(Float_t offset)
10268/// Set the bar offset as fraction of the bin width for drawing mode "B".
10269/// This shifts bars to the right on the x axis, and helps to draw bars next to each other.
10270/// \see THistPainter, SetBarWidth()
10271
10272/// \fn void TH1::SetBarWidth(Float_t width)
10273/// Set the width of bars as fraction of the bin width for drawing mode "B".
10274/// This allows for making bars narrower than the bin width. With SetBarOffset(), this helps to draw multiple bars next to each other.
10275/// \see THistPainter, SetBarOffset()
#define b(i)
Definition RSha256.hxx:100
#define c(i)
Definition RSha256.hxx:101
#define a(i)
Definition RSha256.hxx:99
#define s1(x)
Definition RSha256.hxx:91
#define h(i)
Definition RSha256.hxx:106
#define e(i)
Definition RSha256.hxx:103
RooPlot * contour(RooRealVar &var1, RooRealVar &var2, double n1=1, double n2=2, double n3=0.0, double n4=0.0, double n5=0.0, double n6=0.0)
short Style_t
Definition RtypesCore.h:89
bool Bool_t
Definition RtypesCore.h:63
int Int_t
Definition RtypesCore.h:45
short Color_t
Definition RtypesCore.h:92
short Version_t
Definition RtypesCore.h:65
char Char_t
Definition RtypesCore.h:37
float Float_t
Definition RtypesCore.h:57
short Short_t
Definition RtypesCore.h:39
constexpr Bool_t kFALSE
Definition RtypesCore.h:101
double Double_t
Definition RtypesCore.h:59
long long Long64_t
Definition RtypesCore.h:80
constexpr Bool_t kTRUE
Definition RtypesCore.h:100
const char Option_t
Definition RtypesCore.h:66
#define ClassImp(name)
Definition Rtypes.h:377
#define gDirectory
Definition TDirectory.h:386
R__EXTERN TEnv * gEnv
Definition TEnv.h:170
#define R__ASSERT(e)
Definition TError.h:117
Option_t Option_t option
Option_t Option_t SetLineWidth
Option_t Option_t SetFillStyle
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t np
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t index
Option_t Option_t SetLineColor
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void value
Option_t Option_t TPoint TPoint const char x1
Option_t Option_t TPoint TPoint const char y2
Option_t Option_t SetFillColor
Option_t Option_t SetMarkerStyle
Option_t Option_t width
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
Option_t Option_t TPoint TPoint const char y1
char name[80]
Definition TGX11.cxx:110
static bool IsEquidistantBinning(const TAxis &axis)
Test if the binning is equidistant.
Definition TH1.cxx:5842
void H1LeastSquareLinearFit(Int_t ndata, Double_t &a0, Double_t &a1, Int_t &ifail)
Least square linear fit without weights.
Definition TH1.cxx:4790
void H1InitGaus()
Compute Initial values of parameters for a gaussian.
Definition TH1.cxx:4625
void H1InitExpo()
Compute Initial values of parameters for an exponential.
Definition TH1.cxx:4681
TH1C operator+(const TH1C &h1, const TH1C &h2)
Operator +.
Definition TH1.cxx:9471
TH1C operator-(const TH1C &h1, const TH1C &h2)
Operator -.
Definition TH1.cxx:9482
TH1C operator/(const TH1C &h1, const TH1C &h2)
Operator /.
Definition TH1.cxx:9504
void H1LeastSquareSeqnd(Int_t n, Double_t *a, Int_t idim, Int_t &ifail, Int_t k, Double_t *b)
Extracted from CERN Program library routine DSEQN.
Definition TH1.cxx:4836
static Bool_t AlmostEqual(Double_t a, Double_t b, Double_t epsilon=0.00000001)
Test if two double are almost equal.
Definition TH1.cxx:5825
static Bool_t AlmostInteger(Double_t a, Double_t epsilon=0.00000001)
Test if a double is almost an integer.
Definition TH1.cxx:5833
TF1 * gF1
Definition TH1.cxx:570
TH1 * R__H(Int_t hid)
return pointer to histogram with name hid if id >=0 h_id if id <0
Definition TH1.cxx:10248
TH1C operator*(Double_t c1, const TH1C &h1)
Operator *.
Definition TH1.cxx:9460
void H1LeastSquareFit(Int_t n, Int_t m, Double_t *a)
Least squares lpolynomial fitting without weights.
Definition TH1.cxx:4731
void H1InitPolynom()
Compute Initial values of parameters for a polynom.
Definition TH1.cxx:4701
float xmin
int nentries
float * q
float ymin
float xmax
float ymax
#define gInterpreter
Int_t gDebug
Definition TROOT.cxx:585
R__EXTERN TVirtualMutex * gROOTMutex
Definition TROOT.h:63
#define gROOT
Definition TROOT.h:405
R__EXTERN TRandom * gRandom
Definition TRandom.h:62
void Printf(const char *fmt,...)
Formats a string in a circular formatting buffer and prints the string.
Definition TString.cxx:2481
R__EXTERN TStyle * gStyle
Definition TStyle.h:414
#define R__LOCKGUARD(mutex)
#define gPad
#define R__WRITE_LOCKGUARD(mutex)
Class describing the binned data sets : vectors of x coordinates, y values and optionally error on y ...
Definition BinData.h:52
class describing the range in the coordinates it supports multiple range in a coordinate.
Definition DataRange.h:35
void AndersonDarling2SamplesTest(Double_t &pvalue, Double_t &testStat) const
Performs the Anderson-Darling 2-Sample Test.
Definition GoFTest.cxx:645
Array of chars or bytes (8 bits per element).
Definition TArrayC.h:27
Char_t * fArray
Definition TArrayC.h:30
void Reset(Char_t val=0)
Definition TArrayC.h:47
void Set(Int_t n) override
Set size of this array to n chars.
Definition TArrayC.cxx:105
Array of doubles (64 bits per element).
Definition TArrayD.h:27
Double_t GetAt(Int_t i) const override
Definition TArrayD.h:45
Double_t * fArray
Definition TArrayD.h:30
void Streamer(TBuffer &) override
Stream a TArrayD object.
Definition TArrayD.cxx:149
void Copy(TArrayD &array) const
Definition TArrayD.h:42
void Set(Int_t n) override
Set size of this array to n doubles.
Definition TArrayD.cxx:106
const Double_t * GetArray() const
Definition TArrayD.h:43
void Reset()
Definition TArrayD.h:47
Array of floats (32 bits per element).
Definition TArrayF.h:27
void Reset()
Definition TArrayF.h:47
void Set(Int_t n) override
Set size of this array to n floats.
Definition TArrayF.cxx:105
Array of integers (32 bits per element).
Definition TArrayI.h:27
Int_t * fArray
Definition TArrayI.h:30
void Set(Int_t n) override
Set size of this array to n ints.
Definition TArrayI.cxx:105
void Reset()
Definition TArrayI.h:47
Array of shorts (16 bits per element).
Definition TArrayS.h:27
void Set(Int_t n) override
Set size of this array to n shorts.
Definition TArrayS.cxx:105
void Reset()
Definition TArrayS.h:47
Short_t * fArray
Definition TArrayS.h:30
Abstract array base class.
Definition TArray.h:31
Int_t fN
Definition TArray.h:38
virtual void Set(Int_t n)=0
Int_t GetSize() const
Definition TArray.h:47
virtual Color_t GetTitleColor() const
Definition TAttAxis.h:46
virtual Color_t GetLabelColor() const
Definition TAttAxis.h:38
virtual Int_t GetNdivisions() const
Definition TAttAxis.h:36
virtual Color_t GetAxisColor() const
Definition TAttAxis.h:37
virtual void SetTitleOffset(Float_t offset=1)
Set distance between the axis and the axis title.
Definition TAttAxis.cxx:298
virtual Style_t GetTitleFont() const
Definition TAttAxis.h:47
virtual Float_t GetLabelOffset() const
Definition TAttAxis.h:40
virtual void SetAxisColor(Color_t color=1, Float_t alpha=1.)
