539 class DifferentDimension:
public std::exception {};
540 class DifferentNumberOfBins:
public std::exception {};
541 class DifferentAxisLimits:
public std::exception {};
542 class DifferentBinLimits:
public std::exception {};
543 class DifferentLabels:
public std::exception {};
643 if (nbins <= 0) {
Warning(
"TH1",
"nbins is <=0 - set to nbins = 1"); nbins = 1; }
665 if (nbins <= 0) {
Warning(
"TH1",
"nbins is <=0 - set to nbins = 1"); nbins = 1; }
687 if (nbins <= 0) {
Warning(
"TH1",
"nbins is <=0 - set to nbins = 1"); nbins = 1; }
754 fFunctions->UseRWLock();
780 Error(
"Add",
"Attempt to add a non-existing function");
800 for (
Int_t i = 0; i < 10; ++i) s1[i] = 0;
806 Int_t bin, binx, biny, binz;
811 for (binz = 0; binz < ncellsz; ++binz) {
813 for (biny = 0; biny < ncellsy; ++biny) {
815 for (binx = 0; binx < ncellsx; ++binx) {
819 bin = binx + ncellsx * (biny + ncellsy * binz);
865 Error(
"Add",
"Attempt to add a non-existing histogram");
876 }
catch(DifferentNumberOfBins&) {
878 Info(
"Add",
"Attempt to add histograms with different number of bins - trying to use TH1::Merge");
880 Error(
"Add",
"Attempt to add histograms with different number of bins : nbins h1 = %d , nbins h2 = %d",
GetNbinsX(), h1->
GetNbinsX());
883 }
catch(DifferentAxisLimits&) {
885 Info(
"Add",
"Attempt to add histograms with different axis limits - trying to use TH1::Merge");
887 Warning(
"Add",
"Attempt to add histograms with different axis limits");
888 }
catch(DifferentBinLimits&) {
890 Info(
"Add",
"Attempt to add histograms with different bin limits - trying to use TH1::Merge");
892 Warning(
"Add",
"Attempt to add histograms with different bin limits");
893 }
catch(DifferentLabels&) {
896 Info(
"Add",
"Attempt to add histograms with different labels - trying to use TH1::Merge");
898 Info(
"Warning",
"Attempt to add histograms with different labels");
903 l.
Add(const_cast<TH1*>(h1));
904 auto iret =
Merge(&l);
916 Bool_t resetStats = (c1 < 0);
946 if (e1sq) w1 = 1. / e1sq;
951 double sf = (s2[0] != 0) ? s2[1]/s2[0] : 1;
955 if (e2sq) w2 = 1. / e2sq;
960 double sf = (s1[0] != 0) ? s1[1]/s1[0] : 1;
965 double y = (w1*y1 + w2*y2)/(w1 + w2);
968 double err2 = 1./(w1 + w2);
969 if (err2 < 1.
E-200) err2 = 0;
985 if (i == 1) s1[i] += c1*c1*s2[i];
986 else s1[i] += c1*s2[i];
1027 Error(
"Add",
"Attempt to add a non-existing histogram");
1035 if (h1 == h2 && c2 < 0) {c2 = 0; normWidth =
kTRUE;}
1044 }
catch(DifferentNumberOfBins&) {
1046 Info(
"Add",
"Attempt to add histograms with different number of bins - trying to use TH1::Merge");
1048 Error(
"Add",
"Attempt to add histograms with different number of bins : nbins h1 = %d , nbins h2 = %d",
GetNbinsX(), h1->
GetNbinsX());
1051 }
catch(DifferentAxisLimits&) {
1053 Info(
"Add",
"Attempt to add histograms with different axis limits - trying to use TH1::Merge");
1055 Warning(
"Add",
"Attempt to add histograms with different axis limits");
1056 }
catch(DifferentBinLimits&) {
1058 Info(
"Add",
"Attempt to add histograms with different bin limits - trying to use TH1::Merge");
1060 Warning(
"Add",
"Attempt to add histograms with different bin limits");
1061 }
catch(DifferentLabels&) {
1064 Info(
"Add",
"Attempt to add histograms with different labels - trying to use TH1::Merge");
1066 Info(
"Warning",
"Attempt to add histograms with different labels");
1072 l.
Add(const_cast<TH1*>(h1));
1073 l.
Add(const_cast<TH1*>(h2));
1075 auto iret =
Merge(&l);
1095 Bool_t resetStats = (c1*c2 < 0) || normWidth;
1102 if (i == 1) s3[i] = c1*c1*s1[i] + c2*c2*s2[i];
1104 else s3[i] = c1*s1[i] + c2*s2[i];
1120 Int_t bin, binx, biny, binz;
1121 for (binz = 0; binz < nbinsz; ++binz) {
1123 for (biny = 0; biny < nbinsy; ++biny) {
1125 for (binx = 0; binx < nbinsx; ++binx) {
1127 bin =
GetBin(binx, biny, binz);
1148 if (e1sq) w1 = 1./ e1sq;
1152 double sf = (s1[0] != 0) ? s1[1]/s1[0] : 1;
1156 if (e2sq) w2 = 1./ e2sq;
1160 double sf = (s2[0] != 0) ? s2[1]/s2[0] : 1;
1165 double y = (w1*y1 + w2*y2)/(w1 + w2);
1168 double err2 = 1./(w1 + w2);
1169 if (err2 < 1.
E-200) err2 = 0;
1243 return ((next && x > 0.) || (!next && x <= 0.)) ?
std::ldexp(std::copysign(1., f2), nn)
1298 Double_t rr = (xhma - xhmi) / (xma - xmi);
1308 Int_t nbup = (xhma - xma) / bw;
1311 if (nbup != nbside) {
1313 xhma -= bw * (nbup - nbside);
1314 nb -= (nbup - nbside);
1318 Int_t nblw = (xmi - xhmi) / bw;
1321 if (nblw != nbside) {
1323 xhmi += bw * (nblw - nbside);
1324 nb -= (nblw - nbside);
1354 if (nbentries == 0) {
1364 if (nbentries < 0 && action == 0)
return 0;
1367 if (nbentries < 0) {
1368 nbentries = -nbentries;
1380 for (
Int_t i=1;i<nbentries;i++) {
1382 if (x < xmin) xmin =
x;
1383 if (x > xmax) xmax =
x;
1390 "incosistency found by power-of-2 autobin algorithm: fallback to standard method");
1408 DoFillN(nbentries,&buffer[2],&buffer[1],2);
1442 if (nbentries < 0) {
1445 nbentries = -nbentries;
1477 if ( h2Array->
fN != fN ) {
1478 throw DifferentBinLimits();
1482 for (
int i = 0; i < fN; ++i ) {
1484 throw DifferentBinLimits();
1505 throw DifferentLabels();
1510 throw DifferentLabels();
1513 for (
int i = 1; i <= a1->
GetNbins(); ++i) {
1516 if (label1 != label2) {
1517 throw DifferentLabels();
1533 throw DifferentAxisLimits();
1546 ::Info(
"CheckEqualAxes",
"Axes have different number of bins : nbin1 = %d nbin2 = %d",a1->
GetNbins(),a2->
GetNbins() );
1551 }
catch (DifferentAxisLimits&) {
1552 ::Info(
"CheckEqualAxes",
"Axes have different limits");
1557 }
catch (DifferentBinLimits&) {
1558 ::Info(
"CheckEqualAxes",
"Axes have different bin limits");
1565 }
catch (DifferentLabels&) {
1566 ::Info(
"CheckEqualAxes",
"Axes have different labels");
1581 Int_t nbins1 = lastBin1-firstBin1 + 1;
1589 if (firstBin2 < lastBin2) {
1591 nbins2 = lastBin1-firstBin1 + 1;
1596 if (nbins1 != nbins2 ) {
1597 ::Info(
"CheckConsistentSubAxes",
"Axes have different number of bins");
1603 ::Info(
"CheckConsistentSubAxes",
"Axes have different limits");
1615 if (h1 == h2)
return true;
1618 throw DifferentDimension();
1630 (dim > 1 && nbinsy != h2->
GetNbinsY()) ||
1631 (dim > 2 && nbinsz != h2->
GetNbinsZ()) ) {
1632 throw DifferentNumberOfBins();
1948 Int_t ndf = 0, igood = 0;
1956 printf(
"Chi2 = %f, Prob = %g, NDF = %d, igood = %d\n", chi2,prob,ndf,igood);
1959 if (ndf == 0)
return 0;
2007 Int_t i_start, i_end;
2008 Int_t j_start, j_end;
2009 Int_t k_start, k_end;
2038 Error(
"Chi2TestX",
"Histograms have different dimensions.");
2043 if (nbinx1 != nbinx2) {
2044 Error(
"Chi2TestX",
"different number of x channels");
2046 if (nbiny1 != nbiny2) {
2047 Error(
"Chi2TestX",
"different number of y channels");
2049 if (nbinz1 != nbinz2) {
2050 Error(
"Chi2TestX",
"different number of z channels");
2054 i_start = j_start = k_start = 1;
2085 ndf = (i_end - i_start + 1) * (j_end - j_start + 1) * (k_end - k_start + 1) - 1;
2092 if (scaledHistogram && !comparisonUU) {
2093 Info(
"Chi2TestX",
"NORM option should be used together with UU option. It is ignored");
2100 Double_t effEntries1 = (s[1] ? s[0] * s[0] / s[1] : 0.0);
2104 Double_t effEntries2 = (s[1] ? s[0] * s[0] / s[1] : 0.0);
2106 if (!comparisonUU && !comparisonUW && !comparisonWW ) {
2108 if (
TMath::Abs(sumBinContent1 - effEntries1) < 1) {
2109 if (
TMath::Abs(sumBinContent2 - effEntries2) < 1) comparisonUU =
true;
2110 else comparisonUW =
true;
2112 else comparisonWW =
true;
2116 if (
TMath::Abs(sumBinContent1 - effEntries1) >= 1) {
2117 Warning(
"Chi2TestX",
"First histogram is not unweighted and option UW has been requested");
2120 if ( (!scaledHistogram && comparisonUU) ) {
2121 if ( (
TMath::Abs(sumBinContent1 - effEntries1) >= 1) || (
TMath::Abs(sumBinContent2 - effEntries2) >= 1) ) {
2122 Warning(
"Chi2TestX",
"Both histograms are not unweighted and option UU has been requested");
2128 if (comparisonUU && scaledHistogram) {
2129 for (
Int_t i = i_start; i <= i_end; ++i) {
2130 for (
Int_t j = j_start; j <= j_end; ++j) {
2131 for (
Int_t k = k_start; k <= k_end; ++k) {
2140 if (e1sq > 0.0) cnt1 =
TMath::Floor(cnt1 * cnt1 / e1sq + 0.5);
2143 if (e2sq > 0.0) cnt2 =
TMath::Floor(cnt2 * cnt2 / e2sq + 0.5);
2154 if (sumw1 <= 0.0 || sumw2 <= 0.0) {
2155 Error(
"Chi2TestX",
"Cannot use option NORM when one histogram has all zero errors");
2160 for (
Int_t i = i_start; i <= i_end; ++i) {
2161 for (
Int_t j = j_start; j <= j_end; ++j) {
2162 for (
Int_t k = k_start; k <= k_end; ++k) {
2176 if (sum1 == 0.0 || sum2 == 0.0) {
2177 Error(
"Chi2TestX",
"one histogram is empty");
2181 if ( comparisonWW && ( sumw1 <= 0.0 && sumw2 <= 0.0 ) ){
2182 Error(
"Chi2TestX",
"Hist1 and Hist2 have both all zero errors\n");
2192 for (
Int_t i = i_start; i <= i_end; ++i) {
2193 for (
Int_t j = j_start; j <= j_end; ++j) {
2194 for (
Int_t k = k_start; k <= k_end; ++k) {
2201 if (scaledHistogram) {
2206 if (e1sq > 0) cnt1 =
TMath::Floor(cnt1 * cnt1 / e1sq + 0.5);
2209 if (e2sq > 0) cnt2 =
TMath::Floor(cnt2 * cnt2 / e2sq + 0.5);
2213 if (
Int_t(cnt1) == 0 &&
Int_t(cnt2) == 0) --ndf;
2220 if (res) res[i - i_start] = (cnt1 - nexp1) /
TMath::Sqrt(nexp1);
2226 Double_t correc = (1. - sum1 /
sum) * (1. - cntsum / sum);
2229 Double_t delta = sum2 * cnt1 - sum1 * cnt2;
2230 chi2 += delta * delta / cntsum;
2235 chi2 /= sum1 * sum2;
2240 Info(
"Chi2TestX",
"There is a bin in h1 with less than 1 event.\n");
2244 Info(
"Chi2TestX",
