73 template <
class FitObject>
76 template <
class FitObject>
79 template <
class FitObject>
89 Error(
"Fit",
"function may not be null pointer");
93 Error(
"Fit",
"function is zombie");
99 Error(
"Fit",
"function %s has illegal number of parameters = %d",
f1->
GetName(), npar);
105 Error(
"Fit",
"function %s dimension, %d, is greater than fit object dimension, %d",
110 Error(
"Fit",
"function %s dimension, %d, is smaller than fit object dimension -1, %d",
122 Double_t fxmin, fymin, fzmin, fxmax, fymax, fzmax;
123 f1.
GetRange(fxmin, fymin, fzmin, fxmax, fymax, fzmax);
132template<
class FitObject>
139 printf(
"fit function %s\n",
f1->
GetName() );
145 if (iret != 0)
return iret;
151 if (fitOption.
Integral)
Info(
"Fit",
"Ignore Integral option. Model function dimension is less than the data object dimension");
152 if (fitOption.
Like)
Info(
"Fit",
"Ignore Likelihood option. Model function dimension is less than the data object dimension");
160 if (special==299+npar) linear =
kTRUE;
166 std::shared_ptr<TFitResult> tfr(
new TFitResult() );
168 std::shared_ptr<ROOT::Fit::Fitter> fitter(
new ROOT::Fit::Fitter(std::static_pointer_cast<ROOT::Fit::FitResult>(tfr) ) );
189 printf(
"use range \n" );
194 printf(
"range size %d\n", range.
Size(0) );
197 printf(
" range in x = [%f,%f] \n",
x1,
x2);
204 if (fitdata->Size() == 0 ) {
205 Warning(
"Fit",
"Fit data is empty ");
210 printf(
"HFit:: data size is %d \n",fitdata->Size());
211 for (
unsigned int i = 0; i < fitdata->Size(); ++i) {
212 if (fitdata->NDim() == 1) printf(
" x[%d] = %f - value = %f \n", i,*(fitdata->Coords(i)),fitdata->Value(i) );
222 if (special != 0 && !fitOption.
Bound && !linear) {
235 if ( (linear || fitOption.
Gradient) )
249 if (
int(fitdata->NDim()) == hdim -1 ) fitConfig.
SetNormErrors(
true);
257 for (
int i = 0; i < npar; ++i) {
263 if (plow*pup != 0 && plow >= pup) {
266 else if (plow < pup ) {
281 double step = 0.1 * (pup - plow);
283 if ( parSettings.
Value() < pup && pup - parSettings.
Value() < 2 * step )
284 step = (pup - parSettings.
Value() ) / 2;
285 else if ( parSettings.
Value() > plow && parSettings.
Value() - plow < 2 * step )
286 step = (parSettings.
Value() - plow ) / 2;
315 std::string
type =
"Robust";
341 if (fitOption.
Like) printf(
"do likelihood fit...\n");
342 if (linear) printf(
"do linear fit...\n");
343 printf(
"do now fit...\n");
358 if (fitOption.
User && userFcn)
359 fitok = fitter->FitFCN( userFcn );
360 else if (fitOption.
Like) {
362 bool weight = ((fitOption.
Like & 2) == 2);
364 bool extended = ((fitOption.
Like & 4 ) != 4 );
368 fitok = fitter->LikelihoodFit(fitdata, extended, fitOption.
ExecPolicy);
371 fitok = fitter->Fit(fitdata, fitOption.
ExecPolicy);
373 if ( !fitok && !fitOption.
Quiet )
374 Warning(
"Fit",
"Abnormal termination of minimization.");
380 iret = fitResult.
Status();
404 if (!fitOption.
Quiet) {
405 if (fitter->GetMinimizer() && fitConfig.
MinimizerType() ==
"Minuit" &&
407 fitter->GetMinimizer()->PrintResults();
412 fitResult.
Print(std::cout);
427 bcfitter->
SetFCN(userFcn);
453 tfr->SetTitle(title);
468 if (range.
Size(0) == 0) {
479 if (range.
Size(1) == 0) {
490 if (range.
Size(2) == 0) {
501 std::cout <<
"xmin,xmax" <<
xmin <<
" " <<
xmax << std::endl;
520 else if (range.