Set color of the line axis and tick marks.
Definition TAttAxis.cxx:160
virtual void SetLabelSize(Float_t size=0.04)
Set size of axis labels.
Definition TAttAxis.cxx:203
virtual Style_t GetLabelFont() const
Definition TAttAxis.h:39
virtual void SetTitleFont(Style_t font=62)
Set the title font.
Definition TAttAxis.cxx:327
virtual void SetLabelOffset(Float_t offset=0.005)
Set distance between the axis and the labels.
Definition TAttAxis.cxx:191
virtual void SetLabelFont(Style_t font=62)
Set labels' font.
Definition TAttAxis.cxx:180
virtual void SetTitleSize(Float_t size=0.04)
Set size of axis title.
Definition TAttAxis.cxx:309
virtual void SetTitleColor(Color_t color=1)
Set color of axis title.
Definition TAttAxis.cxx:318
virtual Float_t GetTitleSize() const
Definition TAttAxis.h:44
virtual Float_t GetLabelSize() const
Definition TAttAxis.h:41
virtual Float_t GetTickLength() const
Definition TAttAxis.h:45
virtual void ResetAttAxis(Option_t *option="")
Reset axis attributes.
Definition TAttAxis.cxx:79
virtual Float_t GetTitleOffset() const
Definition TAttAxis.h:43
virtual void SetTickLength(Float_t length=0.03)
Set tick mark length.
Definition TAttAxis.cxx:284
virtual void SetNdivisions(Int_t n=510, Bool_t optim=kTRUE)
Set the number of divisions for this axis.
Definition TAttAxis.cxx:233
virtual void SetLabelColor(Color_t color=1, Float_t alpha=1.)
Set color of labels.
Definition TAttAxis.cxx:170
Fill Area Attributes class.
Definition TAttFill.h:19
virtual void Streamer(TBuffer &)
virtual Color_t GetFillColor() const
Return the fill area color.
Definition TAttFill.h:30
void Copy(TAttFill &attfill) const
Copy this fill attributes to a new TAttFill.
Definition TAttFill.cxx:204
virtual Style_t GetFillStyle() const
Return the fill area style.
Definition TAttFill.h:31
virtual void SaveFillAttributes(std::ostream &out, const char *name, Int_t coldef=1, Int_t stydef=1001)
Save fill attributes as C++ statement(s) on output stream out.
Definition TAttFill.cxx:236
Line Attributes class.
Definition TAttLine.h:18
virtual void Streamer(TBuffer &)
virtual Color_t GetLineColor() const
Return the line color.
Definition TAttLine.h:33
virtual void SetLineStyle(Style_t lstyle)
Set the line style.
Definition TAttLine.h:42
virtual Width_t GetLineWidth() const
Return the line width.
Definition TAttLine.h:35
virtual Style_t GetLineStyle() const
Return the line style.
Definition TAttLine.h:34
void Copy(TAttLine &attline) const
Copy this line attributes to a new TAttLine.
Definition TAttLine.cxx:175
virtual void SaveLineAttributes(std::ostream &out, const char *name, Int_t coldef=1, Int_t stydef=1, Int_t widdef=1)
Save line attributes as C++ statement(s) on output stream out.
Definition TAttLine.cxx:273
Marker Attributes class.
Definition TAttMarker.h:19
virtual void SaveMarkerAttributes(std::ostream &out, const char *name, Int_t coldef=1, Int_t stydef=1, Int_t sizdef=1)
Save line attributes as C++ statement(s) on output stream out.
virtual Style_t GetMarkerStyle() const
Return the marker style.
Definition TAttMarker.h:32
virtual void SetMarkerColor(Color_t mcolor=1)
Set the marker color.
Definition TAttMarker.h:38
virtual Color_t GetMarkerColor() const
Return the marker color.
Definition TAttMarker.h:31
virtual Size_t GetMarkerSize() const
Return the marker size.
Definition TAttMarker.h:33
virtual void SetMarkerStyle(Style_t mstyle=1)
Set the marker style.
Definition TAttMarker.h:40
void Copy(TAttMarker &attmarker) const
Copy this marker attributes to a new TAttMarker.
virtual void Streamer(TBuffer &)
virtual void SetMarkerSize(Size_t msize=1)
Set the marker size.
Definition TAttMarker.h:45
Class to manage histogram axis.
Definition TAxis.h:30
virtual void GetCenter(Double_t *center) const
Return an array with the center of all bins.
Definition TAxis.cxx:553
virtual Bool_t GetTimeDisplay() const
Definition TAxis.h:127
Bool_t IsAlphanumeric() const
Definition TAxis.h:84
virtual Double_t GetBinCenter(Int_t bin) const
Return center of bin.
Definition TAxis.cxx:478
Bool_t CanExtend() const
Definition TAxis.h:82
virtual void SetParent(TObject *obj)
Definition TAxis.h:158
const TArrayD * GetXbins() const
Definition TAxis.h:131
void SetCanExtend(Bool_t canExtend)
Definition TAxis.h:86
void Copy(TObject &axis) const override
Copy axis structure to another axis.
Definition TAxis.cxx:216
Double_t GetXmax() const
Definition TAxis.h:135
@ kLabelsUp
Definition TAxis.h:70
@ kLabelsDown
Definition TAxis.h:69
@ kLabelsHori
Definition TAxis.h:67
@ kAxisRange
Definition TAxis.h:61
@ kLabelsVert
Definition TAxis.h:68
const char * GetBinLabel(Int_t bin) const
Return label for bin.
Definition TAxis.cxx:440
virtual Int_t FindBin(Double_t x)
Find bin number corresponding to abscissa x.
Definition TAxis.cxx:293
virtual Double_t GetBinLowEdge(Int_t bin) const
Return low edge of bin.
Definition TAxis.cxx:518
virtual void SetTimeDisplay(Int_t value)
Definition TAxis.h:162
virtual void Set(Int_t nbins, Double_t xmin, Double_t xmax)
Initialize axis with fix bins.
Definition TAxis.cxx:759
virtual Int_t FindFixBin(Double_t x) const
Find bin number corresponding to abscissa x.
Definition TAxis.cxx:419
void SaveAttributes(std::ostream &out, const char *name, const char *subname) override
Save axis attributes as C++ statement(s) on output stream out.
Definition TAxis.cxx:689
Int_t GetLast() const
Return last bin on the axis i.e.
Definition TAxis.cxx:469
virtual void SetLimits(Double_t xmin, Double_t xmax)
Definition TAxis.h:155
Double_t GetXmin() const
Definition TAxis.h:134
void Streamer(TBuffer &) override
Stream an object of class TAxis.
Definition TAxis.cxx:1111
Int_t GetNbins() const
Definition TAxis.h:121
virtual void GetLowEdge(Double_t *edge) const
Return an array with the low edge of all bins.
Definition TAxis.cxx:562
virtual void SetRange(Int_t first=0, Int_t last=0)
Set the viewing range for the axis using bin numbers.
Definition TAxis.cxx:952
virtual Double_t GetBinWidth(Int_t bin) const
Return bin width.
Definition TAxis.cxx:540
virtual Double_t GetBinUpEdge(Int_t bin) const
Return up edge of bin.
Definition TAxis.cxx:528
Int_t GetFirst() const
Return first bin on the axis i.e.
Definition TAxis.cxx:458
THashList * GetLabels() const
Definition TAxis.h:117
Using a TBrowser one can browse all ROOT objects.
Definition TBrowser.h:37
Buffer base class used for serializing objects.
Definition TBuffer.h:43
void * New(ENewType defConstructor=kClassNew, Bool_t quiet=kFALSE) const
Return a pointer to a newly allocated object of this class.
Definition TClass.cxx:4978
ROOT::NewFunc_t GetNew() const
Return the wrapper around new ThisClass().
Definition TClass.cxx:7447
Collection abstract base class.