"There is a bin in h2 with less than 1 event.\n");
2255 if ( comparisonUW ) {
2256 for (
Int_t i = i_start; i <= i_end; ++i) {
2257 for (
Int_t j = j_start; j <= j_end; ++j) {
2258 for (
Int_t k = k_start; k <= k_end; ++k) {
2267 if (cnt1 * cnt1 == 0 && cnt2 * cnt2 == 0) {
2273 if (cnt2 * cnt2 == 0 && e2sq == 0) {
2277 e2sq = sumw2 / sum2;
2282 Error(
"Chi2TestX",
"Hist2 has in bin (%d,%d,%d) zero content and zero errors\n", i, j, k);
2288 if (e2sq > 0 && cnt2 * cnt2 / e2sq < 10)
n++;
2290 Double_t var1 = sum2 * cnt2 - sum1 * e2sq;
2291 Double_t var2 = var1 * var1 + 4. * sum2 * sum2 * cnt1 * e2sq;
2296 while (var1 * var1 + cnt1 == 0 || var1 + var2 == 0) {
2299 var1 = sum2 * cnt2 - sum1 * e2sq;
2300 var2 = var1 * var1 + 4. * sum2 * sum2 * cnt1 * e2sq;
2304 while (var1 + var2 == 0) {
2307 var1 = sum2 * cnt2 - sum1 * e2sq;
2308 var2 = var1 * var1 + 4. * sum2 * sum2 * cnt1 * e2sq;
2309 while (var1 * var1 + cnt1 == 0 || var1 + var2 == 0) {
2312 var1 = sum2 * cnt2 - sum1 * e2sq;
2313 var2 = var1 * var1 + 4. * sum2 * sum2 * cnt1 * e2sq;
2318 Double_t probb = (var1 + var2) / (2. * sum2 * sum2);
2326 chi2 += delta1 * delta1 / nexp1;
2329 chi2 += delta2 * delta2 / e2sq;
2334 Double_t temp1 = sum2 * e2sq / var2;
2335 Double_t temp2 = 1.0 + (sum1 * e2sq - sum2 * cnt2) / var2;
2336 temp2 = temp1 * temp1 * sum1 * probb * (1.0 - probb) + temp2 * temp2 * e2sq / 4.0;
2349 Info(
"Chi2TestX",
"There is a bin in h1 with less than 1 event.\n");
2353 Info(
"Chi2TestX",
"There is a bin in h2 with less than 10 effective events.\n");
2363 for (
Int_t i = i_start; i <= i_end; ++i) {
2364 for (
Int_t j = j_start; j <= j_end; ++j) {
2365 for (
Int_t k = k_start; k <= k_end; ++k) {
2375 if (cnt1 * cnt1 == 0 && cnt2 * cnt2 == 0) {
2380 if (e1sq == 0 && e2sq == 0) {
2382 Error(
"Chi2TestX",
"h1 and h2 both have bin %d,%d,%d with all zero errors\n", i,j,k);
2387 Double_t delta = sum2 * cnt1 - sum1 * cnt2;
2388 chi2 += delta * delta /
sigma;
2391 Double_t temp = cnt1 * sum1 * e2sq + cnt2 * sum2 * e1sq;
2404 res[i - i_start] =
z;
2407 if (e1sq > 0 && cnt1 * cnt1 / e1sq < 10) m++;
2408 if (e2sq > 0 && cnt2 * cnt2 / e2sq < 10)
n++;
2414 Info(
"Chi2TestX",
"There is a bin in h1 with less than 10 effective events.\n");
2418 Info(
"Chi2TestX",
"There is a bin in h2 with less than 10 effective events.\n");
2435 Error(
"Chisquare",
"Function pointer is Null - return -1");
2481 Int_t nbins = nbinsx * nbinsy * nbinsz;
2486 for (
Int_t binz=1; binz <= nbinsz; ++binz) {
2487 for (
Int_t biny=1; biny <= nbinsy; ++biny) {
2488 for (
Int_t binx=1; binx <= nbinsx; ++binx) {
2491 if (onlyPositive && y < 0) {
2492 Error(
"ComputeIntegral",
"Bin content is negative - return a NaN value");
2503 Error(
"ComputeIntegral",
"Integral = zero");
return 0;
2546 hintegrated->
Reset();
2549 for (
Int_t binz = 1; binz <= nbinsz; ++binz) {
2550 for (
Int_t biny = 1; biny <= nbinsy; ++biny) {
2551 for (
Int_t binx = 1; binx <= nbinsx; ++binx) {
2552 const Int_t bin = hintegrated->
GetBin(binx, biny, binz);
2560 for (
Int_t binz = nbinsz; binz >= 1; --binz) {
2561 for (
Int_t biny = nbinsy; biny >= 1; --biny) {
2562 for (
Int_t binx = nbinsx; binx >= 1; --binx) {
2563 const Int_t bin = hintegrated->
GetBin(binx, biny, binz);
2589 ((
TH1&)obj).fDirectory->Remove(&obj);
2590 ((
TH1&)obj).fDirectory = 0;
2604 delete [] ((
TH1&)obj).fBuffer;
2605 ((
TH1&)obj).fBuffer = 0;
2611 ((
TH1&)obj).fBuffer = buf;
2616 if (a) a->
Set(fNcells);
2637 ((
TH1&)obj).fXaxis.SetParent(&obj);
2638 ((
TH1&)obj).fYaxis.SetParent(&obj);
2639 ((
TH1&)obj).fZaxis.SetParent(&obj);
2649 ((
TH1&)obj).fFunctions->UseRWLock();
2652 ((
TH1&)obj).fDirectory = 0;
2670 if(newname && strlen(newname) ) {
2725 Error(
"Add",
"Attempt to divide by a non-existing function");
2743 Int_t bin, binx, biny, binz;
2748 for (binz = 0; binz < nz; ++binz) {
2750 for (biny = 0; biny < ny; ++biny) {
2752 for (binx = 0; binx < nx; ++binx) {
2756 bin = binx + nx * (biny + ny * binz);
2793 Error(
"Divide",
"Input histogram passed does not exist (NULL).");
2802 }
catch(DifferentNumberOfBins&) {
2803 Error(
"Divide",
"Cannot divide histograms with different number of bins");
2805 }
catch(DifferentAxisLimits&) {
2806 Warning(
"Divide",
"Dividing histograms with different axis limits");
2807 }
catch(DifferentBinLimits&) {
2808 Warning(
"Divide",
"Dividing histograms with different bin limits");
2809 }
catch(DifferentLabels&) {
2810 Warning(
"Divide",
"Dividing histograms with different labels");
2865 Error(
"Divide",
"At least one of the input histograms passed does not exist (NULL).");
2875 }
catch(DifferentNumberOfBins&) {
2876 Error(
"Divide",
"Cannot divide histograms with different number of bins");
2878 }
catch(DifferentAxisLimits&) {
2879 Warning(
"Divide",
"Dividing histograms with different axis limits");
2880 }
catch(DifferentBinLimits&) {
2881 Warning(
"Divide",
"Dividing histograms with different bin limits");
2882 }
catch(DifferentLabels&) {
2883 Warning(
"Divide",
"Dividing histograms with different labels");
2888 Error(
"Divide",
"Coefficient of dividing histogram cannot be zero");
2925 fSumw2.
fArray[i] = c1sq * c2sq * (e1sq * b2sq + e2sq * b1sq) / (c2sq * c2sq * b2sq * b2sq);
2978 if (index>indb && index<indk) index = -1;
2984 if (!
gPad->IsEditable())
gROOT->MakeDefCanvas();
2986 if (
gPad->GetX1() == 0 &&
gPad->GetX2() == 1 &&
2987 gPad->GetY1() == 0 &&
gPad->GetY2() == 1 &&
2988 gPad->GetListOfPrimitives()->GetSize()==0) opt2.
Remove(index,4);
2995 gPad->IncrementPaletteColor(1, opt1);
2997 if (index>=0) opt2.
Remove(index,4);
3046 Error(
"DrawNormalized",
"Sum of weights is null. Cannot normalize histogram: %s",
GetName());
3058 if (opt.
IsNull() || opt ==
"SAME") opt +=
"HIST";
3093 Int_t range, stat, add;
3113 for (
Int_t binz = 1; binz <= nbinsz; ++binz) {
3115 for (
Int_t biny = 1; biny <= nbinsy; ++biny) {
3117 for (
Int_t binx = 1; binx <= nbinsx; ++binx) {
3120 if (range && !f1->
IsInside(x))
continue;
3217 for (
Int_t binx = 1; binx<=ndim[0]; binx++) {
3218 for (
Int_t biny=1; biny<=ndim[1]; biny++) {
3219 for (
Int_t binz=1; binz<=ndim[2]; binz++) {
3249 if (bin <0)
return -1;
3282 if (bin <0)
return -1;
3315 if (bin <0)
return -1;
3351 for (i=0;i<ntimes;i+=stride) {
3357 if (i < ntimes &&
fBuffer==0) {
3358 auto weights = w ? &w[i] :
nullptr;
3359 DoFillN((ntimes-i)/stride,&x[i],weights,stride);
3364 DoFillN(ntimes, x, w, stride);
3379 for (i=0;i<ntimes;i+=stride) {
3381 if (bin <0)
continue;
3386 if (bin == 0 || bin > nbins) {
3418 if (!f1) {
Error(
"FillRandom",
"Unknown function: %s",fname);
return; }
3428 Info(
"FillRandom",
"Using function axis and range [%g,%g]",xmin, xmax);
3434 Int_t nbinsx = last-first+1;
3438 for (binx=1;binx<=nbinsx;binx++) {
3440 integral[binx] = integral[binx-1] + fint;
3444 if (integral[nbinsx] == 0 ) {
3446 Error(
"FillRandom",
"Integral = zero");
return;
3448 for (bin=1;bin<=nbinsx;bin++) integral[bin] /= integral[nbinsx];
3451 for (loop=0;loop<ntimes;loop++) {
3457 +xAxis->
GetBinWidth(ibin+first)*(r1-integral[ibin])/(integral[ibin+1] - integral[ibin]);
3481 if (!h) {
Error(
"FillRandom",
"Null histogram");
return; }
3483 Error(
"FillRandom",
"Histograms with different dimensions");
return;
3486 Error(
"FillRandom",
"Histograms contains negative bins, does not represent probabilities");
3494 Int_t nbins = last-first+1;
3495 if (ntimes > 10*nbins) {
3499 if (sumw == 0)
return;
3501 for (
Int_t bin=first;bin<=last;bin++) {
3513 if (sumgen < ntimes) {
3515 for (i =
Int_t(sumgen+0.5); i < ntimes; ++i)
3521 else if (sumgen > ntimes) {
3523 i =
Int_t(sumgen+0.5);
3524 while( i > ntimes) {
3539 catch(std::exception&) {}
3546 for (loop=0;loop<ntimes;loop++) {
3572 return binx + nx*biny;
3580 return binx + nx*(biny +ny*binz);
3605 return binx + nx*biny;
3613 return binx + nx*(biny +ny*binz);
3627 Warning(
"FindFirstBinAbove",
"Invalid axis number : %d, axis x assumed\n",axis);
3631 for (
Int_t bin=1;bin<=nbins;bin++) {
3646 Warning(
"FindLastBinAbove",
"Invalid axis number : %d, axis x assumed\n",axis);
3650 for (
Int_t bin=nbins;bin>=1;bin--) {
3689 linear= (
char*)strstr(fname,
"++");
3696 f1=
new TF1(fname, fname, xxmin, xxmax);
3697 return Fit(f1,option,goption,xxmin,xxmax);
3700 f2=
new TF2(fname, fname);
3701 return Fit(f2,option,goption,xxmin,xxmax);
3704 f3=
new TF3(fname, fname);
3705 return Fit(f3,option,goption,xxmin,xxmax);
3710 f1 = (
TF1*)
gROOT->GetFunction(fname);
3711 if (!f1) {
Printf(
"Unknown function: %s",fname);
return -1; }
3712 return Fit(f1,option,goption,xxmin,xxmax);
4040 gROOT->MakeDefCanvas();
4043 Error(
"FitPanel",
"Unable to create a default canvas");
4050 if (handler && handler->
LoadPlugin() != -1) {
4052 Error(
"FitPanel",
"Unable to create the FitPanel");
4055 Error(
"FitPanel",
"Unable to find the FitPanel plug-in");
4100 asym->SetTitle(title);
4110 top->
Add(h1,h2,1,-c2);
4111 bottom->
Add(h1,h2,1,c2);
4112 asym->Divide(top,bottom);
4116 Int_t zmax = asym->GetNbinsZ();
4126 for(
Int_t k=1; k<= zmax; k++){
4142 Double_t error = 2*
TMath::Sqrt(a*a*c2*c2*dbsq + c2*c2*b*b*dasq+a*a*b*b*dc2*dc2)/(bot*bot);
4143 asym->SetBinError(i,j,k,error);
4205 return (s[1] ? s[0]*s[0]/s[1] :
TMath::Abs(s[0]) );
4215 return ((
TH1*)
this)->GetPainter()->GetObjectInfo(px,py);
4316 Error(
"GetQuantiles",
"Only available for 1-d histograms");
4326 Int_t nq = nprobSum;
4331 for (i=1;i<nq;i++) {
4336 for (i = 0; i < nq; i++) {