Size(0) == 0) {
522 double xmin = std::numeric_limits<double>::infinity();
523 double xmax = -std::numeric_limits<double>::infinity();
526 while ( (
g = (
TGraph*) next() ) ) {
527 double x1 = 0,
x2 = 0,
y1 = 0,
y2 = 0;
542 if (range.
Size(0) == 0) {
543 double xmin =
gr->GetXmin();
544 double xmax =
gr->GetXmax();
547 if (range.
Size(1) == 0) {
548 double ymin =
gr->GetYmin();
549 double ymax =
gr->GetYmax();
560 for (
int i = 0; i < ndim; ++i ) {
561 if ( range.
Size(i) == 0 ) {
568template<
class FitObject>
574 std::cout <<
"draw and store fit function " <<
f1->
GetName() << std::endl;
586 std::cout <<
"draw and store fit function " <<
f1->
GetName()
587 <<
" Range in x = [ " <<
xmin <<
" , " <<
xmax <<
" ]" << std::endl;
592 Error(
"StoreAndDrawFitFunction",
"Function list has not been created - cannot store the fitted function");
600 bool reuseOldFunction =
false;
601 if (delOldFunction) {
604 while ((obj = next())) {
611 reuseOldFunction =
true;
623 if (!reuseOldFunction) {
627 funcList->
Add(fnew1);
637 }
else if (ndim < 3) {
638 if (!reuseOldFunction) {
642 funcList->
Add(fnew2);
645 fnew2 =
dynamic_cast<TF2*
>(
f1);
654 if (!reuseOldFunction) {
658 funcList->
Add(fnew3);
661 fnew3 =
dynamic_cast<TF3*
>(
f1);
672 if (drawFunction && ndim < 3 && h1->InheritsFrom(
TH1::Class() ) ) {
675 if (!
gPad || (
gPad &&
gPad->GetListOfPrimitives()->FindObject(
h1) == NULL ) )
735 if (fitOption.
Like == 1) {
739 if (fitOption.
Like == 2) fitOption.
Like = 6;
740 else fitOption.
Like = 4;
744 if (fitOption.
Chi2 == 1 || fitOption.
PChi2 == 1)
745 Warning(
"Fit",
"Cannot use P or X option in combination of L. Ignore the chi2 option and perform a likelihood fit");
747 if (fitOption.
PChi2 && fitOption.
W1) {
748 Warning(
"FitOptionsMake",
"Ignore option W or WW when used together with option P (Pearson chi2)");
761 int start = opt.
Index(
"H=0.");
762 int numpos = start + strlen(
"H=0.");
765 while( (numpos+numlen<
len) && isdigit(opt[numpos+numlen]) ) numlen++;
766 TString num = opt(numpos,numlen);
767 opt.
Remove(start+strlen(
"H"),strlen(
"=0.")+numlen);
768 h = atof(num.
Data());
798 Info(
"CheckGraphFitOptions",
"L (Log Likelihood fit) is an invalid option when fitting a graph. It is ignored");
802 Info(
"CheckGraphFitOptions",
"I (use function integral) is an invalid option when fitting a graph. It is ignored");
814 std::shared_ptr<ROOT::Fit::UnBinData> fitdata(
data);
817 printf(
"tree data size is %d \n",fitdata->Size());
818 for (
unsigned int i = 0; i < fitdata->Size(); ++i) {
819 if (fitdata->NDim() == 1) printf(
" x[%d] = %f \n", i,*(fitdata->Coords(i) ) );
822 if (fitdata->Size() == 0 ) {
823 Warning(
"Fit",
"Fit data is empty ");
828 std::shared_ptr<TFitResult> tfr(
new TFitResult() );
834 unsigned int dim = fitdata->NDim();
840 assert ( (
int) dim == fitfunc->
GetNdim() );
849 for (
int i = 0; i < npar; ++i) {
854 if (plow*pup != 0 && plow >= pup) {
857 else if (plow < pup ) {
872 double step = 0.1 * (pup - plow);
874 if ( parSettings.
Value() < pup && pup - parSettings.
Value() < 2 * step )
875 step = (pup - parSettings.
Value() ) / 2;
876 else if ( parSettings.
Value() > plow && parSettings.
Value() - plow < 2 * step )
877 step = (parSettings.
Value() - plow ) / 2;
899 if ( (fitOption.
Like & 2) == 2)
902 bool extended = (fitOption.
Like & 1) == 1;
905 fitok = fitter->LikelihoodFit(fitdata, extended, fitOption.