Definition TCollection.h:65
virtual bool UseRWLock(Bool_t enable=true)
Set this collection to use a RW lock upon access, making it thread safe.
virtual void AddAll(const TCollection *col)
Add all objects from collection col to this collection.
virtual Bool_t IsEmpty() const
TObject * Clone(const char *newname="") const override
Make a clone of an collection using the Streamer facility.
virtual Int_t GetSize() const
Return the capacity of the collection, i.e.
Describe directory structure in memory.
Definition TDirectory.h:45
virtual void Append(TObject *obj, Bool_t replace=kFALSE)
Append object to this directory.
virtual TObject * Remove(TObject *)
Remove an object from the in-memory list.
virtual Int_t GetValue(const char *name, Int_t dflt) const
Returns the integer value for a resource.
Definition TEnv.cxx:491
1-Dim function class
Definition TF1.h:213
static void RejectPoint(Bool_t reject=kTRUE)
Static function to set the global flag to reject points the fgRejectPoint global flag is tested by al...
Definition TF1.cxx:3646
virtual TH1 * GetHistogram() const
Return a pointer to the histogram used to visualise the function Note that this histogram is managed ...
Definition TF1.cxx:1585
static TClass * Class()
virtual Int_t GetNpar() const
Definition TF1.h:486
virtual Double_t Integral(Double_t a, Double_t b, Double_t epsrel=1.e-12)
IntegralOneDim or analytical integral.
Definition TF1.cxx:2529
virtual void InitArgs(const Double_t *x, const Double_t *params)
Initialize parameters addresses.
Definition TF1.cxx:2481
virtual void GetRange(Double_t *xmin, Double_t *xmax) const
Return range of a generic N-D function.
Definition TF1.cxx:2280
virtual Double_t EvalPar(const Double_t *x, const Double_t *params=nullptr)
Evaluate function with given coordinates and parameters.
Definition TF1.cxx:1469
virtual void SetParLimits(Int_t ipar, Double_t parmin, Double_t parmax)
Set lower and upper limits for parameter ipar.
Definition TF1.cxx:3499
static Bool_t RejectedPoint()
See TF1::RejectPoint above.
Definition TF1.cxx:3655
virtual Double_t Eval(Double_t x, Double_t y=0, Double_t z=0, Double_t t=0) const
Evaluate this function.
Definition TF1.cxx:1440
virtual void SetParameter(Int_t param, Double_t value)
Definition TF1.h:639
virtual Bool_t IsInside(const Double_t *x) const
return kTRUE if the point is inside the function range
Definition TF1.h:603
A 2-Dim function with parameters.
Definition TF2.h:29
A 3-Dim function with parameters.
Definition TF3.h:28
Provides an indirection to the TFitResult class and with a semantics identical to a TFitResult pointe...
1-D histogram with a byte per channel (see TH1 documentation)
Definition TH1.h:454
~TH1C() override
Destructor.
Definition TH1.cxx:9387
void SetBinsLength(Int_t n=-1) override
Set total number of bins including under/overflow Reallocate bin contents array.
Definition TH1.cxx:9440
TH1C & operator=(const TH1C &h1)
Operator =.
Definition TH1.cxx:9450
TH1C()
Constructor.
Definition TH1.cxx:9339
void Copy(TObject &hnew) const override
Copy this to newth1.
Definition TH1.cxx:9422
void AddBinContent(Int_t bin) override
Increment bin content by 1.
Definition TH1.cxx:9403
void Reset(Option_t *option="") override
Reset.
Definition TH1.cxx:9430
1-D histogram with a double per channel (see TH1 documentation)}
Definition TH1.h:620
~TH1D() override
Destructor.
Definition TH1.cxx:10136
void SetBinsLength(Int_t n=-1) override
Set total number of bins including under/overflow Reallocate bin contents array.
Definition TH1.cxx:10170
void Copy(TObject &hnew) const override
Copy this to newth1.
Definition TH1.cxx:10152
TH1D()
Constructor.
Definition TH1.cxx:10071
TH1D & operator=(const TH1D &h1)
Operator =.
Definition TH1.cxx:10180
1-D histogram with a float per channel (see TH1 documentation)}
Definition TH1.h:577
Double_t RetrieveBinContent(Int_t bin) const override
Raw retrieval of bin content on internal data structure see convention for numbering bins in TH1::Get...
Definition TH1.h:606
TH1F & operator=(const TH1F &h1)
Operator =.
Definition TH1.cxx:9999
void Copy(TObject &hnew) const override
Copy this to newth1.
Definition TH1.cxx:9971
void SetBinsLength(Int_t n=-1) override
Set total number of bins including under/overflow Reallocate bin contents array.
Definition TH1.cxx:9989
~TH1F() override
Destructor.
Definition TH1.cxx:9964
TH1F()
Constructor.
Definition TH1.cxx:9890
1-D histogram with an int per channel (see TH1 documentation)}
Definition TH1.h:536
void SetBinsLength(Int_t n=-1) override
Set total number of bins including under/overflow Reallocate bin contents array.
Definition TH1.cxx:9807
void AddBinContent(Int_t bin) override
Increment bin content by 1.
Definition TH1.cxx:9770
~TH1I() override
Destructor.
Definition TH1.cxx:9754
TH1I()
Constructor.
Definition TH1.cxx:9706
void Copy(TObject &hnew) const override
Copy this to newth1.
Definition TH1.cxx:9789
TH1I & operator=(const TH1I &h1)
Operator =.
Definition TH1.cxx:9817
1-D histogram with a short per channel (see TH1 documentation)
Definition TH1.h:495
TH1S & operator=(const TH1S &h1)
Operator =.
Definition TH1.cxx:9633
void Copy(TObject &hnew) const override
Copy this to newth1.
Definition TH1.cxx:9605
TH1S()
Constructor.
Definition TH1.cxx:9522
void SetBinsLength(Int_t n=-1) override
Set total number of bins including under/overflow Reallocate bin contents array.
Definition TH1.cxx:9623
~TH1S() override
Destructor.
Definition TH1.cxx:9570
void AddBinContent(Int_t bin) override
Increment bin content by 1.
Definition TH1.cxx:9586
TH1 is the base class of all histogram classes in ROOT.
Definition TH1.h:58
~TH1() override
Histogram default destructor.
Definition TH1.cxx:624
virtual void SetError(const Double_t *error)
Replace bin errors by values in array error.
Definition TH1.cxx:8817
virtual void SetDirectory(TDirectory *dir)
By default, when a histogram is created, it is added to the list of histogram objects in the current ...
Definition TH1.cxx:8803
virtual void FitPanel()
Display a panel with all histogram fit options.
Definition TH1.cxx:4280
Double_t * fBuffer
[fBufferSize] entry buffer
Definition TH1.h:107
virtual Int_t AutoP2FindLimits(Double_t min, Double_t max)
Buffer-based estimate of the histogram range using the power of 2 algorithm.
Definition TH1.cxx:1316
virtual Double_t GetEffectiveEntries() const
Number of effective entries of the histogram.
Definition TH1.cxx:4444
char * GetObjectInfo(Int_t px, Int_t py) const override
Redefines TObject::GetObjectInfo.
Definition TH1.cxx:4475
virtual void Smooth(Int_t ntimes=1, Option_t *option="")
Smooth bin contents of this histogram.
Definition TH1.cxx:6867
virtual Double_t GetBinCenter(Int_t bin) const
Return bin center for 1D histogram.
Definition TH1.cxx:9007
virtual void Rebuild(Option_t *option="")
Using the current bin info, recompute the arrays for contents and errors.
Definition TH1.cxx:7075
virtual void SetBarOffset(Float_t offset=0.25)
Set the bar offset as fraction of the bin width for drawing mode "B".
Definition TH1.h:361
static Bool_t fgStatOverflows
! Flag to use under/overflows in statistics
Definition TH1.h:116
virtual Int_t FindLastBinAbove(Double_t threshold=0, Int_t axis=1, Int_t firstBin=1, Int_t lastBin=-1) const
Find last bin with content > threshold for axis (1=x, 2=y, 3=z) if no bins with content > threshold i...
Definition TH1.cxx:3793
TAxis * GetZaxis()
Definition TH1.h:324
Int_t DistancetoPrimitive(Int_t px, Int_t py) override
Compute distance from point px,py to a line.