4338 while (ibin < nbins-1 &&
fIntegral[ibin+1] == prob[i]) {
4339 if (
fIntegral[ibin+2] == prob[i]) ibin++;
4344 if (dint > 0) q[i] +=
GetBinWidth(ibin+1)*(prob[i]-fIntegral[ibin])/dint;
4347 if (!probSum)
delete [] prob;
4376 allcha = sumx = sumx2 = 0;
4377 for (bin=hxfirst;bin<=hxlast;bin++) {
4380 if (val > valmax) valmax = val;
4385 if (allcha == 0)
return;
4387 stddev = sumx2/allcha - mean*mean;
4390 if (stddev == 0) stddev = binwidx*(hxlast-hxfirst+1)/4;
4397 Double_t constant = 0.5*(valmax+binwidx*allcha/(sqrtpi*stddev));
4405 if ((mean < xmin || mean > xmax) && stddev > (xmax-xmin)) {
4406 mean = 0.5*(xmax+
xmin);
4407 stddev = 0.5*(xmax-
xmin);
4426 Int_t nchanx = hxlast - hxfirst + 1;
4447 Int_t nchanx = hxlast - hxfirst + 1;
4450 if (nchanx <=1 || npar == 1) {
4473 const Int_t idim = 20;
4484 if (m > idim || m > n)
return;
4487 for (l = 2; l <=
m; ++
l) {
4489 b[m + l*20 - 21] = zero;
4496 for (k = hxfirst; k <= hxlast; ++k) {
4501 for (l = 2; l <=
m; ++
l) {
4504 da[l-1] += power*yk;
4506 for (l = 2; l <=
m; ++
l) {
4508 b[m + l*20 - 21] += power;
4511 for (i = 3; i <=
m; ++i) {
4512 for (k = i; k <=
m; ++k) {
4513 b[k - 1 + (i-1)*20 - 21] = b[k + (i-2)*20 - 21];
4518 for (i=0; i<
m; ++i) a[i] = da[i];
4538 xbar = ybar = x2bar = xybar = 0;
4543 for (i = hxfirst; i <= hxlast; ++i) {
4547 if (yk <= 0) yk = 1
e-9;
4556 det = fn*x2bar - xbar*xbar;
4564 a0 = (x2bar*ybar - xbar*xybar) / det;
4565 a1 = (fn*xybar - xbar*ybar) / det;
4576 Int_t a_dim1, a_offset, b_dim1, b_offset;
4578 Int_t im1, jp1, nm1, nmi;
4584 b_offset = b_dim1 + 1;
4587 a_offset = a_dim1 + 1;
4590 if (idim < n)
return;
4593 for (j = 1; j <=
n; ++j) {
4594 if (a[j + j*a_dim1] <= 0) { ifail = -1;
return; }
4595 a[j + j*a_dim1] = one / a[j + j*a_dim1];
4596 if (j == n)
continue;
4598 for (l = jp1; l <=
n; ++
l) {
4599 a[j + l*a_dim1] = a[j + j*a_dim1] * a[l + j*a_dim1];
4600 s1 = -a[l + (j+1)*a_dim1];
4601 for (i = 1; i <= j; ++i) { s1 = a[l + i*a_dim1] * a[i + (j+1)*a_dim1] + s1; }
4602 a[l + (j+1)*a_dim1] = -s1;
4607 for (l = 1; l <= k; ++
l) {
4608 b[l*b_dim1 + 1] = a[a_dim1 + 1]*b[l*b_dim1 + 1];
4611 for (l = 1; l <= k; ++
l) {
4612 for (i = 2; i <=
n; ++i) {
4614 s21 = -b[i + l*b_dim1];
4615 for (j = 1; j <= im1; ++j) {
4616 s21 = a[i + j*a_dim1]*b[j + l*b_dim1] + s21;
4618 b[i + l*b_dim1] = -a[i + i*a_dim1]*s21;
4621 for (i = 1; i <= nm1; ++i) {
4623 s22 = -b[nmi + l*b_dim1];
4624 for (j = 1; j <= i; ++j) {
4626 s22 = a[nmi + nmjp1*a_dim1]*b[nmjp1 + l*b_dim1] + s22;
4628 b[nmi + l*b_dim1] = -s22;
4666 if (binx < 0) binx = 0;
4667 if (binx > ofx) binx = ofx;
4682 binx = binglobal%nx;
4688 binx = binglobal%nx;
4689 biny = ((binglobal-binx)/nx)%ny;
4694 binx = binglobal%nx;
4695 biny = ((binglobal-binx)/nx)%ny;
4696 binz = ((binglobal-binx)/nx -biny)/ny;
4713 Error(
"GetRandom",
"Function only valid for 1-d histograms");
4723 integral = ((
TH1*)
this)->ComputeIntegral(
true);
4725 if (integral == 0)
return 0;
4764 if (bin < 0) bin = 0;
4765 if (bin >= fNcells) bin = fNcells-1;
4790 Error(
"GetBinWithContent",
"function is only valid for 1-D histograms");
4796 if (firstx <= 0) firstx = 1;
4800 for (
Int_t i=firstx;i<=lastx;i++) {
4802 if (diff <= 0) {binx = i;
return diff;}
4803 if (diff < curmax && diff <= maxdiff) {curmax = diff, binminx=i;}
4838 return y0 + (x-x0)*((y1-y0)/(x1-x0));
4847 Error(
"Interpolate",
"This function must be called with 1 argument for a TH1");
4856 Error(
"Interpolate",
"This function must be called with 1 argument for a TH1");
4887 Error(
"IsBinOverflow",
"Invalid axis value");
4904 return (binx <= 0 || biny <= 0);
4906 return (binx <= 0 || biny <= 0 || binz <= 0);
4917 Error(
"IsBinUnderflow",
"Invalid axis value");
4934 Error(
"LabelsDeflate",
"Invalid axis option %s",ax);
4945 while ((obj = next())) {
4947 if (ibin > nbins) nbins = ibin;
4949 if (nbins < 1) nbins = 1;
4952 if (nbins==axis->
GetNbins())
return;
4954 TH1 *hold = (
TH1*)IsA()->New();
4962 if (xmax <= xmin) xmax = xmin +nbins;
4964 axis->
Set(nbins,xmin,xmax);
4977 Int_t bin,binx,biny,binz;
4978 for (bin=0; bin < hold->
fNcells; ++bin) {
5005 TH1 *hold = (
TH1*)IsA()->New();;
5013 xmax = xmin + 2*(xmax-
xmin);
5016 axis->
Set(2*nbins,xmin,xmax);
5026 Int_t bin,ibin,binx,biny,binz;
5027 for (ibin =0; ibin < hold->
fNcells; ibin++) {
5030 bin =
GetBin(binx,biny,binz);
5067 Warning(
"LabelsOption",
"Cannot sort. No labels");
5100 if (sort < 0)
return;
5102 Error(
"LabelsOption",
"Sorting by value not implemented for 3-D histograms");
5108 std::vector<Int_t>
a(n+2);
5111 std::vector<Double_t> cont;
5112 std::vector<Double_t> errors;
5114 TIter nextold(labels);
5116 while ((obj=nextold())) {
5125 for (i=1;i<=
n;i++) {
5127 if (!errors.empty()) errors[i-1] =
GetBinError(i);
5131 for (i=1;i<=
n;i++) {
5133 if (!errors.empty())
SetBinError(i,errors[a[i-1]]);
5135 for (i=1;i<=
n;i++) {
5136 obj = labold->
At(a[i-1]);
5141 std::vector<Double_t> pcont(n+2);
5144 cont.resize( (nx+2)*(ny+2));
5145 if (
fSumw2.
fN) errors.resize( (nx+2)*(ny+2));
5146 for (i=1;i<=nx;i++) {
5147 for (j=1;j<=ny;j++) {
5149 if (!errors.empty()) errors[i+nx*j] =
GetBinError(i,j);
5152 pcont[k-1] += cont[i+nx*j];
5158 obj = labold->
At(a[i]);
5163 for (i=1;i<=
n;i++) {
5164 for (j=1;j<=ny;j++) {
5166 if (!errors.empty())
SetBinError(i,j,errors[a[i-1]+1+nx*j]);
5172 for (i=1;i<=nx;i++) {
5173 for (j=1;j<=
n;j++) {
5175 if (!errors.empty())
SetBinError(i,j,errors[i+nx*(a[j-1]+1)]);
5184 const UInt_t kUsed = 1<<18;
5188 for (i=1;i<=
n;i++) {
5189 const char *label =
"zzzzzzzzzzzz";
5190 for (j=1;j<=
n;j++) {
5191 obj = labold->
At(j-1);
5193 if (obj->
TestBit(kUsed))
continue;
5195 if (strcmp(label,obj->
GetName()) < 0)
continue;
5206 for (i=1;i<=
n;i++) {
5207 obj = labels->
At(i-1);
5215 for (i=1;i<=
n;i++) {
5217 if (!errors.empty()) errors[i] =
GetBinError(a[i]);
5219 for (i=1;i<=
n;i++) {
5227 if (
fSumw2.
fN) errors.resize(nx*ny);
5228 for (i=0;i<nx;i++) {
5229 for (j=0;j<ny;j++) {
5231 if (!errors.empty()) errors[i+nx*j] =
GetBinError(i,j);
5235 for (i=1;i<=
n;i++) {
5236 for (j=0;j<ny;j++) {
5238 if (!errors.empty())
SetBinError(i,j,errors[a[i]+nx*j]);
5242 for (i=0;i<nx;i++) {
5243 for (j=1;j<=
n;j++) {
5245 if (!errors.empty())
SetBinError(i,j,errors[i+nx*a[j]]);
5253 cont.resize(nx*ny*nz);
5254 if (
fSumw2.
fN) errors.resize(nx*ny*nz);
5255 for (i=0;i<nx;i++) {
5256 for (j=0;j<ny;j++) {
5257 for (k=0;k<nz;k++) {
5259 if (!errors.empty()) errors[i+nx*(j+ny*k)] =
GetBinError(i,j,k);
5265 for (i=1;i<=
n;i++) {
5266 for (j=0;j<ny;j++) {
5267 for (k=0;k<nz;k++) {
5269 if (!errors.empty())
SetBinError(i,j,k,errors[a[i]+nx*(j+ny*k)]);
5276 for (i=0;i<nx;i++) {
5277 for (j=1;j<=
n;j++) {
5278 for (k=0;k<nz;k++) {
5280 if (!errors.empty())
SetBinError(i,j,k,errors[i+nx*(a[j]+ny*k)]);
5287 for (i=0;i<nx;i++) {
5288 for (j=0;j<ny;j++) {
5289 for (k=1;k<=
n;k++) {
5291 if (!errors.empty())
SetBinError(i,j,k,errors[i+nx*(j+ny*a[k])]);
5327 bool isEquidistant =
true;
5329 for (
int i = 1; i < axis.
GetNbins(); ++i) {
5332 isEquidistant &= match;
5336 return isEquidistant;
5363 if (width1 == 0 || width2 == 0)
5394 delta = (xmax - destAxis.
GetXmax())/width1;
5399 delta = (xmax - anAxis.
GetXmax())/width2;
5404 delta = (xmax - destAxis.
GetXmax())/width1;
5409 printf(
"TH1::RecomputeAxisLimits - Impossible\n");
5489 Error(
"Add",
"Attempt to multiply by a non-existing function");
5511 for (
Int_t binz = 0; binz < nz; ++binz) {
5513 for (
Int_t biny = 0; biny < ny; ++biny) {
5515 for (
Int_t binx = 0; binx < nx; ++binx) {
5519 Int_t bin = binx + nx * (biny + ny *binz);
5551 Error(
"Multiply",
"Attempt to multiply by a non-existing histogram");
5560 }
catch(DifferentNumberOfBins&) {
5561 Error(
"Multiply",
"Attempt to multiply histograms with different number of bins");
5563 }
catch(DifferentAxisLimits&) {
5564 Warning(
"Multiply",
"Attempt to multiply histograms with different axis limits");
5565 }
catch(DifferentBinLimits&) {
5566 Warning(
"Multiply",
"Attempt to multiply histograms with different bin limits");
5567 }
catch(DifferentLabels&) {
5568 Warning(
"Multiply",
"Attempt to multiply histograms with different labels");
5613 Error(
"Multiply",
"Attempt to multiply by a non-existing histogram");
5623 }
catch(DifferentNumberOfBins&) {
5624 Error(
"Multiply",
"Attempt to multiply histograms with different number of bins");
5626 }
catch(DifferentAxisLimits&) {
5627 Warning(
"Multiply",
"Attempt to multiply histograms with different axis limits");
5628 }
catch(DifferentBinLimits&) {
5629 Warning(
"Multiply",
"Attempt to multiply histograms with different bin limits");
5630 }
catch(DifferentLabels&) {
5631 Warning(
"Multiply",
"Attempt to multiply histograms with different labels");
5732 if ((ngroup <= 0) || (ngroup > nbins)) {
5733 Error(
"Rebin",
"Illegal value of ngroup=%d",ngroup);
5738 Error(
"Rebin",
"Operation valid on 1-D histograms only");
5741 if (!newname && xbins) {
5742 Error(
"Rebin",
"if xbins is specified, newname must be given");
5746 Int_t newbins = nbins/ngroup;
5748 Int_t nbg = nbins/ngroup;
5749 if (nbg*ngroup != nbins) {
5750 Warning(
"Rebin",
"ngroup=%d is not an exact divider of nbins=%d.",ngroup,nbins);
5770 for (bin=0;bin<nbins+2;bin++) oldErrors[bin] =
GetBinError(bin);
5775 Warning(
"Rebin",
"underflow entries will not be used when rebinning");
5776 if (xbins[newbins] >
fXaxis.