ExecPolicy);
906 if ( !fitok && !fitOption.
Quiet )
907 Warning(
"UnBinFit",
"Abnormal termination of minimization.");
911 int iret = fitResult.
Status();
936 if (lastFitter)
delete lastFitter;
946 else if (!fitOption.
Quiet) fitResult.
Print(std::cout);
955 tfr->SetTitle(title);
970 Warning(
"HFit::FitObject",
"A weighted likelihood fit is requested but histogram is not weighted - do a standard Likelihood fit");
1027template<
class FitObject>
1039 if (
data.Size() == 0 ) {
1040 Warning(
"Chisquare",
"data set is empty - return -1");
const Bool_t kIterBackward
void Info(const char *location, const char *msgfmt,...)
Use this function for informational messages.
void Error(const char *location, const char *msgfmt,...)
Use this function in case an error occurred.
void Warning(const char *location, const char *msgfmt,...)
Use this function in warning situations.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t UChar_t len
Option_t Option_t TPoint TPoint const char x2
Option_t Option_t TPoint TPoint const char x1
Option_t Option_t TPoint TPoint const char y2
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
Option_t Option_t TPoint TPoint const char y1
R__EXTERN TVirtualMutex * gGlobalMutex
Class describing the binned data sets : vectors of x coordinates, y values and optionally error on y ...
Chi2FCN class for binned fits using the least square methods.
class describing the range in the coordinates it supports multiple range in a coordinate.
void AddRange(unsigned int icoord, double xmin, double xmax)
add a range [xmin,xmax] for the new coordinate icoord Adding a range does not delete existing one,...
unsigned int Size(unsigned int icoord=0) const
return range size for coordinate icoord (starts from zero) Size == 0 indicates no range is present [-...
void GetRange(unsigned int irange, unsigned int icoord, double &xmin, double &xmax) const
get the i-th range for given coordinate.
Class describing the configuration of the fit, options and parameter settings using the ROOT::Fit::Pa...
void SetMinimizer(const char *type, const char *algo=nullptr)
set minimizer type
void SetMinosErrors(bool on=true)
set Minos erros computation to be performed after fitting
void SetNormErrors(bool on=true)
set the option to normalize the error on the result according to chi2/ndf
bool NormalizeErrors() const
flag to check if resulting errors are be normalized according to chi2/ndf
void SetMinimizerOptions(const ROOT::Math::MinimizerOptions &minopt)
set all the minimizer options using class MinimizerOptions
void SetWeightCorrection(bool on=true)
apply the weight correction for error matrix computation
void SetParabErrors(bool on=true)
set parabolic erros
const std::string & MinimizerType() const
return type of minimizer package
const ParameterSettings & ParSettings(unsigned int i) const
get the parameter settings for the i-th parameter (const method)
ROOT::Math::MinimizerOptions & MinimizerOptions()
access to the minimizer control parameter (non const method)
class containing the result of the fit and all the related information (fitted parameter values,...
bool IsEmpty() const
True if a fit result does not exist (even invalid) with parameter values.
const std::vector< double > & Errors() const
parameter errors (return st::vector)
const std::vector< double > & Parameters() const
parameter values (return std::vector)
unsigned int Ndf() const
Number of degree of freedom.
double Chi2() const
Chi2 fit value in case of likelihood must be computed ?
void Print(std::ostream &os, bool covmat=false) const
print the result and optionally covariance matrix and correlations
void PrintCovMatrix(std::ostream &os) const
print error matrix and correlations
int Status() const
minimizer status code
Fitter class, entry point for performing all type of fits.
Class, describing value, limits and step size of the parameters Provides functionality also to set/re...
void SetStepSize(double err)
set the step size
void SetLimits(double low, double up)
set a double side limit, if low == up the parameter is fixed if low > up the limits are removed The c...
double Value() const
copy constructor and assignment operators (leave them to the compiler)
void SetUpperLimit(double up)
set a single upper limit
void Fix()
fix the parameter
void SetLowerLimit(double low)
set a single lower limit
class evaluating the log likelihood for binned Poisson likelihood fits it is template to distinguish ...
Class describing the un-binned data sets (just x coordinates values) of any dimensions.
IParamFunction interface (abstract class) describing multi-dimensional parametric functions It is a d...
void SetPrintLevel(int level)
set print level
void SetTolerance(double tol)
set the tolerance
Class to Wrap a ROOT Function class (like TF1) in a IParamMultiFunction interface of multi-dimensions...