Definition TH1.cxx:2798
virtual Bool_t Multiply(TF1 *f1, Double_t c1=1)
Performs the operation:
Definition TH1.cxx:6013
Int_t fNcells
Number of bins(1D), cells (2D) +U/Overflows.
Definition TH1.h:88
virtual void GetStats(Double_t *stats) const
fill the array stats from the contents of this histogram The array stats must be correctly dimensione...
Definition TH1.cxx:7743
void Copy(TObject &hnew) const override
Copy this histogram structure to newth1.
Definition TH1.cxx:2650
void SetTitle(const char *title) override
Change (i.e.
Definition TH1.cxx:6700
Double_t fTsumw
Total Sum of weights.
Definition TH1.h:95
virtual Float_t GetBarWidth() const
Definition TH1.h:255
Double_t fTsumw2
Total Sum of squares of weights.
Definition TH1.h:96
static void StatOverflows(Bool_t flag=kTRUE)
if flag=kTRUE, underflows and overflows are used by the Fill functions in the computation of statisti...
Definition TH1.cxx:6913
virtual Float_t GetBarOffset() const
Definition TH1.h:254
TList * fFunctions
->Pointer to list of functions (fits and user)
Definition TH1.h:105
static Bool_t fgAddDirectory
! Flag to add histograms to the directory
Definition TH1.h:115
static TClass * Class()
static Int_t GetDefaultBufferSize()
Static function return the default buffer size for automatic histograms the parameter fgBufferSize ma...
Definition TH1.cxx:4402
virtual Double_t DoIntegral(Int_t ix1, Int_t ix2, Int_t iy1, Int_t iy2, Int_t iz1, Int_t iz2, Double_t &err, Option_t *opt, Bool_t doerr=kFALSE) const
Internal function compute integral and optionally the error between the limits specified by the bin n...
Definition TH1.cxx:7887
Double_t fTsumwx2
Total Sum of weight*X*X.
Definition TH1.h:98
virtual Double_t GetStdDev(Int_t axis=1) const
Returns the Standard Deviation (Sigma).
Definition TH1.cxx:7517
TH1()
Histogram default constructor.
Definition TH1.cxx:596
static TH1 * TransformHisto(TVirtualFFT *fft, TH1 *h_output, Option_t *option)
For a given transform (first parameter), fills the histogram (second parameter) with the transform ou...
Definition TH1.cxx:9185
void UseCurrentStyle() override
Copy current attributes from/to current style.
Definition TH1.cxx:7379
virtual void LabelsOption(Option_t *option="h", Option_t *axis="X")
Sort bins with labels or set option(s) to draw axis with labels.
Definition TH1.cxx:5346
virtual Int_t GetNbinsY() const
Definition TH1.h:296
Short_t fBarOffset
(1000*offset) for bar charts or legos
Definition TH1.h:92
virtual Double_t Chi2TestX(const TH1 *h2, Double_t &chi2, Int_t &ndf, Int_t &igood, Option_t *option="UU", Double_t *res=nullptr) const
The computation routine of the Chisquare test.
Definition TH1.cxx:2051
static bool CheckBinLimits(const TAxis *a1, const TAxis *a2)
Check bin limits.
Definition TH1.cxx:1514
virtual void AddBinContent(Int_t bin)
Increment bin content by 1.
Definition TH1.cxx:1242
virtual Double_t GetBinError(Int_t bin) const
Return value of error associated to bin number bin.
Definition TH1.cxx:8929
static Int_t FitOptionsMake(Option_t *option, Foption_t &Foption)
Decode string choptin and fill fitOption structure.
Definition TH1.cxx:4616
virtual Int_t GetNbinsZ() const
Definition TH1.h:297
virtual Double_t GetNormFactor() const
Definition TH1.h:299
virtual Double_t GetMean(Int_t axis=1) const
For axis = 1,2 or 3 returns the mean value of the histogram along X,Y or Z axis.
Definition TH1.cxx:7445
virtual Double_t GetSkewness(Int_t axis=1) const
Definition TH1.cxx:7581
virtual void ClearUnderflowAndOverflow()
Remove all the content from the underflow and overflow bins, without changing the number of entries A...
Definition TH1.cxx:2498
virtual Double_t GetContourLevelPad(Int_t level) const
Return the value of contour number "level" in Pad coordinates.
Definition TH1.cxx:8306
virtual TH1 * DrawNormalized(Option_t *option="", Double_t norm=1) const
Draw a normalized copy of this histogram.
Definition TH1.cxx:3138
@ kNeutral
Adapt to the global flag.
Definition TH1.h:82
virtual Int_t GetDimension() const
Definition TH1.h:281
void Streamer(TBuffer &) override
Stream a class object.
Definition TH1.cxx:6921
static void AddDirectory(Bool_t add=kTRUE)
Sets the flag controlling the automatic add of histograms in memory.
Definition TH1.cxx:1267
@ kNstat
Size of statistics data (up to TProfile3D)
Definition TH1.h:182
@ kIsAverage
Bin contents are average (used by Add)
Definition TH1.h:169
@ kUserContour
User specified contour levels.
Definition TH1.h:164
@ kNoStats
Don't draw stats box.
Definition TH1.h:163
@ kAutoBinPTwo
different than 1.
Definition TH1.h:172
@ kIsNotW
Histogram is forced to be not weighted even when the histogram is filled with weighted.
Definition TH1.h:170
@ kIsHighlight
bit set if histo is highlight
Definition TH1.h:173
virtual void SetContourLevel(Int_t level, Double_t value)
Set value for one contour level.
Definition TH1.cxx:8388
virtual Bool_t CanExtendAllAxes() const
Returns true if all axes are extendable.
Definition TH1.cxx:6618
TDirectory * fDirectory
! Pointer to directory holding this histogram
Definition TH1.h:108
virtual void Reset(Option_t *option="")
Reset this histogram: contents, errors, etc.
Definition TH1.cxx:7091
void SetNameTitle(const char *name, const char *title) override
Change the name and title of this histogram.
Definition TH1.cxx:8840
TAxis * GetXaxis()
Definition TH1.h:322
virtual void GetBinXYZ(Int_t binglobal, Int_t &binx, Int_t &biny, Int_t &binz) const
Return binx, biny, binz corresponding to the global bin number globalbin see TH1::GetBin function abo...
Definition TH1.cxx:4938
TH1 * GetCumulative(Bool_t forward=kTRUE, const char *suffix="_cumulative") const
Return a pointer to a histogram containing the cumulative content.
Definition TH1.cxx:2595
static Double_t AutoP2GetPower2(Double_t x, Bool_t next=kTRUE)
Auxiliary function to get the power of 2 next (larger) or previous (smaller) a given x.
Definition TH1.cxx:1281
virtual Int_t GetNcells() const
Definition TH1.h:298
virtual Int_t ShowPeaks(Double_t sigma=2, Option_t *option="", Double_t threshold=0.05)
Interface to TSpectrum::Search.
Definition TH1.cxx:9167
static Bool_t RecomputeAxisLimits(TAxis &destAxis, const TAxis &anAxis)
Finds new limits for the axis for the Merge function.
Definition TH1.cxx:5872
virtual void PutStats(Double_t *stats)
Replace current statistics with the values in array stats.
Definition TH1.cxx:7794
TVirtualHistPainter * GetPainter(Option_t *option="")
Return pointer to painter.
Definition TH1.cxx:4484
TObject * FindObject(const char *name) const override
Search object named name in the list of functions.
Definition TH1.cxx:3853
virtual void FillRandom(const char *fname, Int_t ntimes=5000, TRandom *rng=nullptr)
Fill histogram following distribution in function fname.
Definition TH1.cxx:3513
void Print(Option_t *option="") const override
Print some global quantities for this histogram.
Definition TH1.cxx:6997
static Bool_t GetDefaultSumw2()
Return kTRUE if TH1::Sumw2 must be called when creating new histograms.