GetXmax() && oldBins[nbins+1] != 0 )
5777 Warning(
"Rebin",
"overflow entries will not be used when rebinning");
5783 if ((newname && strlen(newname) > 0) || xbins) {
5793 bool resetStat =
false;
5795 if(!xbins && (newbins*ngroup != nbins)) {
5820 hnew->
SetBins(newbins,xmin,xmax);
5843 Int_t oldbin = startbin;
5845 for (bin = 1;bin<=newbins;bin++) {
5848 Int_t imax = ngroup;
5850 for (i=0;i<ngroup;i++) {
5851 if( (oldbin+i > nbins) ||
5856 binContent += oldBins[oldbin+i];
5857 if (oldErrors) binError += oldErrors[oldbin+i]*oldErrors[oldbin+i];
5867 for (i = 0; i < startbin; ++i) {
5868 binContent += oldBins[i];
5869 if (oldErrors) binError += oldErrors[i]*oldErrors[i];
5876 for (i = oldbin; i <= nbins+1; ++i) {
5877 binContent += oldBins[i];
5878 if (oldErrors) binError += oldErrors[i]*oldErrors[i];
5887 if (!resetStat) hnew->
PutStats(stat);
5889 if (oldErrors)
delete [] oldErrors;
5908 if (xmin >= xmax)
return kFALSE;
5914 while (point < xmin) {
5917 xmin = xmin - range;
5926 while (point >= xmax) {
5929 xmax = xmax + range;
5977 TH1 *hold = (
TH1*)IsA()->New();
5990 if (axis == &
fXaxis) iaxis = 1;
5991 if (axis == &
fYaxis) iaxis = 2;
5992 if (axis == &
fZaxis) iaxis = 3;
5993 bool firstw =
kTRUE;
5994 Int_t binx,biny, binz = 0;
5995 Int_t ix = 0,iy = 0,iz = 0;
5998 for (
Int_t bin = 0; bin < ncells; ++bin) {
6012 if (content == 0)
continue;
6015 Warning(
"ExtendAxis",
"Histogram %s has underflow or overflow in the axis that is extendable" 6016 " their content will be lost",
GetName() );
6067 if (opt.
Contains(
"width"))
Add(
this,
this, c1, -1);
6077 if (ncontours == 0)
return;
6079 for (
Int_t i = 0; i < ncontours; ++i) levels[i] *= c1;
6118 return oldExtendBitMask;
6164 str1 = str1(isc+1, lns);
6165 isc = str1.
Index(
";");
6168 str2.ReplaceAll(
"#semicolon",10,
";",1);
6171 str1 = str1(isc+1, lns);
6172 isc = str1.
Index(
";");
6175 str2.ReplaceAll(
"#semicolon",10,
";",1);
6178 str1 = str1(isc+1, lns);
6204 ::Error(
"SmoothArray",
"Need at least 3 points for smoothing: n = %d",nn);
6211 std::vector<double> yy(nn);
6212 std::vector<double> zz(nn);
6213 std::vector<double> rr(nn);
6215 for (
Int_t pass=0;pass<ntimes;pass++) {
6217 std::copy(xx, xx+nn, zz.begin() );
6219 for (
int noent = 0; noent < 2; ++noent) {
6222 for (
int kk = 0; kk < 3; kk++) {
6223 std::copy(zz.begin(), zz.end(), yy.begin());
6224 int medianType = (kk != 1) ? 3 : 5;
6225 int ifirst = (kk != 1 ) ? 1 : 2;
6226 int ilast = (kk != 1 ) ? nn-1 : nn -2;
6230 for ( ii = ifirst; ii < ilast; ii++) {
6231 assert(ii - ifirst >= 0);
6232 for (
int jj = 0; jj < medianType; jj++) {
6233 hh[jj] = yy[ii - ifirst + jj ];
6242 hh[2] = 3*zz[1] - 2*zz[2];
6247 hh[2] = 3*zz[nn - 2] - 2*zz[nn - 3];
6252 for (ii = 0; ii < 3; ii++) {
6257 for (ii = 0; ii < 3; ii++) {
6258 hh[ii] = yy[nn - 3 + ii];
6265 std::copy ( zz.begin(), zz.end(), yy.begin() );
6268 for (ii = 2; ii < (nn - 2); ii++) {
6269 if (zz[ii - 1] != zz[ii])
continue;
6270 if (zz[ii] != zz[ii + 1])
continue;
6271 hh[0] = zz[ii - 2] - zz[ii];
6272 hh[1] = zz[ii + 2] - zz[ii];
6273 if (hh[0] * hh[1] <= 0)
continue;
6276 yy[ii] = -0.5*zz[ii - 2*jk] + zz[ii]/0.75 + zz[ii + 2*jk] /6.;
6277 yy[ii + jk] = 0.5*(zz[ii + 2*jk] - zz[ii - 2*jk]) + zz[ii];
6282 for (ii = 1; ii < nn - 1; ii++) {
6283 zz[ii] = 0.25*yy[ii - 1] + 0.5*yy[ii] + 0.25*yy[ii + 1];
6286 zz[nn - 1] = yy[nn - 1];
6291 std::copy(zz.begin(), zz.end(), rr.begin());
6294 for (ii = 0; ii < nn; ii++) {
6295 zz[ii] = xx[ii] - zz[ii];
6303 for (ii = 0; ii < nn; ii++) {
6304 if (xmin < 0) xx[ii] = rr[ii] + zz[ii];
6306 else xx[ii] =
TMath::Max((rr[ii] + zz[ii]),0.0 );
6322 Error(
"Smooth",
"Smooth only supported for 1-d histograms");
6327 Error(
"Smooth",
"Smooth only supported for histograms with >= 3 bins. Nbins = %d",nbins);
6334 Int_t firstbin = 1, lastbin = nbins;
6341 nbins = lastbin - firstbin + 1;
6345 for (i=0;i<nbins;i++) {
6351 for (i=0;i<nbins;i++) {
6373 void TH1::Streamer(
TBuffer &b)
6389 while ((obj=next())) {
6395 TNamed::Streamer(b);
6396 TAttLine::Streamer(b);
6397 TAttFill::Streamer(b);
6398 TAttMarker::Streamer(b);
6414 Float_t maximum, minimum, norm;
6457 else if (opt.
Contains(
"range")) all = 1;
6458 else if (opt.
Contains(
"base")) all = 2;
6461 Int_t bin, binx, biny, binz;
6462 Int_t firstx=0,lastx=0,firsty=0,lasty=0,firstz=0,lastz=0;
6474 printf(
" Title = %s\n",
GetTitle());
6485 for (binx=firstx;binx<=lastx;binx++) {
6489 if(
fSumw2.
fN) printf(
" fSumw[%d]=%g, x=%g, error=%g\n",binx,w,x,e);
6490 else printf(
" fSumw[%d]=%g, x=%g\n",binx,w,x);
6494 for (biny=firsty;biny<=lasty;biny++) {
6496 for (binx=firstx;binx<=lastx;binx++) {
6501 if(
fSumw2.
fN) printf(
" fSumw[%d][%d]=%g, x=%g, y=%g, error=%g\n",binx,biny,w,x,y,e);
6502 else printf(
" fSumw[%d][%d]=%g, x=%g, y=%g\n",binx,biny,w,x,y);
6507 for (binz=firstz;binz<=lastz;binz++) {
6509 for (biny=firsty;biny<=lasty;biny++) {
6511 for (binx=firstx;binx<=lastx;binx++) {
6512 bin =
GetBin(binx,biny,binz);
6516 if(
fSumw2.
fN) printf(
" fSumw[%d][%d][%d]=%g, x=%g, y=%g, z=%g, error=%g\n",binx,biny,binz,w,x,y,z,e);
6517 else printf(
" fSumw[%d][%d][%d]=%g, x=%g, y=%g, z=%g\n",binx,biny,binz,w,x,y,z);
6575 if (opt ==
"ICES")
return;
6605 static Int_t nxaxis = 0;
6606 static Int_t nyaxis = 0;
6607 static Int_t nzaxis = 0;
6608 TString sxaxis=
"xAxis",syaxis=
"yAxis",szaxis=
"zAxis";
6619 if (i != 0) out <<
", ";
6622 out <<
"}; " << std::endl;
6635 if (i != 0) out <<
", ";
6638 out <<
"}; " << std::endl;
6651 if (i != 0) out <<
", ";
6654 out <<
"}; " << std::endl;
6658 out <<
" "<<std::endl;
6668 static Int_t hcounter = 0;
6675 histName += hcounter;
6678 const char *hname = histName.
Data();
6679 if (!strlen(hname)) hname =
"unnamed";
6683 t.ReplaceAll(
"\\",
"\\\\");
6684 t.ReplaceAll(
"\"",
"\\\"");
6685 out << hname <<
" = new " <<
ClassName() <<
"(" << quote
6686 << hname << quote <<
"," << quote<< t.Data() << quote
6689 out <<
", "<<sxaxis;
6696 out <<
", "<<syaxis;
6704 out <<
", "<<szaxis;
6709 out <<
");" << std::endl;
6713 for (bin=0;bin<
fNcells;bin++) {
6716 out<<
" "<<hname<<
"->SetBinContent("<<bin<<
","<<bc<<
");"<<std::endl;
6722 for (bin=0;bin<
fNcells;bin++) {
6725 out<<
" "<<hname<<
"->SetBinError("<<bin<<
","<<be<<
");"<<std::endl;
6742 out<<
" "<<hname<<
"->SetBarOffset("<<
GetBarOffset()<<
");"<<std::endl;
6745 out<<
" "<<hname<<
"->SetBarWidth("<<
GetBarWidth()<<
");"<<std::endl;
6748 out<<
" "<<hname<<
"->SetMinimum("<<
fMinimum<<
");"<<std::endl;
6751 out<<
" "<<hname<<
"->SetMaximum("<<
fMaximum<<
");"<<std::endl;
6754 out<<
" "<<hname<<
"->SetNormFactor("<<
fNormFactor<<
");"<<std::endl;
6757 out<<
" "<<hname<<
"->SetEntries("<<
fEntries<<
");"<<std::endl;
6760 out<<
" "<<hname<<
"->SetDirectory(0);"<<std::endl;
6763 out<<
" "<<hname<<
"->SetStats(0);"<<std::endl;
6766 out<<
" "<<hname<<
"->SetOption("<<quote<<
fOption.
Data()<<quote<<
");"<<std::endl;
6771 if (ncontours > 0) {
6772 out<<
" "<<hname<<
"->SetContour("<<ncontours<<
");"<<std::endl;
6774 for (
Int_t bin=0;bin<ncontours;bin++) {
6775 if (
gPad->GetLogz()) {
6780 out<<
" "<<hname<<
"->SetContourLevel("<<bin<<
","<<zlevel<<
");"<<std::endl;
6787 static Int_t funcNumber = 0;
6794 out <<
" " << fname <<
"->SetParent(" << hname <<
");\n";
6795 out<<
" "<<hname<<
"->GetListOfFunctions()->Add(" 6796 << fname <<
");"<<std::endl;
6798 out<<
" "<<hname<<
"->GetListOfFunctions()->Add(ptstats);"<<std::endl;
6799 out<<
" ptstats->SetParent("<<hname<<
");"<<std::endl;
6801 out<<
" "<<hname<<
"->GetListOfFunctions()->Add(" 6803 <<
","<<quote<<lnk->
GetOption()<<quote<<
");"<<std::endl;
6818 out<<
" "<<hname<<
"->Draw(" 6819 <<quote<<option<<quote<<
");"<<std::endl;
6862 while ((obj = next())) {
6892 if (axis<1 || (axis>3 && axis<11) || axis>13)
return 0;
6896 if (stats[0] == 0)
return 0;
6898 Int_t ax[3] = {2,4,7};
6899 return stats[ax[axis-1]]/stats[0];
6904 return ( neff > 0 ? stddev/
TMath::Sqrt(neff) : 0. );
6946 if (axis<1 || (axis>3 && axis<11) || axis>13)
return 0;
6951 if (stats[0] == 0)
return 0;
6952 Int_t ax[3] = {2,4,7};
6953 Int_t axm = ax[axis%10 - 1];
6954 x = stats[axm]/stats[0];
6955 stddev2 =
TMath::Abs(stats[axm+1]/stats[0] -x*x);
6962 return ( neff > 0 ?
TMath::Sqrt(stddev2/(2*neff) ) : 0. );
6998 if (axis > 0 && axis <= 3){
7002 Double_t stddev3 = stddev*stddev*stddev;
7013 if (firstBinX == 1) firstBinX = 0;
7017 if (firstBinY == 1) firstBinY = 0;
7021 if (firstBinZ == 1) firstBinZ = 0;
7029 for (
Int_t binx = firstBinX; binx <= lastBinX; binx++) {
7030 for (
Int_t biny = firstBinY; biny <= lastBinY; biny++) {
7031 for (
Int_t binz = firstBinZ; binz <= lastBinZ; binz++) {
7037 sum+=w*(x-mean)*(x-mean)*(x-mean);
7044 else if (axis > 10 && axis <= 13) {
7051 Error(
"GetSkewness",
"illegal value of parameter");
7067 if (axis > 0 && axis <= 3){
7071 Double_t stddev4 = stddev*stddev*stddev*stddev;
7082 if (firstBinX == 1) firstBinX = 0;
7086 if (firstBinY == 1) firstBinY = 0;
7090 if (firstBinZ == 1) firstBinZ = 0;
7098 for (
Int_t binx = firstBinX; binx <= lastBinX; binx++) {
7099 for (
Int_t biny = firstBinY; biny <= lastBinY; biny++) {
7100 for (
Int_t binz = firstBinZ; binz <= lastBinZ; binz++) {
7106 sum+=w*(x-mean)*(x-mean)*(x-mean)*(x-mean);
7113 }
else if (axis > 10 && axis <= 13) {
7117 return ( neff > 0 ?