Class to manage histogram axis.
virtual Double_t GetBinLowEdge(Int_t bin) const
Return low edge of bin.
Int_t GetLast() const
Return last bin on the axis i.e.
virtual Double_t GetBinWidth(Int_t bin) const
Return bin width.
Int_t GetFirst() const
Return first bin on the axis i.e.
Backward compatible implementation of TVirtualFitter.
virtual void SetMethodCall(TMethodCall *m)
For using interpreted function passed by the user.
void SetFCN(void(*fcn)(Int_t &, Double_t *, Double_t &f, Double_t *, Int_t)) override
Override setFCN to use the Adapter to Minuit2 FCN interface To set the address of the minimization fu...
void * New(ENewType defConstructor=kClassNew, Bool_t quiet=kFALSE) const
Return a pointer to a newly allocated object of this class.
virtual Int_t GetNumber() const
virtual void GetParLimits(Int_t ipar, Double_t &parmin, Double_t &parmax) const
Return limits for parameter ipar.
virtual void SetNDF(Int_t ndf)
Set the number of degrees of freedom ndf should be the number of points used in a fit - the number of...
virtual Double_t GetParError(Int_t ipar) const
Return value of parameter number ipar.
virtual void SetChisquare(Double_t chi2)
virtual void SetRange(Double_t xmin, Double_t xmax)
Initialize the upper and lower bounds to draw the function.
virtual Int_t GetNpar() const
virtual void SetParErrors(const Double_t *errors)
Set errors for all active parameters when calling this function, the array errors must have at least ...
virtual void SetParent(TObject *p=nullptr)
virtual Double_t * GetParameters() const
void Copy(TObject &f1) const override
Copy this F1 to a new F1.
virtual void SetNumberFitPoints(Int_t npfits)
virtual void GetRange(Double_t *xmin, Double_t *xmax) const
Return range of a generic N-D function.
virtual Bool_t IsLinear() const
virtual void SetParameters(const Double_t *params)
virtual void Save(Double_t xmin, Double_t xmax, Double_t ymin, Double_t ymax, Double_t zmin, Double_t zmax)
Save values of function in array fSave.
TClass * IsA() const override
virtual Int_t GetNdim() const
virtual Bool_t AddToGlobalList(Bool_t on=kTRUE)
Add to global list of functions (gROOT->GetListOfFunctions() ) return previous status (true if the fu...
A 2-Dim function with parameters.
void Save(Double_t xmin, Double_t xmax, Double_t ymin, Double_t ymax, Double_t zmin, Double_t zmax) override
Save values of function in array fSave.
void SetRange(Double_t xmin, Double_t xmax) override
Initialize the upper and lower bounds to draw the function.
A 3-Dim function with parameters.
void Save(Double_t xmin, Double_t xmax, Double_t ymin, Double_t ymax, Double_t zmin, Double_t zmax) override
Save values of function in array fSave.
void SetRange(Double_t xmin, Double_t xmax) override
Initialize the upper and lower bounds to draw the function.
Provides an indirection to the TFitResult class and with a semantics identical to a TFitResult pointe...
Extends the ROOT::Fit::Result class with a TNamed inheritance providing easy possibility for I/O.
Graphics object made of three arrays X, Y and Z with the same number of points each.
A TGraph is an object made of two arrays X and Y with npoints each.
TH1F * GetHistogram() const
Returns a pointer to the histogram used to draw the axis Takes into account the two following cases.
TH1 is the base class of all histogram classes in ROOT.
virtual Int_t GetDimension() const
void Draw(Option_t *option="") override
Draw this histogram with options.
TList * GetListOfFunctions() const
virtual Int_t GetSumw2N() const
Multidimensional histogram base.
void Add(TObject *obj) override
TObject * Remove(TObject *obj) override
Remove object from the list.
A TMultiGraph is a collection of TGraph (or derived) objects.
TList * GetListOfGraphs() const
TH1F * GetHistogram()
Returns a pointer to the histogram used to draw the axis.
const char * GetName() const override
Returns name of object.
const char * GetTitle() const override
Returns title of object.
Mother of all ROOT objects.