Definition TH1.cxx:4411
virtual Int_t FindFirstBinAbove(Double_t threshold=0, Int_t axis=1, Int_t firstBin=1, Int_t lastBin=-1) const
Find first bin with content > threshold for axis (1=x, 2=y, 3=z) if no bins with content > threshold ...
Definition TH1.cxx:3730
virtual TFitResultPtr Fit(const char *formula, Option_t *option="", Option_t *goption="", Double_t xmin=0, Double_t xmax=0)
Fit histogram with function fname.
Definition TH1.cxx:3894
virtual Int_t GetBin(Int_t binx, Int_t biny=0, Int_t binz=0) const
Return Global bin number corresponding to binx,y,z.
Definition TH1.cxx:4925
virtual Double_t GetMaximum(Double_t maxval=FLT_MAX) const
Return maximum value smaller than maxval of bins in the range, unless the value has been overridden b...
Definition TH1.cxx:8411
virtual Int_t GetNbinsX() const
Definition TH1.h:295
virtual void SetMaximum(Double_t maximum=-1111)
Definition TH1.h:400
virtual TH1 * FFT(TH1 *h_output, Option_t *option)
This function allows to do discrete Fourier transforms of TH1 and TH2.
Definition TH1.cxx:3278
virtual void LabelsInflate(Option_t *axis="X")
Double the number of bins for axis.
Definition TH1.cxx:5279
virtual TH1 * ShowBackground(Int_t niter=20, Option_t *option="same")
This function calculates the background spectrum in this histogram.
Definition TH1.cxx:9153
static Bool_t SameLimitsAndNBins(const TAxis &axis1, const TAxis &axis2)
Same limits and bins.
Definition TH1.cxx:5862
virtual Bool_t Add(TF1 *h1, Double_t c1=1, Option_t *option="")
Performs the operation: this = this + c1*f1 if errors are defined (see TH1::Sumw2),...
Definition TH1.cxx:807
Double_t fMaximum
Maximum value for plotting.
Definition TH1.h:99
Int_t fBufferSize
fBuffer size
Definition TH1.h:106
virtual Double_t RetrieveBinContent(Int_t bin) const
Raw retrieval of bin content on internal data structure see convention for numbering bins in TH1::Get...
Definition TH1.cxx:9305
virtual Double_t IntegralAndError(Int_t binx1, Int_t binx2, Double_t &err, Option_t *option="") const
Return integral of bin contents in range [binx1,binx2] and its error.
Definition TH1.cxx:7878
Int_t fDimension
! Histogram dimension (1, 2 or 3 dim)
Definition TH1.h:109
virtual void SetBinError(Int_t bin, Double_t error)
Set the bin Error Note that this resets the bin eror option to be of Normal Type and for the non-empt...
Definition TH1.cxx:9072
EBinErrorOpt fBinStatErrOpt
Option for bin statistical errors.
Definition TH1.h:112
static Int_t fgBufferSize
! Default buffer size for automatic histograms
Definition TH1.h:114
virtual void SetBinsLength(Int_t=-1)
Definition TH1.h:377
Double_t fNormFactor
Normalization factor.
Definition TH1.h:101
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
Definition TH1.cxx:3338
TAxis * GetYaxis()
Definition TH1.h:323
TArrayD fContour
Array to display contour levels.
Definition TH1.h:102
virtual Double_t GetBinErrorLow(Int_t bin) const
Return lower error associated to bin number bin.
Definition TH1.cxx:8945
void Browse(TBrowser *b) override
Browse the Histogram object.
Definition TH1.cxx:743
virtual void SetContent(const Double_t *content)
Replace bin contents by the contents of array content.
Definition TH1.cxx:8264
void Draw(Option_t *option="") override
Draw this histogram with options.
Definition TH1.cxx:3060
virtual void SavePrimitiveHelp(std::ostream &out, const char *hname, Option_t *option="")
Helper function for the SavePrimitive functions from TH1 or classes derived from TH1,...
Definition TH1.cxx:7289
Short_t fBarWidth
(1000*width) for bar charts or legos
Definition TH1.h:93
virtual Double_t GetBinErrorSqUnchecked(Int_t bin) const
Definition TH1.h:445
Int_t AxisChoice(Option_t *axis) const
Choose an axis according to "axis".
Definition Haxis.cxx:14
virtual void SetMinimum(Double_t minimum=-1111)
Definition TH1.h:401
Bool_t IsBinUnderflow(Int_t bin, Int_t axis=0) const
Return true if the bin is underflow.
Definition TH1.cxx:5178
void SavePrimitive(std::ostream &out, Option_t *option="") override
Save primitive as a C++ statement(s) on output stream out.
Definition TH1.cxx:7147
static bool CheckBinLabels(const TAxis *a1, const TAxis *a2)
Check that axis have same labels.
Definition TH1.cxx:1543
virtual Double_t Interpolate(Double_t x) const
Given a point x, approximates the value via linear interpolation based on the two nearest bin centers...
Definition TH1.cxx:5079
static void SetDefaultSumw2(Bool_t sumw2=kTRUE)
When this static function is called with sumw2=kTRUE, all new histograms will automatically activate ...
Definition TH1.cxx:6685
Bool_t IsBinOverflow(Int_t bin, Int_t axis=0) const
Return true if the bin is overflow.
Definition TH1.cxx:5146
UInt_t GetAxisLabelStatus() const
Internal function used in TH1::Fill to see which axis is full alphanumeric i.e.
Definition TH1.cxx:6657
Double_t * fIntegral
! Integral of bins used by GetRandom
Definition TH1.h:110
Double_t fMinimum
Minimum value for plotting.
Definition TH1.h:100
virtual Double_t Integral(Option_t *option="") const
Return integral of bin contents.
Definition TH1.cxx:7851
virtual void SetBinContent(Int_t bin, Double_t content)
Set bin content see convention for numbering bins in TH1::GetBin In case the bin number is greater th...
Definition TH1.cxx:9088
virtual void DirectoryAutoAdd(TDirectory *)
Perform the automatic addition of the histogram to the given directory.
Definition TH1.cxx:2776
virtual void GetLowEdge(Double_t *edge) const
Fill array with low edge of bins for 1D histogram Better to use h1.GetXaxis()->GetLowEdge(edge)
Definition TH1.cxx:9053
virtual Double_t GetBinLowEdge(Int_t bin) const
Return bin lower edge for 1D histogram.
Definition TH1.cxx:9018
void Build()
Creates histogram basic data structure.
Definition TH1.cxx:752
virtual Double_t GetEntries() const
Return the current number of entries.
Definition TH1.cxx:4419
virtual TF1 * GetFunction(const char *name) const
Return pointer to function with name.
Definition TH1.cxx:8917
virtual TH1 * Rebin(Int_t ngroup=2, const char *newname="", const Double_t *xbins=nullptr)
Rebin this histogram.
Definition TH1.cxx:6257
virtual Int_t BufferFill(Double_t x, Double_t w)
accumulate arguments in buffer.
Definition TH1.cxx:1479
virtual Double_t GetBinWithContent(Double_t c, Int_t &binx, Int_t firstx=0, Int_t lastx=0, Double_t maxdiff=0) const
Compute first binx in the range [firstx,lastx] for which diff = abs(bin_content-c) <= maxdiff.
Definition TH1.cxx:5050
virtual UInt_t SetCanExtend(UInt_t extendBitMask)
Make the histogram axes extendable / not extendable according to the bit mask returns the previous bi...
Definition TH1.cxx:6631
TList * GetListOfFunctions() const
Definition TH1.h:242
void SetName(const char *name) override
Change the name of this histogram.
Definition TH1.cxx:8826
virtual TH1 * DrawCopy(Option_t *option="", const char *name_postfix="_copy") const
Copy this histogram and Draw in the current pad.
Definition TH1.cxx:3107
Bool_t IsEmpty() const
Check if a histogram is empty (this is a protected method used mainly by TH1Merger )
Definition TH1.cxx:5128
virtual Double_t GetMeanError(Int_t axis=1) const
Return standard error of mean of this histogram along the X axis.