TMath::Sqrt(24./neff ) : 0. );
7120 Error(
"GetKurtosis",
"illegal value of parameter");
7165 for (bin=0;bin<4;bin++) stats[bin] = 0;
7171 if (firstBinX == 1) firstBinX = 0;
7174 for (binx = firstBinX; binx <= lastBinX; binx++) {
7181 stats[1] += err*err;
7234 Int_t bin,binx,biny,binz;
7239 bin =
GetBin(binx,biny,binz);
7269 return DoIntegral(binx1,binx2,0,-1,0,-1,err,option);
7296 if (binx1 < 0) binx1 = 0;
7297 if (binx2 >= nx || binx2 < binx1) binx2 = nx - 1;
7301 if (biny1 < 0) biny1 = 0;
7302 if (biny2 >= ny || biny2 < biny1) biny2 = ny - 1;
7304 biny1 = 0; biny2 = 0;
7309 if (binz1 < 0) binz1 = 0;
7310 if (binz2 >= nz || binz2 < binz1) binz2 = nz - 1;
7312 binz1 = 0; binz2 = 0;
7325 for (
Int_t binx = binx1; binx <= binx2; ++binx) {
7327 for (
Int_t biny = biny1; biny <= biny2; ++biny) {
7329 for (
Int_t binz = binz1; binz <= binz2; ++binz) {
7382 printf(
" AndersonDarlingTest Prob = %g, AD TestStatistic = %g\n",pvalue,advalue);
7384 if (opt.
Contains(
"T") )
return advalue;
7395 Error(
"AndersonDarlingTest",
"Histograms must be 1-D");
7495 if (h2 == 0)
return 0;
7503 Error(
"KolmogorovTest",
"Histograms must be 1-D\n");
7509 Error(
"KolmogorovTest",
"Histograms have different number of bins, %d and %d\n",ncx1,ncx2);
7519 Error(
"KolmogorovTest",
"Histograms are not consistent: they have different bin edges");
7533 if (opt.
Contains(
"O")) ilast = ncx1 +1;
7534 for (bin = ifirst; bin <= ilast; bin++) {
7543 Error(
"KolmogorovTest",
"Histogram1 %s integral is zero\n",h1->
GetName());
7547 Error(
"KolmogorovTest",
"Histogram2 %s integral is zero\n",h2->
GetName());
7556 esum1 = sum1 * sum1 / w1;
7561 esum2 = sum2 * sum2 / w2;
7565 if (afunc2 && afunc1) {
7566 Error(
"KolmogorovTest",
"Errors are zero for both histograms\n");
7575 Double_t dfmax =0, rsum1 = 0, rsum2 = 0;
7577 for (bin=ifirst;bin<=ilast;bin++) {
7599 if (opt.
Contains(
"N") && !(afunc1 || afunc2 ) ) {
7603 Double_t chi2 = d12*d12/(esum1+esum2);
7606 if (prob > 0 && prb2 > 0) prob *= prb2*(1-
TMath::Log(prob*prb2));
7610 const Int_t nEXPT = 1000;
7611 if (opt.
Contains(
"X") && !(afunc1 || afunc2 ) ) {
7618 Warning(
"KolmogorovTest",
"Detected bins with negative weights, these have been ignored and output might be " 7619 "skewed. Reduce number of bins for histogram?");
7628 for (
Int_t i=0; i < nEXPT; i++) {
7632 if (dSEXPT>dfmax) prb3 += 1.0;
7641 printf(
" Kolmo Prob h1 = %s, sum bin content =%g effective entries =%g\n",h1->
GetName(),sum1,esum1);
7642 printf(
" Kolmo Prob h2 = %s, sum bin content =%g effective entries =%g\n",h2->
GetName(),sum2,esum2);
7643 printf(
" Kolmo Prob = %g, Max Dist = %g\n",prob,dfmax);
7645 printf(
" Kolmo Prob = %f for shape alone, =%f for normalisation alone\n",prb1,prb2);
7647 printf(
" Kolmo Prob = %f with %d pseudo-experiments\n",prb3,nEXPT);
7653 if(opt.
Contains(
"M"))
return dfmax;
7654 else if(opt.
Contains(
"X"))
return prb3;
7712 if (zlevel <= 0)
return 0;
7728 if (buffersize <= 0) {
7732 if (buffersize < 100) buffersize = 100;
7759 for (level=0; level<nlevels; level++)
fContour.
fArray[level] = levels[level];
7764 if ((zmin == zmax) && (zmin != 0)) {
7770 if (zmax <= 0)
return;
7771 if (zmin <= 0) zmin = 0.001*zmax;
7774 dz = (zmax-zmin)/
Double_t(nlevels);
7776 for (level=0; level<nlevels; level++) {
7812 Int_t bin, binx, biny, binz;
7819 Double_t maximum = -FLT_MAX, value;
7820 for (binz=zfirst;binz<=zlast;binz++) {
7821 for (biny=yfirst;biny<=ylast;biny++) {
7822 for (binx=xfirst;binx<=xlast;binx++) {
7823 bin =
GetBin(binx,biny,binz);
7825 if (value > maximum && value < maxval) maximum = value;
7849 Int_t bin, binx, biny, binz;
7857 Double_t maximum = -FLT_MAX, value;
7858 locm = locmax = locmay = locmaz = 0;
7859 for (binz=zfirst;binz<=zlast;binz++) {
7860 for (biny=yfirst;biny<=ylast;biny++) {
7861 for (binx=xfirst;binx<=xlast;binx++) {
7862 bin =
GetBin(binx,biny,binz);
7864 if (value > maximum) {
7897 Int_t bin, binx, biny, binz;
7905 for (binz=zfirst;binz<=zlast;binz++) {
7906 for (biny=yfirst;biny<=ylast;biny++) {
7907 for (binx=xfirst;binx<=xlast;binx++) {
7908 bin =
GetBin(binx,biny,binz);
7910 if (value < minimum && value > minval) minimum = value;
7934 Int_t bin, binx, biny, binz;
7943 locm = locmix = locmiy = locmiz = 0;
7944 for (binz=zfirst;binz<=zlast;binz++) {
7945 for (biny=yfirst;biny<=ylast;biny++) {
7946 for (binx=xfirst;binx<=xlast;binx++) {
7947 bin =
GetBin(binx,biny,binz);
7949 if (value < minimum) {
7991 Int_t bin, binx, biny, binz;
8001 for (binz=zfirst;binz<=zlast;binz++) {
8002 for (biny=yfirst;biny<=ylast;biny++) {
8003 for (binx=xfirst;binx<=xlast;binx++) {
8004 bin =
GetBin(binx,biny,binz);
8006 if (value < min) min = value;
8007 if (value > max) max = value;
8025 Error(
"SetBins",
"Operation only valid for 1-d histograms");
8052 Error(
"SetBins",
"Operation only valid for 1-d histograms");
8078 Error(
"SetBins",
"Operation only valid for 2-D histograms");
8086 fNcells = (nx+2)*(ny+2);
8106 Error(
"SetBins",
"Operation only valid for 2-D histograms");
8114 fNcells = (nx+2)*(ny+2);
8133 Error(
"SetBins",
"Operation only valid for 3-D histograms");
8142 fNcells = (nx+2)*(ny+2)*(nz+2);
8163 Error(
"SetBins",
"Operation only valid for 3-D histograms");
8172 fNcells = (nx+2)*(ny+2)*(nz+2);
8284 Warning(
"Sumw2",
"Sum of squares of weights structure already created");
8319 if (bin < 0) bin = 0;
8320 if (bin >= fNcells) bin = fNcells-1;
8339 if (bin < 0) bin = 0;
8340 if (bin >= fNcells) bin = fNcells-1;
8349 Warning(
"GetBinErrorLow",
"Histogram has negative bin content-force usage to normal errors");
8354 if (n == 0)
return 0;
8369 if (bin < 0) bin = 0;
8370 if (bin >= fNcells) bin = fNcells-1;
8379 Warning(
"GetBinErrorUp",
"Histogram has negative bin content-force usage to normal errors");
8398 Error(
"GetBinCenter",
"Invalid method for a %d-d histogram - return a NaN",
fDimension);
8409 Error(
"GetBinLowEdge",
"Invalid method for a %d-d histogram - return a NaN",
fDimension);
8420 Error(
"GetBinWidth",
"Invalid method for a %d-d histogram - return a NaN",
fDimension);
8447 Error(
"GetLowEdge",
"Invalid method for a %d-d histogram ",
fDimension);
8462 if (bin < 0 || bin>=
fSumw2.
fN)
return;
8479 if (bin < 0)
return;
8480 if (bin >= fNcells-1) {
8543 return (
TH1*)
gROOT->ProcessLineFast(
Form(
"TSpectrum::StaticBackground((TH1*)0x%lx,%d,\"%s\")",
8544 (
ULong_t)
this, niter, option));
8557 return (
Int_t)
gROOT->ProcessLineFast(
Form(
"TSpectrum::StaticSearch((TH1*)0x%lx,%g,\"%s\",%g)",
8558 (
ULong_t)
this, sigma, option, threshold));
8576 ::Error(
"TransformHisto",
"Invalid FFT transform class");
8581 ::Error(
"TransformHisto",
"Only 1d and 2D transform are supported");
8595 hout =
new TH1D(name, name,n[0], 0, n[0]);
8597 hout =
new TH2D(name, name, n[0], 0, n[0], n[1], 0, n[1]);
8605 for (binx = 1; binx<=hout->
GetNbinsX(); binx++) {
8606 for (biny=1; biny<=hout->
GetNbinsY(); biny++) {
8607 ind[0] = binx-1; ind[1] = biny-1;
8613 for (binx = 1; binx<=hout->
GetNbinsX(); binx++) {
8614 for (biny=1; biny<=hout->
GetNbinsY(); biny++) {
8615 ind[0] = binx-1; ind[1] = biny-1;
8624 for (binx = 1; binx<=hout->
GetNbinsX(); binx++) {
8625 for (biny=1; biny<=hout->
GetNbinsY(); biny++) {
8626 ind[0] = binx-1; ind[1] = biny-1;
8632 ::Error(
"TransformHisto",
"No complex numbers in the output");
8639 for (binx = 1; binx<=hout->
GetNbinsX(); binx++) {
8640 for (biny=1; biny<=hout->
GetNbinsY(); biny++) {
8641 ind[0] = binx-1; ind[1] = biny-1;
8647 for (binx = 1; binx<=hout->
GetNbinsX(); binx++) {
8648 for (biny=1; biny<=hout->
GetNbinsY(); biny++) {
8649 ind[0] = binx-1; ind[1] = biny-1;
8658 for (binx = 1; binx<=hout->
GetNbinsX(); binx++){
8659 for (biny=1; biny<=hout->
GetNbinsY(); biny++){
8660 ind[0] = binx-1; ind[1] = biny-1;
8681 printf(
"Pure real output, no phase");
8712 std::ostringstream strm;
8731 if (fgDefaultSumw2) Sumw2();
8739 :
TH1(name,title,nbins,xlow,xup)
8744 if (xlow >= xup) SetBuffer(fgBufferSize);
8745 if (fgDefaultSumw2) Sumw2();
8753 :
TH1(name,title,nbins,xbins)
8757 if (fgDefaultSumw2) Sumw2();
8765 :
TH1(name,title,nbins,xbins)
8769 if (fgDefaultSumw2) Sumw2();
8801 if (newval > -128 && newval < 128) {
fArray[bin] =
Char_t(newval);
return;}
8802 if (newval < -127)
fArray[bin] = -127;
8803 if (newval > 127)
fArray[bin] = 127;
8912 if (fgDefaultSumw2) Sumw2();
8920 :
TH1(name,title,nbins,xlow,xup)
8925 if (xlow >= xup) SetBuffer(fgBufferSize);
8926 if (fgDefaultSumw2) Sumw2();
8934 :
TH1(name,title,nbins,xbins)
8938 if (fgDefaultSumw2) Sumw2();
8946 :
TH1(name,title,nbins,xbins)
8950 if (fgDefaultSumw2) Sumw2();
8982 if (newval > -32768 && newval < 32768) {
fArray[bin] =
Short_t(newval);
return;}
8983 if (newval < -32767)
fArray[bin] = -32767;
8984 if (newval > 32767)
fArray[bin] = 32767;
9093 if (fgDefaultSumw2) Sumw2();
9101 :
TH1(name,title,nbins,xlow,xup)
9106 if (xlow >= xup) SetBuffer(fgBufferSize);
9107 if (fgDefaultSumw2) Sumw2();
9115 :
TH1(name,title,nbins,xbins)
9119 if (fgDefaultSumw2) Sumw2();
9127 :
TH1(name,title,nbins,xbins)
9131 if (fgDefaultSumw2) Sumw2();
9163 if (newval > -2147483647 && newval < 2147483647) {
fArray[bin] =
Int_t(newval);
return;}
9164 if (newval < -2147483647)
fArray[bin] = -2147483647;
9165 if (newval > 2147483647)
fArray[bin] = 2147483647;
9275 if (fgDefaultSumw2) Sumw2();
9283 :
TH1(name,title,nbins,xlow,xup)
9288 if (xlow >= xup) SetBuffer(fgBufferSize);
9289 if (fgDefaultSumw2) Sumw2();
9297 :
TH1(name,title,nbins,xbins)
9301 if (fgDefaultSumw2) Sumw2();
9309 :
TH1(name,title,nbins,xbins)
9313 if (fgDefaultSumw2) Sumw2();
9326 for (
Int_t i=0;i<fNcells-2;i++) {
9327 SetBinContent(i+1,
v(i+ivlow));
9330 if (fgDefaultSumw2) Sumw2();
9454 if (fgDefaultSumw2) Sumw2();
9462 :
TH1(name,title,nbins,xlow,xup)
9467 if (xlow >= xup) SetBuffer(fgBufferSize);
9468 if (fgDefaultSumw2) Sumw2();
9476 :
TH1(name,title,nbins,xbins)
9480 if (fgDefaultSumw2) Sumw2();
9488 :
TH1(name,title,nbins,xbins)
9492 if (fgDefaultSumw2) Sumw2();
9505 for (
Int_t i=0;i<fNcells-2;i++) {
9506 SetBinContent(i+1,
v(i+ivlow));
9509 if (fgDefaultSumw2) Sumw2();
9627 if(hid >= 0) hname.