R__ALWAYS_INLINE Bool_t TestBit(UInt_t f) const
R__ALWAYS_INLINE Bool_t IsZombie() const
void SetBit(UInt_t f, Bool_t set)
Set or unset the user status bits as specified in f.
virtual Bool_t InheritsFrom(const char *classname) const
Returns kTRUE if object inherits from class "classname".
const char * Data() const
TString & ReplaceAll(const TString &s1, const TString &s2)
void ToUpper()
Change string to upper case.
TString & Remove(Ssiz_t pos)
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
Ssiz_t Index(const char *pat, Ssiz_t i=0, ECaseCompare cmp=kExact) const
Abstract Base Class for Fitting.
virtual void SetFitOption(Foption_t option)
virtual void SetObjectFit(TObject *obj)
TMethodCall * GetMethodCall() const
void(* FCNFunc_t)(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag)
virtual void SetUserFunc(TObject *userfunc)
static TVirtualFitter * GetFitter()
static: return the current Fitter
static void SetFitter(TVirtualFitter *fitter, Int_t maxpar=25)
Static function to set an alternative fitter.
void GetDrawingRange(TH1 *h1, ROOT::Fit::DataRange &range)
void GetFunctionRange(const TF1 &f1, ROOT::Fit::DataRange &range)
int CheckFitFunction(const TF1 *f1, int hdim)
TFitResultPtr Fit(FitObject *h1, TF1 *f1, Foption_t &option, const ROOT::Math::MinimizerOptions &moption, const char *goption, ROOT::Fit::DataRange &range)
void FitOptionsMake(const char *option, Foption_t &fitOption)
void CheckGraphFitOptions(Foption_t &fitOption)
void StoreAndDrawFitFunction(FitObject *h1, TF1 *f1, const ROOT::Fit::DataRange &range, bool, bool, const char *goption)
double ComputeChi2(const FitObject &h1, TF1 &f1, bool useRange, bool usePL)
int GetDimension(const TH1 *h1)
TFitResultPtr FitObject(TH1 *h1, TF1 *f1, Foption_t &option, const ROOT::Math::MinimizerOptions &moption, const char *goption, ROOT::Fit::DataRange &range)
fitting function for a TH1 (called from TH1::Fit)
void FitOptionsMake(EFitObjectType type, const char *option, Foption_t &fitOption)
Decode list of options into fitOption.
void Init2DGaus(const ROOT::Fit::BinData &data, TF1 *f1)
compute initial parameter for 2D gaussian function given the fit data Set the sigma limits for zero t...
TFitResultPtr UnBinFit(ROOT::Fit::UnBinData *data, TF1 *f1, Foption_t &option, const ROOT::Math::MinimizerOptions &moption)
fit an unbin data set (from tree or from histogram buffer) using a TF1 pointer and fit options.
void FillData(BinData &dv, const TH1 *hist, TF1 *func=nullptr)
fill the data vector from a TH1.
void InitExpo(const ROOT::Fit::BinData &data, TF1 *f1)
compute initial parameter for an exponential function given the fit data Set the constant and slope a...
void InitGaus(const ROOT::Fit::BinData &data, TF1 *f1)
compute initial parameter for gaussian function given the fit data Set the sigma limits for zero top ...
double Chisquare(const TH1 &h1, TF1 &f1, bool useRange, bool usePL=false)
compute the chi2 value for an histogram given a function (see TH1::Chisquare for the documentation)
std::string ToString(const T &val)
Utility function for conversion to strings.
Bool_t IsImplicitMTEnabled()
Returns true if the implicit multi-threading in ROOT is enabled.
Int_t Finite(Double_t x)
Check if it is finite with a mask in order to be consistent in presence of fast math.
LongDouble_t Power(LongDouble_t x, LongDouble_t y)
Returns x raised to the power y.
ROOT::EExecutionPolicy ExecPolicy
DataOptions : simple structure holding the options on how the data are filled.
bool fErrors1
use all errors equal to 1, i.e. fit without errors (default is false)
bool fNormBinVolume
normalize data by a normalized the bin volume (bin volume divided by a reference value)
bool fUseRange
use the function range when creating the fit data (default is false)
bool fUseEmpty
use empty bins (default is false) with a fixed error of 1
bool fIntegral
use integral of bin content instead of bin center (default is false)
bool fExpErrors
use expected errors from the function and not from the data
bool fBinVolume
normalize data by the bin volume (it is used in the Poisson likelihood fits)
bool fCoordErrors
use errors on the x coordinates when available (default is true)