Definition TH1.cxx:7485
void Paint(Option_t *option="") override
Control routine to paint any kind of histograms.
Definition TH1.cxx:6188
virtual Double_t AndersonDarlingTest(const TH1 *h2, Option_t *option="") const
Statistical test of compatibility in shape between this histogram and h2, using the Anderson-Darling ...
Definition TH1.cxx:7972
virtual void ResetStats()
Reset the statistics including the number of entries and replace with values calculated from bin cont...
Definition TH1.cxx:7812
static void SetDefaultBufferSize(Int_t buffersize=1000)
Static function to set the default buffer size for automatic histograms.
Definition TH1.cxx:6675
virtual void SetBinErrorOption(EBinErrorOpt type)
Definition TH1.h:378
virtual void SetBuffer(Int_t buffersize, Option_t *option="")
Set the maximum number of entries to be kept in the buffer.
Definition TH1.cxx:8324
virtual void DrawPanel()
Display a panel with all histogram drawing options.
Definition TH1.cxx:3169
virtual Double_t GetRandom(TRandom *rng=nullptr) const
Return a random number distributed according the histogram bin contents.
Definition TH1.cxx:4974
virtual Double_t Chisquare(TF1 *f1, Option_t *option="") const
Compute and return the chisquare of this histogram with respect to a function The chisquare is comput...
Definition TH1.cxx:2479
virtual Double_t Chi2Test(const TH1 *h2, Option_t *option="UU", Double_t *res=nullptr) const
test for comparing weighted and unweighted histograms
Definition TH1.cxx:1992
virtual void DoFillN(Int_t ntimes, const Double_t *x, const Double_t *w, Int_t stride=1)
Internal method to fill histogram content from a vector called directly by TH1::BufferEmpty.
Definition TH1.cxx:3467
virtual void GetMinimumAndMaximum(Double_t &min, Double_t &max) const
Retrieve the minimum and maximum values in the histogram.
Definition TH1.cxx:8597
@ kXaxis
Definition TH1.h:72
@ kNoAxis
NOTE: Must always be 0 !!!
Definition TH1.h:71
@ kZaxis
Definition TH1.h:74
@ kYaxis
Definition TH1.h:73
virtual Int_t GetMaximumBin() const
Return location of bin with maximum value in the range.
Definition TH1.cxx:8443
static Int_t AutoP2GetBins(Int_t n)
Auxiliary function to get the next power of 2 integer value larger then n.
Definition TH1.cxx:1294
Double_t fEntries
Number of entries.
Definition TH1.h:94
virtual Long64_t Merge(TCollection *list)
Definition TH1.h:343
void ExecuteEvent(Int_t event, Int_t px, Int_t py) override
Execute action corresponding to one event.
Definition TH1.cxx:3234
virtual Double_t * GetIntegral()
Return a pointer to the array of bins integral.
Definition TH1.cxx:2565
TAxis fZaxis
Z axis descriptor.
Definition TH1.h:91
EStatOverflows fStatOverflows
Per object flag to use under/overflows in statistics.
Definition TH1.h:113
TClass * IsA() const override
Definition TH1.h:440
virtual void FillN(Int_t ntimes, const Double_t *x, const Double_t *w, Int_t stride=1)
Fill this histogram with an array x and weights w.
Definition TH1.cxx:3441
virtual void UpdateBinContent(Int_t bin, Double_t content)
Raw update of bin content on internal data structure see convention for numbering bins in TH1::GetBin...
Definition TH1.cxx:9315
static bool CheckEqualAxes(const TAxis *a1, const TAxis *a2)
Check that the axis are the same.
Definition TH1.cxx:1590
@ kPoisson2
Errors from Poisson interval at 95% CL (~ 2 sigma)
Definition TH1.h:66
@ kNormal
Errors with Normal (Wald) approximation: errorUp=errorLow= sqrt(N)
Definition TH1.h:64
virtual Double_t GetBinContent(Int_t bin) const
Return content of bin number bin.
Definition TH1.cxx:5025
virtual Int_t GetContour(Double_t *levels=nullptr)
Return contour values into array levels if pointer levels is non zero.
Definition TH1.cxx:8277
TAxis fXaxis
X axis descriptor.
Definition TH1.h:89
virtual Bool_t IsHighlight() const
Definition TH1.h:336
virtual void ExtendAxis(Double_t x, TAxis *axis)
Histogram is resized along axis such that x is in the axis range.
Definition TH1.cxx:6486
virtual Double_t GetBinWidth(Int_t bin) const
Return bin width for 1D histogram.
Definition TH1.cxx:9029
static bool CheckConsistency(const TH1 *h1, const TH1 *h2)
Check histogram compatibility.
Definition TH1.cxx:1663
TArrayD fSumw2
Array of sum of squares of weights.
Definition TH1.h:103
TH1 * GetAsymmetry(TH1 *h2, Double_t c2=1, Double_t dc2=0)
Return a histogram containing the asymmetry of this histogram with h2, where the asymmetry is defined...
Definition TH1.cxx:4335
virtual Double_t GetContourLevel(Int_t level) const
Return value of contour number level.
Definition TH1.cxx:8296
virtual void SetContour(Int_t nlevels, const Double_t *levels=nullptr)
Set the number and values of contour levels.
Definition TH1.cxx:8349
virtual void SetHighlight(Bool_t set=kTRUE)
Set highlight (enable/disable) mode for the histogram by default highlight mode is disable.
Definition TH1.cxx:4455
virtual Int_t GetQuantiles(Int_t nprobSum, Double_t *q, const Double_t *probSum=nullptr)
Compute Quantiles for this histogram Quantile x_q of a probability distribution Function F is defined...
Definition TH1.cxx:4575
virtual Double_t GetBinErrorUp(Int_t bin) const
Return upper error associated to bin number bin.
Definition TH1.cxx:8976
virtual void Scale(Double_t c1=1, Option_t *option="")
Multiply this histogram by a constant c1.
Definition TH1.cxx:6586
virtual Int_t GetMinimumBin() const
Return location of bin with minimum value in the range.
Definition TH1.cxx:8531
virtual Int_t GetSumw2N() const
Definition TH1.h:313
virtual Int_t FindBin(Double_t x, Double_t y=0, Double_t z=0)
Return Global bin number corresponding to x,y,z.
Definition TH1.cxx:3668
Bool_t GetStatOverflowsBehaviour() const
Definition TH1.h:151
TObject * Clone(const char *newname="") const override
Make a complete copy of the underlying object.
Definition TH1.cxx:2727
virtual Double_t GetStdDevError(Int_t axis=1) const
Return error of standard deviation estimation for Normal distribution.
Definition TH1.cxx:7565
virtual Bool_t Divide(TF1 *f1, Double_t c1=1)
Performs the operation: this = this/(c1*f1) if errors are defined (see TH1::Sumw2),...
Definition TH1.cxx:2815
virtual Double_t GetMinimum(Double_t minval=-FLT_MAX) const
Return minimum value larger than minval of bins in the range, unless the value has been overridden by...
Definition TH1.cxx:8501
static bool CheckConsistentSubAxes(const TAxis *a1, Int_t firstBin1, Int_t lastBin1, const TAxis *a2, Int_t firstBin2=0, Int_t lastBin2=0)
Check that two sub axis are the same.
Definition TH1.cxx:1626
void RecursiveRemove(TObject *obj) override
Recursively remove object from the list of functions.
Definition TH1.cxx:6558
TAxis fYaxis
Y axis descriptor.
Definition TH1.h:90
virtual Double_t KolmogorovTest(const TH1 *h2, Option_t *option="") const
Statistical test of compatibility in shape between this histogram and h2, using Kolmogorov test.
Definition TH1.cxx:8086
virtual Double_t GetSumOfWeights() const
Return the sum of weights excluding under/overflows.
Definition TH1.cxx:7827
static void SmoothArray(Int_t NN, Double_t *XX, Int_t ntimes=1)
Smooth array xx, translation of Hbook routine hsmoof.F based on algorithm 353QH twice presented by J.