Form(
"h%d",hid);
9628 else hname.
Form(
"h_%d",hid);
static void StatOverflows(Bool_t flag=kTRUE)
if flag=kTRUE, underflows and overflows are used by the Fill functions in the computation of statisti...
Abstract array base class.
virtual void Browse(TBrowser *b)
Browse the Histogram object.
virtual void SavePrimitive(std::ostream &out, Option_t *option="")
Save primitive as a C++ statement(s) on output stream out.
virtual void SetTitleOffset(Float_t offset=1)
Set distance between the axis and the axis title Offset is a correction factor with respect to the "s...
virtual const char * GetName() const
Returns name of object.
virtual void SetBinsLength(Int_t n=-1)
Set total number of bins including under/overflow Reallocate bin contents array.
virtual void Print(Option_t *option="") const
Print some global quantities for this histogram.
virtual void SetNameTitle(const char *name, const char *title)
Change the name and title of this histogram.
virtual void SetLineWidth(Width_t lwidth)
Set the line width.
virtual UInt_t GetUniqueID() const
Return the unique object id.
virtual Int_t FindBin(Double_t x, Double_t y=0, Double_t z=0)
Return Global bin number corresponding to x,y,z.
virtual Float_t GetTickLength() const
virtual Int_t GetNcells() const
Double_t fNormFactor
Normalization factor.
virtual void SetBarOffset(Float_t offset=0.25)
virtual void Scale(Double_t c1=1, Option_t *option="")
Multiply this histogram by a constant c1.
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
virtual Int_t ShowPeaks(Double_t sigma=2, Option_t *option="", Double_t threshold=0.05)
Interface to TSpectrum::Search.
virtual Double_t GetMaximum(Double_t maxval=FLT_MAX) const
Return maximum value smaller than maxval of bins in the range, unless the value has been overridden b...
TH1D & operator=(const TH1D &h1)
Operator =.
virtual Double_t IntegralAndError(Int_t binx1, Int_t binx2, Double_t &err, Option_t *option="") const
Return integral of bin contents in range [binx1,binx2] and its error.
void SetBarWidth(Float_t barwidth=0.5)
static long int sum(long int i)
virtual void SaveAttributes(std::ostream &out, const char *name, const char *subname)
Save axis attributes as C++ statement(s) on output stream out.
virtual Double_t GetEffectiveEntries() const
Number of effective entries of the histogram.
virtual void Paint(Option_t *option="")
Control routine to paint any kind of histograms.
virtual Int_t WriteClassBuffer(const TClass *cl, void *pointer)=0
virtual void Delete(Option_t *option="")
Remove all objects from the list AND delete all heap based objects.
virtual Double_t GetBinCenter(Int_t bin) const
Return bin center for 1D histogram.
const char * GetBinLabel(Int_t bin) const
Return label for bin.
virtual void Info(const char *method, const char *msgfmt,...) const
Issue info message.
virtual Double_t PoissonD(Double_t mean)
Generates a random number according to a Poisson law.
Bool_t IsBinUnderflow(Int_t bin, Int_t axis=0) const
Return true if the bin is underflow.
Double_t Floor(Double_t x)
void Set(Int_t n)
Set size of this array to n chars.
virtual ~TH1I()
Destructor.
Int_t GetFirst() const
Return first bin on the axis i.e.
virtual Int_t AutoP2FindLimits(Double_t min, Double_t max)
Buffer-based estimate of the histogram range using the power of 2 algorithm.
virtual void SetMaximum(Double_t maximum=-1111)
double Chisquare(const TH1 &h1, TF1 &f1, bool useRange, bool usePL=false)
compute the chi2 value for an histogram given a function (see TH1::Chisquare for the documentation) ...
void UseCurrentStyle()
Copy current attributes from/to current style.
void Copy(TArrayI &array) const
virtual void LabelsOption(Option_t *option="h", Option_t *axis="X")
Set option(s) to draw axis with labels.
virtual void SetLimits(Double_t xmin, Double_t xmax)
Short_t fBarWidth
(1000*width) for bar charts or legos
Bool_t IsBinOverflow(Int_t bin, Int_t axis=0) const
Return true if the bin is overflow.
static Bool_t fgDefaultSumw2
!flag to call TH1::Sumw2 automatically at histogram creation time
virtual Int_t DistancetoPrimitive(Int_t px, Int_t py)=0
Computes distance from point (px,py) to the object.
TVirtualHistPainter * GetPainter(Option_t *option="")
Return pointer to painter.
virtual void FitPanel()
Display a panel with all histogram fit options.
virtual void SetDirectory(TDirectory *dir)
By default when an histogram is created, it is added to the list of histogram objects in the current ...
virtual TF1 * GetFunction(const char *name) const
Return pointer to function with name.
virtual Float_t GetLabelOffset() const
virtual Float_t GetBarOffset() const
virtual Double_t GetBinLowEdge(Int_t bin) const
Return low edge of bin.
Double_t KolmogorovProb(Double_t z)
Calculates the Kolmogorov distribution function,.
virtual void Set(Int_t n)=0
virtual void ResetAttAxis(Option_t *option="")
Reset axis attributes.
virtual void SetError(const Double_t *error)
Replace bin errors by values in array error.
virtual Double_t GetNormFactor() const
TString & ReplaceAll(const TString &s1, const TString &s2)
TAxis fYaxis
Y axis descriptor.
virtual Int_t BufferFill(Double_t x, Double_t w)
accumulate arguments in buffer.
virtual void SetContour(Int_t nlevels, const Double_t *levels=0)
Set the number and values of contour levels.
R__EXTERN TStyle * gStyle
virtual void PutStats(Double_t *stats)
Replace current statistics with the values in array stats.
void SetHistLineWidth(Width_t width=1)
const Double_t * GetArray() const
Bool_t GetStatOverflowsBehaviour() const
TList * fFunctions
->Pointer to list of functions (fits and user)
virtual Int_t FindLastBinAbove(Double_t threshold=0, Int_t axis=1) const
Find last bin with content > threshold for axis (1=x, 2=y, 3=z) if no bins with content > threshold i...
virtual void SetBins(Int_t nx, Double_t xmin, Double_t xmax)
Redefine x axis parameters.
virtual Int_t GetXfirst() const
virtual void SetName(const char *name)
Set the name of the TNamed.
virtual Color_t GetAxisColor() const
TH1 * GetAsymmetry(TH1 *h2, Double_t c2=1, Double_t dc2=0)
Return an histogram containing the asymmetry of this histogram with h2, where the asymmetry is define...
static Bool_t fgStatOverflows
!flag to use under/overflows in statistics
virtual TH1 * DrawNormalized(Option_t *option="", Double_t norm=1) const
Draw a normalized copy of this histogram.
static Bool_t SameLimitsAndNBins(const TAxis &axis1, const TAxis &axis2)
Same limits and bins.
virtual ~TH1F()
Destructor.
virtual void SetLabelColor(Color_t color=1, Float_t alpha=1.)
Set color of labels.
void Build()
Creates histogram basic data structure.
EStatOverflows fStatOverflows
per object flag to use under/overflows in statistics
virtual Double_t GetSumOfWeights() const
Return the sum of weights excluding under/overflows.
virtual Double_t GetBinContent(Int_t bin) const
Return content of bin number bin.
virtual void SetNdivisions(Int_t n=510, Bool_t optim=kTRUE)
Set the number of divisions for this axis.
virtual void Copy(TObject &hnew) const
Copy this to newth1.
virtual Int_t GetQuantiles(Int_t nprobSum, Double_t *q, const Double_t *probSum=0)
Compute Quantiles for this histogram Quantile x_q of a probability distribution Function F is defined...
virtual Double_t Integral(Option_t *option="") const
Return integral of bin contents.
void ToUpper()
Change string to upper case.
virtual void Reset(Option_t *option="")
Reset.
friend TH1D operator/(const TH1D &h1, const TH1D &h2)
Operator /.
static bool CheckAxisLimits(const TAxis *a1, const TAxis *a2)
Check that the axis limits of the histograms are the same.
Buffer base class used for serializing objects.
friend TH1S operator+(const TH1S &h1, const TH1S &h2)
Operator +.
virtual Double_t GetMeanError(Int_t axis=1) const
Return standard error of mean of this histogram along the X axis.
virtual Int_t GetNbinsZ() const
virtual void SetMinimum(Double_t minimum=-1111)
static THLimitsFinder * GetLimitsFinder()
Return pointer to the current finder.
virtual Int_t CheckByteCount(UInt_t startpos, UInt_t bcnt, const TClass *clss)=0
virtual Double_t GetMean(Int_t axis=1) const
For axis = 1,2 or 3 returns the mean value of the histogram along X,Y or Z axis.
Ssiz_t Index(const char *pat, Ssiz_t i=0, ECaseCompare cmp=kExact) const
R__ALWAYS_INLINE Bool_t TestBit(UInt_t f) const
virtual void Copy(TObject &hnew) const
Copy this to newth1.
Int_t LoadPlugin()
Load the plugin library for this handler.
virtual void GetBinXYZ(Int_t binglobal, Int_t &binx, Int_t &biny, Int_t &binz) const
Return binx, biny, binz corresponding to the global bin number globalbin see TH1::GetBin function abo...
Option_t * GetOption() const
double gamma_quantile_c(double z, double alpha, double theta)
Inverse ( ) of the cumulative distribution function of the upper tail of the gamma distribution (gamm...
virtual void Copy(TObject &hnew) const
Copy this to newth1.
static Bool_t AddDirectoryStatus()
Static function: cannot be inlined on Windows/NT.
1-D histogram with a float per channel (see TH1 documentation)}
1-D histogram with a short per channel (see TH1 documentation)
void H1InitExpo()
Compute Initial values of parameters for an exponential.
Array of floats (32 bits per element).
static Double_t AutoP2GetPower2(Double_t x, Bool_t next=kTRUE)
Auxilliary function to get the power of 2 next (larger) or previous (smaller) a given x...
virtual void SetTitleFont(Style_t font=62)
Set the title font.
Short_t Min(Short_t a, Short_t b)
void ToLower()
Change string to lower-case.
void SetBarOffset(Float_t baroff=0.5)
R__EXTERN TVirtualMutex * gROOTMutex
void Copy(TAttMarker &attmarker) const
Copy this marker attributes to a new TAttMarker.
virtual TH1 * DrawCopy(Option_t *option="", const char *name_postfix="_copy") const
Copy this histogram and Draw in the current pad.
virtual void SetFillStyle(Style_t fstyle)
Set the fill area style.
virtual void Smooth(Int_t ntimes=1, Option_t *option="")
Smooth bin contents of this histogram.
TArrayD fSumw2
Array of sum of squares of weights.
user specified contour levels
virtual void UseCurrentStyle()
Set current style settings in this object This function is called when either TCanvas::UseCurrentStyl...
virtual void Copy(TObject &axis) const
Copy axis structure to another axis.
void Copy(TArrayC &array) const
virtual Float_t GetLabelSize() const
virtual Double_t GetBinLowEdge(Int_t bin) const
Return bin lower edge for 1D histogram.
static Bool_t AlmostInteger(Double_t a, Double_t epsilon=0.00000001)
Test if a double is almost an integer.
virtual void Copy(TObject &hnew) const
Copy this to newth1.
virtual Double_t Integral(Double_t a, Double_t b, Double_t epsrel=1.e-12)
IntegralOneDim or analytical integral.
virtual Int_t FindGoodLimits(TH1 *h, Double_t xmin, Double_t xmax)
Compute the best axis limits for the X axis.
static Bool_t RecomputeAxisLimits(TAxis &destAxis, const TAxis &anAxis)
Finds new limits for the axis for the Merge function.