Definition TH1.cxx:6749
virtual void GetCenter(Double_t *center) const
Fill array with center of bins for 1D histogram Better to use h1.GetXaxis()->GetCenter(center)
Definition TH1.cxx:9040
TVirtualHistPainter * fPainter
! Pointer to histogram painter
Definition TH1.h:111
virtual void SetBins(Int_t nx, Double_t xmin, Double_t xmax)
Redefine x axis parameters.
Definition TH1.cxx:8633
virtual Int_t FindFixBin(Double_t x, Double_t y=0, Double_t z=0) const
Return Global bin number corresponding to x,y,z.
Definition TH1.cxx:3701
virtual void Sumw2(Bool_t flag=kTRUE)
Create structure to store sum of squares of weights.
Definition TH1.cxx:8886
virtual void SetEntries(Double_t n)
Definition TH1.h:387
virtual Bool_t FindNewAxisLimits(const TAxis *axis, const Double_t point, Double_t &newMin, Double_t &newMax)
finds new limits for the axis so that point is within the range and the limits are compatible with th...
Definition TH1.cxx:6442
static bool CheckAxisLimits(const TAxis *a1, const TAxis *a2)
Check that the axis limits of the histograms are the same.
Definition TH1.cxx:1575
static Bool_t AddDirectoryStatus()
Static function: cannot be inlined on Windows/NT.
Definition TH1.cxx:735
static Bool_t fgDefaultSumw2
! Flag to call TH1::Sumw2 automatically at histogram creation time
Definition TH1.h:117
Double_t fTsumwx
Total Sum of weight*X.
Definition TH1.h:97
virtual void LabelsDeflate(Option_t *axis="X")
Reduce the number of bins for the axis passed in the option to the number of bins having a label.
Definition TH1.cxx:5209
virtual Double_t ComputeIntegral(Bool_t onlyPositive=false)
Compute integral (cumulative sum of bins) The result stored in fIntegral is used by the GetRandom fun...
Definition TH1.cxx:2517
TString fOption
Histogram options.
Definition TH1.h:104
virtual void Eval(TF1 *f1, Option_t *option="")
Evaluate function f1 at the center of bins of this histogram.
Definition TH1.cxx:3186
virtual void SetBarWidth(Float_t width=0.5)
Set the width of bars as fraction of the bin width for drawing mode "B".
Definition TH1.h:362
virtual Int_t BufferEmpty(Int_t action=0)
Fill histogram with all entries in the buffer.
Definition TH1.cxx:1387
virtual void SetStats(Bool_t stats=kTRUE)
Set statistics option on/off.
Definition TH1.cxx:8856
virtual Double_t GetKurtosis(Int_t axis=1) const
Definition TH1.cxx:7654
2-D histogram with a double per channel (see TH1 documentation)}
Definition TH2.h:300
static THLimitsFinder * GetLimitsFinder()
Return pointer to the current finder.
virtual Int_t FindGoodLimits(TH1 *h, Double_t xmin, Double_t xmax)
Compute the best axis limits for the X axis.
THashList implements a hybrid collection class consisting of a hash table and a list to store TObject...
Definition THashList.h:34
void Clear(Option_t *option="") override
Remove all objects from the list.
A doubly linked list.
Definition TList.h:38
void Streamer(TBuffer &) override
Stream all objects in the collection to or from the I/O buffer.
Definition TList.cxx:1191
TObject * FindObject(const char *name) const override
Find an object in this list using its name.
Definition TList.cxx:578
void RecursiveRemove(TObject *obj) override
Remove object from this collection and recursively remove the object from all other objects (and coll...
Definition TList.cxx:764
void Add(TObject *obj) override
Definition TList.h:81
TObject * Remove(TObject *obj) override
Remove object from the list.
Definition TList.cxx:822
TObject * First() const override
Return the first object in the list. Returns 0 when list is empty.
Definition TList.cxx:659
virtual TObjLink * FirstLink() const
Definition TList.h:102
void Delete(Option_t *option="") override
Remove all objects from the list AND delete all heap based objects.
Definition TList.cxx:470
TObject * At(Int_t idx) const override
Returns the object at position idx. Returns 0 if idx is out of range.
Definition TList.cxx:357
The TNamed class is the base class for all named ROOT classes.
Definition TNamed.h:29
void Copy(TObject &named) const override
Copy this to obj.
Definition TNamed.cxx:94
virtual void SetTitle(const char *title="")
Set the title of the TNamed.
Definition TNamed.cxx:164
const char * GetName() const override
Returns name of object.
Definition TNamed.h:47
void Streamer(TBuffer &) override
Stream an object of class TObject.
const char * GetTitle() const override
Returns title of object.
Definition TNamed.h:48
TString fTitle
Definition TNamed.h:33
TString fName
Definition TNamed.h:32
virtual void SetName(const char *name)
Set the name of the TNamed.
Definition TNamed.cxx:140
Mother of all ROOT objects.
Definition TObject.h:41
void AbstractMethod(const char *method) const
Use this method to implement an "abstract" method that you don't want to leave purely abstract.
Definition TObject.cxx:1012
virtual const char * GetName() const
Returns name of object.
Definition TObject.cxx:439
R__ALWAYS_INLINE Bool_t TestBit(UInt_t f) const
Definition TObject.h:201
virtual UInt_t GetUniqueID() const
Return the unique object id.
Definition TObject.cxx:457
virtual const char * ClassName() const
Returns name of class to which the object belongs.
Definition TObject.cxx:207
virtual void UseCurrentStyle()
Set current style settings in this object This function is called when either TCanvas::UseCurrentStyl...
Definition TObject.cxx:795
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.
Definition TObject.cxx:956
virtual void AppendPad(Option_t *option="")
Append graphics object to current pad.
Definition TObject.cxx:184
void SetBit(UInt_t f, Bool_t set)
Set or unset the user status bits as specified in f.
Definition TObject.cxx:774
virtual Bool_t InheritsFrom(const char *classname) const
Returns kTRUE if object inherits from class "classname".
Definition TObject.cxx:525
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
Definition TObject.cxx:970
virtual void SetUniqueID(UInt_t uid)
Set the unique object id.
Definition TObject.cxx:785
void ResetBit(UInt_t f)
Definition TObject.h:200
@ kCanDelete
if object in a list can be deleted
Definition TObject.h:62
@ kInvalidObject
if object ctor succeeded but object should not be used
Definition TObject.h:72
@ kMustCleanup
if object destructor must call RecursiveRemove()
Definition TObject.h:64
virtual void Info(const char *method, const char *msgfmt,...) const
Issue info message.
Definition TObject.cxx:944
Longptr_t ExecPlugin(int nargs)
Int_t LoadPlugin()
Load the plugin library for this handler.
static TClass * Class()
This is the base class for the ROOT Random number generators.
Definition TRandom.h:27
virtual Int_t Poisson(Double_t mean)
Generates a random integer N according to a Poisson law.
Definition TRandom.cxx:402
Double_t Rndm() override
Machine independent random number generator.
Definition TRandom.cxx:552
virtual Double_t PoissonD(Double_t mean)
Generates a random number according to a Poisson law.
Definition TRandom.cxx:454
Basic string class.
Definition TString.h:139
Ssiz_t Length() const
Definition TString.h:421
void ToLower()
Change string to lower-case.
Definition TString.cxx:1170
void Clear()
Clear string without changing its capacity.
Definition TString.cxx:1221
const char * Data() const
Definition TString.h:380
TString & ReplaceAll(const TString &s1, const TString &s2)
Definition TString.h:704
void ToUpper()
Change string to upper case.
Definition TString.cxx:1183
Bool_t IsNull() const
Definition TString.h:418
TString & Remove(Ssiz_t pos)
Definition TString.h:685
virtual void Streamer(TBuffer &)
Stream a string object.
Definition TString.cxx:1390
TString & Append(const char *cs)
Definition TString.h:576
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString.
Definition TString.cxx:2356
void Form(const char *fmt,...)
Formats a string using a printf style format descriptor.
Definition TString.cxx:2334
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
Definition TString.h:636
Ssiz_t Index(const char *pat, Ssiz_t i=0, ECaseCompare cmp=kExact) const
Definition TString.h:651
Int_t GetOptStat() const
Definition TStyle.h:237
void SetOptStat(Int_t stat=1)
The type of information printed in the histogram statistics box can be selected via the parameter mod...
Definition TStyle.cxx:1589
void SetHistFillColor(Color_t color=1)
Definition TStyle.h:363
Color_t GetHistLineColor() const
Definition TStyle.h:225
Bool_t IsReading() const
Definition TStyle.h:283
Float_t GetBarOffset() const
Definition TStyle.h:175
void SetHistLineStyle(Style_t styl=0)
Definition TStyle.h:366
Style_t GetHistFillStyle() const
Definition TStyle.h:226
Color_t GetHistFillColor() const
Definition TStyle.h:224
Float_t GetBarWidth() const
Definition TStyle.h:176
Bool_t GetCanvasPreferGL() const
Definition TStyle.h:180
void SetHistLineColor(Color_t color=1)
Definition TStyle.h:364
void SetBarOffset(Float_t baroff=0.5)
Definition TStyle.h:320
Style_t GetHistLineStyle() const
Definition TStyle.h:227
void SetBarWidth(Float_t barwidth=0.5)
Definition TStyle.h:321
void SetHistFillStyle(Style_t styl=0)
Definition TStyle.h:365
Width_t GetHistLineWidth() const
Definition TStyle.h:228
Int_t GetOptFit() const
Definition TStyle.h:236
void SetHistLineWidth(Width_t width=1)
Definition TStyle.h:367
TVectorT.
Definition TVectorT.h:27
TVirtualFFT is an interface class for Fast Fourier Transforms.
Definition TVirtualFFT.h:88
static TVirtualFFT * FFT(Int_t ndim, Int_t *n, Option_t *option)
Returns a pointer to the FFT of requested size and type.
virtual Int_t GetNdim() const =0
static TVirtualFFT * SineCosine(Int_t ndim, Int_t *n, Int_t *r2rkind, Option_t *option)
Returns a pointer to a sine or cosine transform of requested size and kind.
virtual Option_t * GetType() const =0
virtual void Transform()=0
virtual void GetPointComplex(Int_t ipoint, Double_t &re, Double_t &im, Bool_t fromInput=kFALSE) const =0
virtual Int_t * GetN() const =0
virtual Double_t GetPointReal(Int_t ipoint, Bool_t fromInput=kFALSE) const =0
virtual void SetPoint(Int_t ipoint, Double_t re, Double_t im=0)=0
Abstract Base Class for Fitting.
virtual Int_t GetXlast() const
virtual TObject * GetObjectFit() const
virtual Int_t GetXfirst() const
static TVirtualFitter * GetFitter()
static: return the current Fitter
virtual TObject * GetUserFunc() const
Abstract interface to a histogram painter.
virtual void DrawPanel()=0
Int_t DistancetoPrimitive(Int_t px, Int_t py) override=0
Computes distance from point (px,py) to the object.
void ExecuteEvent(Int_t event, Int_t px, Int_t py) override=0
Execute action corresponding to an event at (px,py).
virtual void SetHighlight()=0
static TVirtualHistPainter * HistPainter(TH1 *obj)
Static function returning a pointer to the current histogram painter.
void Paint(Option_t *option="") override=0
This method must be overridden if a class wants to paint itself.
virtual void SetParent(TObject *)=0
double gamma_quantile_c(double z, double alpha, double theta)
Inverse ( ) of the cumulative distribution function of the upper tail of the gamma distribution (gamm...
double gamma_quantile(double z, double alpha, double theta)
Inverse ( ) of the cumulative distribution function of the lower tail of the gamma distribution (gamm...
const Double_t sigma
Double_t y[n]
Definition legend1.C:17
return c1
Definition legend1.C:41
Double_t x[n]
Definition legend1.C:17
const Int_t n
Definition legend1.C:16
TH1F * h1
Definition legend1.C:5
TF1 * f1
Definition legend1.C:11
return c2
Definition legend2.C:14
R__ALWAYS_INLINE bool HasBeenDeleted(const TObject *obj)
Check if the TObject's memory has been deleted.
Definition TObject.h:404
TFitResultPtr FitObject(TH1 *h1, TF1 *f1, Foption_t &option, const ROOT::Math::MinimizerOptions &moption, const char *goption, ROOT::Fit::DataRange &range)
fitting function for a TH1 (called from TH1::Fit)
Definition HFitImpl.cxx:965
void FitOptionsMake(EFitObjectType type, const char *option, Foption_t &fitOption)
Decode list of options into fitOption.
Definition HFitImpl.cxx:684
void FillData(BinData &dv, const TH1 *hist, TF1 *func=nullptr)
fill the data vector from a TH1.
double Chisquare(const TH1 &h1, TF1 &f1, bool useRange, bool usePL=false)
compute the chi2 value for an histogram given a function (see TH1::Chisquare for the documentation)
R__EXTERN TVirtualRWMutex * gCoreMutex
Bool_t IsNaN(Double_t x)
Definition TMath.h:890
Int_t Nint(T x)
Round to nearest integer. Rounds half integers to the nearest even integer.
Definition TMath.h:691
Short_t Max(Short_t a, Short_t b)
Returns the largest of a and b.
Definition TMathBase.h:250
Double_t Prob(Double_t chi2, Int_t ndf)
Computation of the probability for a certain Chi-squared (chi2) and number of degrees of freedom (ndf...
Definition TMath.cxx:637
Double_t QuietNaN()
Returns a quiet NaN as defined by IEEE 754.
Definition TMath.h:900
Double_t Floor(Double_t x)
Rounds x downward, returning the largest integral value that is not greater than x.
Definition TMath.h:678
Double_t ATan(Double_t)
Returns the principal value of the arc tangent of x, expressed in radians.
Definition TMath.h:638
Double_t Ceil(Double_t x)
Rounds x upward, returning the smallest integral value that is not less than x.
Definition TMath.h:666
T MinElement(Long64_t n, const T *a)
Returns minimum of array a of length n.
Definition TMath.h:958
Double_t Log(Double_t x)
Returns the natural logarithm of x.
Definition TMath.h:754
Double_t Sqrt(Double_t x)
Returns the square root of x.
Definition TMath.h:660
LongDouble_t Power(LongDouble_t x, LongDouble_t y)
Returns x raised to the power y.
Definition TMath.h:719
Short_t Min(Short_t a, Short_t b)
Returns the smallest of a and b.
Definition TMathBase.h:198
constexpr Double_t Pi()
Definition TMath.h:37
Bool_t AreEqualRel(Double_t af, Double_t bf, Double_t relPrec)
Comparing floating points.
Definition TMath.h:425
Bool_t AreEqualAbs(Double_t af, Double_t bf, Double_t epsilon)
Comparing floating points.
Definition TMath.h:418
Double_t KolmogorovProb(Double_t z)
Calculates the Kolmogorov distribution function,.
Definition TMath.cxx:679
void Sort(Index n, const Element *a, Index *index, Bool_t down=kTRUE)
Sort the n elements of the array a of generic templated type Element.
Definition TMathBase.h:431
Double_t Median(Long64_t n, const T *a, const Double_t *w=0, Long64_t *work=0)
Same as RMS.
Definition TMath.h:1270
Long64_t BinarySearch(Long64_t n, const T *array, T value)
Binary search in an array of n values to locate value.
Definition TMathBase.h:347
Double_t Log10(Double_t x)
Returns the common (base-10) logarithm of x.
Definition TMath.h:760
Short_t Abs(Short_t d)
Returns the absolute value of parameter Short_t d.
Definition TMathBase.h:123
Double_t Infinity()
Returns an infinity as defined by the IEEE standard.
Definition TMath.h:915
Definition first.py:1
th1 Draw()
TMarker m
Definition textangle.C:8
TLine l
Definition textangle.C:4
static uint64_t sum(uint64_t i)
Definition Factory.cxx:2345
double epsilon
Definition triangle.c:618