TAxis fZaxis
Z axis descriptor.
virtual Bool_t Multiply(TF1 *h1, Double_t c1=1)
Performs the operation: this = this*c1*f1 if errors are defined (see TH1::Sumw2), errors are also rec...
virtual void SetBinsLength(Int_t n=-1)
Set total number of bins including under/overflow Reallocate bin contents array.
virtual TObject * Clone(const char *newname="") const
Make a clone of an collection using the Streamer facility.
virtual Double_t GetContourLevel(Int_t level) const
Return value of contour number level.
virtual void SetLabelOffset(Float_t offset=0.005)
Set distance between the axis and the labels The distance is expressed in per cent of the pad width...
virtual Width_t GetLineWidth() const
Return the line width.
friend TH1D operator+(const TH1D &h1, const TH1D &h2)
Operator +.
Double_t Prob(Double_t chi2, Int_t ndf)
Computation of the probability for a certain Chi-squared (chi2) and number of degrees of freedom (ndf...
static bool CheckBinLimits(const TAxis *a1, const TAxis *a2)
Check bin limits.
Array of integers (32 bits per element).
LongDouble_t Power(LongDouble_t x, LongDouble_t y)
void SetBit(UInt_t f, Bool_t set)
Set or unset the user status bits as specified in f.
virtual void SetBuffer(Int_t buffersize, Option_t *option="")
Set the maximum number of entries to be kept in the buffer.
Double_t fTsumwx2
Total Sum of weight*X*X.
virtual void GetStats(Double_t *stats) const
fill the array stats from the contents of this histogram The array stats must be correctly dimensione...
virtual Bool_t CanExtendAllAxes() const
Returns true if all axes are extendable.
virtual void Reset(Option_t *option="")
Reset this histogram: contents, errors, etc.
friend TH1S operator-(const TH1S &h1, const TH1S &h2)
Operator -.
virtual TObject * FindObject(const char *name) const
Delete a TObjLink object.
Width_t GetHistLineWidth() const
static void AddDirectory(Bool_t add=kTRUE)
Sets the flag controlling the automatic add of histograms in memory.
if object in a list can be deleted
virtual Double_t GetBinUpEdge(Int_t bin) const
Return up edge of bin.
virtual void SetBarWidth(Float_t width=0.5)
virtual void SetLabelFont(Style_t font=62)
Set labels' font.
virtual void AppendPad(Option_t *option="")
Append graphics object to current pad.
static TVirtualHistPainter * HistPainter(TH1 *obj)
Static function returning a pointer to the current histogram painter.
virtual void SetPoint(Int_t ipoint, Double_t re, Double_t im=0)=0
virtual Style_t GetMarkerStyle() const
Return the marker style.
TDirectory * fDirectory
!Pointer to directory holding this histogram
static void SetDefaultSumw2(Bool_t sumw2=kTRUE)
When this static function is called with sumw2=kTRUE, all new histograms will automatically activate ...
virtual Style_t GetTitleFont() const
static bool CheckConsistentSubAxes(const TAxis *a1, Int_t firstBin1, Int_t lastBin1, const TAxis *a2, Int_t firstBin2=0, Int_t lastBin2=0)
Check that two sub axis are the same.
virtual Style_t GetLineStyle() const
Return the line style.
virtual Int_t GetDimension() const
virtual Double_t Interpolate(Double_t x)
Given a point x, approximates the value via linear interpolation based on the two nearest bin centers...
virtual Int_t GetContour(Double_t *levels=0)
Return contour values into array levels if pointer levels is non zero.
TH1C & operator=(const TH1C &h1)
Operator =.
virtual void Paint(Option_t *option="")=0
This method must be overridden if a class wants to paint itself.
virtual const char * ClassName() const
Returns name of class to which the object belongs.
Fill Area Attributes class.
static Int_t FitOptionsMake(Option_t *option, Foption_t &Foption)
Decode string choptin and fill fitOption structure.
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString...
virtual void Eval(TF1 *f1, Option_t *option="")
Evaluate function f1 at the center of bins of this histogram.
THashList implements a hybrid collection class consisting of a hash table and a list to store TObject...
static Bool_t GetDefaultSumw2()
Return kTRUE if TH1::Sumw2 must be called when creating new histograms.
void SetHistFillColor(Color_t color=1)
virtual Bool_t GetTimeDisplay() const
static void SetDefaultBufferSize(Int_t buffersize=1000)
Static function to set the default buffer size for automatic histograms.
Use Power(2)-based algorithm for autobinning.
void Copy(TAttLine &attline) const
Copy this line attributes to a new TAttLine.
virtual void SaveLineAttributes(std::ostream &out, const char *name, Int_t coldef=1, Int_t stydef=1, Int_t widdef=1)
Save line attributes as C++ statement(s) on output stream out.
virtual Double_t Chi2Test(const TH1 *h2, Option_t *option="UU", Double_t *res=0) const
test for comparing weighted and unweighted histograms
The TNamed class is the base class for all named ROOT classes.
virtual ~TH1()
Histogram default destructor.
THashList * GetLabels() const
friend TH1D operator-(const TH1D &h1, const TH1D &h2)
Operator -.
Double_t Log10(Double_t x)
virtual void SetContourLevel(Int_t level, Double_t value)
Set value for one contour level.
#define R__WRITE_LOCKGUARD(mutex)
virtual void GetCenter(Double_t *center) const
Return an array with the center of all bins.
Abstract interface to a histogram painter.
virtual Double_t GetBinCenter(Int_t bin) const
Return center of bin.
virtual void SetMarkerColor(Color_t mcolor=1)
Set the marker color.
Style_t GetHistFillStyle() const
TString & Append(const char *cs)
virtual void GetLowEdge(Double_t *edge) const
Return an array with the lod edge of all bins.
void Sort(Index n, const Element *a, Index *index, Bool_t down=kTRUE)
void H1InitGaus()
Compute Initial values of parameters for a gaussian.
virtual Size_t GetMarkerSize() const
Return the marker size.
R__EXTERN TVirtualRWMutex * gCoreMutex
virtual bool UseRWLock()
Set this collection to use a RW lock upon access, making it thread safe.
virtual void DrawPanel()=0
errors from Poisson interval at 95% CL (~ 2 sigma)
TString fOption
histogram options
friend TH1I operator-(const TH1I &h1, const TH1I &h2)
Operator -.
virtual void SaveMarkerAttributes(std::ostream &out, const char *name, Int_t coldef=1, Int_t stydef=1, Int_t sizdef=1)
Save line attributes as C++ statement(s) on output stream out.
virtual Int_t * GetN() const =0
Float_t GetBarWidth() const
virtual Bool_t FindNewAxisLimits(const TAxis *axis, const Double_t point, Double_t &newMin, Double_t &newMax)
finds new limits for the axis so that point is within the range and the limits are compatible with th...
virtual void SetContent(const Double_t *content)
Replace bin contents by the contents of array content.
virtual void AddBinContent(Int_t bin)
Increment bin content by 1.
friend TH1C operator*(Double_t c1, const TH1C &h1)
Operator *.
virtual void ResetStats()
Reset the statistics including the number of entries and replace with values calculates from bin cont...
void Set(Int_t n)
Set size of this array to n ints.
TArrayD fContour
Array to display contour levels.
virtual void SetBinError(Int_t bin, Double_t error)
Set the bin Error Note that this resets the bin eror option to be of Normal Type and for the non-empt...
Int_t AxisChoice(Option_t *axis) const
Choose an axis according to "axis".
virtual Double_t ComputeIntegral(Bool_t onlyPositive=false)
Compute integral (cumulative sum of bins) The result stored in fIntegral is used by the GetRandom fun...
virtual void LabelsInflate(Option_t *axis="X")
Double the number of bins for axis.
virtual Color_t GetLabelColor() const
object has not been deleted
virtual Double_t GetSkewness(Int_t axis=1) const
virtual void SetTimeDisplay(Int_t value)
Double_t fTsumwx
Total Sum of weight*X.
void H1LeastSquareFit(Int_t n, Int_t m, Double_t *a)
Least squares lpolynomial fitting without weights.
virtual Bool_t Divide(TF1 *f1, Double_t c1=1)
Performs the operation: this = this/(c1*f1) if errors are defined (see TH1::Sumw2), errors are also recalculated.
virtual Int_t GetNdivisions() const
static Int_t AutoP2GetBins(Int_t n)
Auxilliary function to get the next power of 2 integer value larger then n.
static Bool_t fgAddDirectory
!flag to add histograms to the directory
virtual void SetUniqueID(UInt_t uid)
Set the unique object id.
void Set(Int_t n)
Set size of this array to n shorts.
virtual void GetMinimumAndMaximum(Double_t &min, Double_t &max) const
Retrieve the minimum and maximum values in the histogram.
virtual Double_t Rndm()
Machine independent random number generator.
virtual Double_t GetStdDevError(Int_t axis=1) const
Return error of standard deviation estimation for Normal distribution.
Double_t fMinimum
Minimum value for plotting.
virtual Double_t KolmogorovTest(const TH1 *h2, Option_t *option="") const
Statistical test of compatibility in shape between this histogram and h2, using Kolmogorov test...
virtual void ExtendAxis(Double_t x, TAxis *axis)
Histogram is resized along axis such that x is in the axis range.
Bool_t AreEqualRel(Double_t af, Double_t bf, Double_t relPrec)
TH1 * GetCumulative(Bool_t forward=kTRUE, const char *suffix="_cumulative") const
Return a pointer to an histogram containing the cumulative The cumulative can be computed both in the...
virtual TH1 * FFT(TH1 *h_output, Option_t *option)
This function allows to do discrete Fourier transforms of TH1 and TH2.
virtual Int_t DistancetoPrimitive(Int_t px, Int_t py)
Compute distance from point px,py to a line.
virtual void AddBinContent(Int_t bin)
Increment bin content by 1.
virtual void SetLineColor(Color_t lcolor)
Set the line color.
friend TH1S operator/(const TH1S &h1, const TH1S &h2)
Operator /.
Using a TBrowser one can browse all ROOT objects.
virtual void ExecuteEvent(Int_t event, Int_t px, Int_t py)
Execute action corresponding to one event.
virtual Double_t * GetIntegral()
Return a pointer to the array of bins integral.
NOTE: Must always be 0 !!!
virtual void SetRange(Int_t first=0, Int_t last=0)
Set the viewing range for the axis from bin first to last.
void Clear(Option_t *option="")
Remove all objects from the list.
std::string printValue(const TDatime *val)
Print a TDatime at the prompt.
virtual void SetParLimits(Int_t ipar, Double_t parmin, Double_t parmax)
Set limits for parameter ipar.
friend TH1C operator-(const TH1C &h1, const TH1C &h2)
Operator -.
void Copy(TArrayF &array) const
friend TH1C operator+(const TH1C &h1, const TH1C &h2)
Operator +.
void FillData(BinData &dv, const TH1 *hist, TF1 *func=0)
fill the data vector from a TH1.
virtual TObject * First() const
Return the first object in the list. Returns 0 when list is empty.
virtual void FillRandom(const char *fname, Int_t ntimes=5000)
Fill histogram following distribution in function fname.
void SetHistFillStyle(Style_t styl=0)
Int_t GetLast() const
Return last bin on the axis i.e.
static void SmoothArray(Int_t NN, Double_t *XX, Int_t ntimes=1)
Smooth array xx, translation of Hbook routine hsmoof.F based on algorithm 353QH twice presented by J...
Class to manage histogram axis.
virtual Double_t GetKurtosis(Int_t axis=1) const
virtual void Draw(Option_t *option="")
Draw this histogram with options.
static bool CheckBinLabels(const TAxis *a1, const TAxis *a2)
Check that axis have same labels.
Array of shorts (16 bits per element).
virtual Double_t GetPointReal(Int_t ipoint, Bool_t fromInput=kFALSE) const =0
if object ctor succeeded but object should not be used
TH1 * R__H(Int_t hid)
return pointer to histogram with name hid if id >=0 h_id if id <0
virtual void SetFillColor(Color_t fcolor)
Set the fill area color.
A 3-Dim function with parameters.
virtual Double_t GetBinWithContent(Double_t c, Int_t &binx, Int_t firstx=0, Int_t lastx=0, Double_t maxdiff=0) const
Compute first binx in the range [firstx,lastx] for which diff = abs(bin_content-c) <= maxdiff...
friend TH1I operator+(const TH1I &h1, const TH1I &h2)
Operator +.
void SetCanExtend(Bool_t canExtend)
1-D histogram with an int per channel (see TH1 documentation)}
Long_t ExecPlugin(int nargs, const T &... params)
virtual TObject * Remove(TObject *obj)
Remove object from the list.
virtual void ExecuteEvent(Int_t event, Int_t px, Int_t py)=0
Execute action corresponding to an event at (px,py).
Provides an indirection to the TFitResult class and with a semantics identical to a TFitResult pointe...
static TH1 * TransformHisto(TVirtualFFT *fft, TH1 *h_output, Option_t *option)
For a given transform (first parameter), fills the histogram (second parameter) with the transform ou...
static TVirtualFFT * FFT(Int_t ndim, Int_t *n, Option_t *option)
Returns a pointer to the FFT of requested size and type.
virtual Bool_t InheritsFrom(const char *classname) const
Returns kTRUE if object inherits from class "classname".
virtual void SetBinContent(Int_t bin, Double_t content)
Set bin content see convention for numbering bins in TH1::GetBin In case the bin number is greater th...
Collection abstract base class.
static Int_t fgBufferSize
!default buffer size for automatic histograms
virtual TH1 * Rebin(Int_t ngroup=2, const char *newname="", const Double_t *xbins=0)
Rebin this histogram.
virtual Double_t AndersonDarlingTest(const TH1 *h2, Option_t *option="") const
Statistical test of compatibility in shape between this histogram and h2, using the Anderson-Darling ...
void Form(const char *fmt,...)
Formats a string using a printf style format descriptor.
Double_t fEntries
Number of entries.
virtual void SaveFillAttributes(std::ostream &out, const char *name, Int_t coldef=1, Int_t stydef=1001)
Save fill attributes as C++ statement(s) on output stream out.
virtual Float_t GetTitleOffset() const
virtual void LabelsDeflate(Option_t *axis="X")
Reduce the number of bins for the axis passed in the option to the number of bins having a label...
virtual void DoFillN(Int_t ntimes, const Double_t *x, const Double_t *w, Int_t stride=1)
Internal method to fill histogram content from a vector called directly by TH1::BufferEmpty.
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
char * Form(const char *fmt,...)
virtual void Transform()=0
virtual Double_t Chisquare(TF1 *f1, Option_t *option="") const
Compute and return the chisquare of this histogram with respect to a function The chisquare is comput...
virtual void Append(TObject *obj, Bool_t replace=kFALSE)
Append object to this directory.
static TVirtualFitter * GetFitter()
static: return the current Fitter
virtual void Copy(TObject &hnew) const
Copy this histogram structure to newth1.
virtual TH1 * ShowBackground(Int_t niter=20, Option_t *option="same")
This function calculates the background spectrum in this histogram.
virtual void SetBinsLength(Int_t n=-1)
Set total number of bins including under/overflow Reallocate bin contents array.
virtual ~TH1C()
Destructor.
static void RejectPoint(Bool_t reject=kTRUE)
Static function to set the global flag to reject points the fgRejectPoint global flag is tested by al...
virtual void Copy(TObject &hnew) const
Copy this to newth1.
virtual void SetMarkerStyle(Style_t mstyle=1)
Set the marker style.
virtual Double_t GetContourLevelPad(Int_t level) const
Return the value of contour number "level" in Pad coordinates.
Class describing the binned data sets : vectors of x coordinates, y values and optionally error on y ...
virtual TObject * At(Int_t idx) const
Returns the object at position idx. Returns 0 if idx is out of range.
virtual Color_t GetTitleColor() const
Double_t * fIntegral
!Integral of bins used by GetRandom
virtual void SetBinErrorOption(EBinErrorOpt type)
friend TH1F operator*(Double_t c1, const TH1F &h1)
Operator *.
static bool CheckConsistency(const TH1 *h1, const TH1 *h2)
Check histogram compatibility.
A 2-Dim function with parameters.
void H1LeastSquareSeqnd(Int_t n, Double_t *a, Int_t idim, Int_t &ifail, Int_t k, Double_t *b)
Extracted from CERN Program library routine DSEQN.
TH1()
Histogram default constructor.
R__EXTERN TRandom * gRandom
1-D histogram with a double per channel (see TH1 documentation)}
virtual Int_t GetBin(Int_t binx, Int_t biny=0, Int_t binz=0) const
Return Global bin number corresponding to binx,y,z.
static Int_t GetDefaultBufferSize()
Static function return the default buffer size for automatic histograms the parameter fgBufferSize ma...
virtual void SetAxisColor(Color_t color=1, Float_t alpha=1.)
Set color of the line axis and tick marks.
virtual TObject * FindObject(const char *name) const
Search object named name in the list of functions.
virtual void Rebuild(Option_t *option="")
Using the current bin info, recompute the arrays for contents and errors.
virtual Int_t FindFirstBinAbove(Double_t threshold=0, Int_t axis=1) const
Find first bin with content > threshold for axis (1=x, 2=y, 3=z) if no bins with content > threshold ...
if object destructor must call RecursiveRemove()
virtual void SetLabelSize(Float_t size=0.04)
Set size of axis labels The size is expressed in per cent of the pad width.
virtual void SetMarkerSize(Size_t msize=1)
Set the marker size.
friend TH1I operator/(const TH1I &h1, const TH1I &h2)
Operator /.
virtual void SetTitleColor(Color_t color=1)
Set color of axis title.
virtual TObjLink * FirstLink() const
virtual void SetTitleSize(Float_t size=0.04)
Set size of axis title The size is expressed in per cent of the pad width.
virtual void RecursiveRemove(TObject *obj)
Recursively remove object from the list of functions.
EBinErrorOpt fBinStatErrOpt
option for bin statistical errors
virtual Double_t RetrieveBinContent(Int_t bin) const
Raw retrieval of bin content on internal data structure see convention for numbering bins in TH1::Get...
virtual Double_t GetMinimum(Double_t minval=-FLT_MAX) const
Return minimum value larger than minval of bins in the range, unless the value has been overridden by...
errors with Normal (Wald) approximation: errorUp=errorLow= sqrt(N)
TVirtualFFT is an interface class for Fast Fourier Transforms.
virtual Color_t GetLineColor() const
Return the line color.
virtual Int_t FindBin(Double_t x)
Find bin number corresponding to abscissa x.
virtual void SetName(const char *name)
Change the name of this histogram.
friend TH1I operator*(Double_t c1, const TH1I &h1)
Operator *.
static TVirtualFFT * SineCosine(Int_t ndim, Int_t *n, Int_t *r2rkind, Option_t *option)
Returns a pointer to a sine or cosine transform of requested size and kind.
TString & Remove(Ssiz_t pos)
virtual Int_t ReadClassBuffer(const TClass *cl, void *pointer, const TClass *onfile_class=0)=0
virtual Int_t GetSumw2N() const
Double_t fTsumw2
Total Sum of squares of weights.
Color_t GetHistFillColor() const
virtual Double_t Eval(Double_t x, Double_t y=0, Double_t z=0, Double_t t=0) const
Evaluate this function.
virtual void GetPointComplex(Int_t ipoint, Double_t &re, Double_t &im, Bool_t fromInput=kFALSE) const =0
Bin contents are average (used by Add)
virtual Bool_t IsEmpty() const
virtual Double_t GetBinWidth(Int_t bin) const
Return bin width for 1D histogram.
static const double x1[5]
virtual TObject * Remove(TObject *)
Remove an object from the in-memory list.
class describing the range in the coordinates it supports multiple range in a coordinate.
virtual Double_t GetBinErrorLow(Int_t bin) const
Return lower error associated to bin number bin.
friend TH1F operator+(const TH1F &h1, const TH1F &h2)
Operator +.
void SetHistLineStyle(Style_t styl=0)
virtual void SavePrimitiveHelp(std::ostream &out, const char *hname, Option_t *option="")
Helper function for the SavePrimitive functions from TH1 or classes derived from TH1, eg TProfile, TProfile2D.
Double_t fTsumw
Total Sum of weights.
Color_t GetHistLineColor() const
friend TH1D operator*(Double_t c1, const TH1D &h1)
Operator *.
Describe directory structure in memory.
Histogram is forced to be not weighted even when the histogram is filled with weighted different than...
Double_t Median(Long64_t n, const T *a, const Double_t *w=0, Long64_t *work=0)
virtual Color_t GetFillColor() const
Return the fill area color.
TH1I & operator=(const TH1I &h1)
Operator =.
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
static constexpr double s
you should not use this method at all Int_t Int_t Double_t Double_t Double_t e
virtual Double_t GetEntries() const
Return the current number of entries.
friend TH1F operator/(const TH1F &h1, const TH1F &h2)
Operator /.
#define R__LOCKGUARD(mutex)
void forward(const LAYERDATA &prevLayerData, LAYERDATA &currLayerData)
apply the weights (and functions) in forward direction of the DNN
THist< 2, double, THistStatContent, THistStatUncertainty > TH2D
virtual Float_t GetTitleSize() const
virtual Double_t Chi2TestX(const TH1 *h2, Double_t &chi2, Int_t &ndf, Int_t &igood, Option_t *option="UU", Double_t *res=0) const
The computation routine of the Chisquare test.
static bool IsEquidistantBinning(const TAxis &axis)
Test if the binning is equidistant.
Short_t fBarOffset
(1000*offset) for bar charts or legos
virtual void SetLineStyle(Style_t lstyle)
Set the line style.
Array of doubles (64 bits per element).
void FitOptionsMake(EFitObjectType type, const char *option, Foption_t &fitOption)
Decode list of options into fitOption.
virtual void InitArgs(const Double_t *x, const Double_t *params)
Initialize parameters addresses.
virtual Bool_t Add(TF1 *h1, Double_t c1=1, Option_t *option="")
Performs the operation: this = this + c1*f1 if errors are defined (see TH1::Sumw2), errors are also recalculated.
Abstract Base Class for Fitting.
virtual UInt_t SetCanExtend(UInt_t extendBitMask)
Make the histogram axes extendable / not extendable according to the bit mask returns the previous bi...
virtual Int_t FindFixBin(Double_t x, Double_t y=0, Double_t z=0) const
Return Global bin number corresponding to x,y,z.
Mother of all ROOT objects.
virtual Int_t FindFixBin(Double_t x) const
Find bin number corresponding to abscissa x.
virtual void SetBinsLength(Int_t n=-1)
Set total number of bins including under/overflow Reallocate bin contents array.
you should not use this method at all Int_t Int_t z
virtual void ClearUnderflowAndOverflow()
Remove all the content from the underflow and overflow bins, without changing the number of entries A...
virtual Bool_t IsInside(const Double_t *x) const
return kTRUE if the point is inside the function range
TObject * GetObject() const
virtual char * GetObjectInfo(Int_t px, Int_t py) const
Redefines TObject::GetObjectInfo.
TH1S & operator=(const TH1S &h1)
Operator =.
virtual Int_t GetNpar() const
Style_t GetHistLineStyle() const
Double_t fMaximum
Maximum value for plotting.
virtual Double_t GetBinWidth(Int_t bin) const
Return bin width.
virtual void DirectoryAutoAdd(TDirectory *)
Perform the automatic addition of the histogram to the given directory.
TVirtualHistPainter * fPainter
!pointer to histogram painter
virtual void Copy(TObject &named) const
Copy this to obj.
friend TH1C operator/(const TH1C &h1, const TH1C &h2)
Operator /.
friend TH1S operator*(Double_t c1, const TH1S &h1)
Operator *.
static Bool_t RejectedPoint()
See TF1::RejectPoint above.
virtual void DrawPanel()
Display a panel with all histogram drawing options.
virtual void Add(TObject *obj)
Int_t fBufferSize
fBuffer size
virtual void RecursiveRemove(TObject *obj)
Remove object from this collection and recursively remove the object from all other objects (and coll...
virtual Int_t GetMinimumBin() const
Return location of bin with minimum value in the range.
virtual Double_t GetBinErrorSqUnchecked(Int_t bin) const
virtual void GetRange(Double_t *xmin, Double_t *xmax) const
Return range of a generic N-D function.
virtual Double_t DoIntegral(Int_t ix1, Int_t ix2, Int_t iy1, Int_t iy2, Int_t iz1, Int_t iz2, Double_t &err, Option_t *opt, Bool_t doerr=kFALSE) const
Internal function compute integral and optionally the error between the limits specified by the bin n...
virtual void FillN(Int_t ntimes, const Double_t *x, const Double_t *w, Int_t stride=1)
Fill this histogram with an array x and weights w.
Short_t Max(Short_t a, Short_t b)
virtual void SetBinsLength(Int_t=-1)
1-D histogram with a byte per channel (see TH1 documentation)
virtual void Sumw2(Bool_t flag=kTRUE)
Create structure to store sum of squares of weights.
TObject * Clone(const char *newname=0) const
Make a complete copy of the underlying object.
you should not use this method at all Int_t Int_t Double_t Double_t Double_t Int_t Double_t Double_t Double_t Double_t b
Double_t GetAt(Int_t i) const
Double_t Ceil(Double_t x)
friend TH1F operator-(const TH1F &h1, const TH1F &h2)
Operator -.
void SetOptStat(Int_t stat=1)
The type of information printed in the histogram statistics box can be selected via the parameter mod...
Int_t fDimension
!Histogram dimension (1, 2 or 3 dim)
THist< 1, double, THistStatContent, THistStatUncertainty > TH1D
virtual void SetTickLength(Float_t length=0.03)
Set tick mark length The length is expressed in per cent of the pad width.
virtual Int_t GetXlast() const
virtual Double_t GetBinErrorUp(Int_t bin) const
Return upper error associated to bin number bin.
virtual Int_t BufferEmpty(Int_t action=0)
Fill histogram with all entries in the buffer.
virtual void SetParent(TObject *obj)
void Set(Int_t n)
Set size of this array to n floats.
virtual ~TH1D()
Destructor.
virtual void SetEntries(Double_t n)
TAxis fXaxis
X axis descriptor.
Float_t GetBarOffset() const
virtual TH1 * GetHistogram() const
Return a pointer to the histogram used to visualise the function.
virtual void SetParameter(Int_t param, Double_t value)
virtual void AddBinContent(Int_t bin)
Increment bin content by 1.
virtual void SetTitle(const char *title)
See GetStatOverflows for more information.
TFitResultPtr FitObject(TH1 *h1, TF1 *f1, Foption_t &option, const ROOT::Math::MinimizerOptions &moption, const char *goption, ROOT::Fit::DataRange &range)
fitting function for a TH1 (called from TH1::Fit)
virtual Int_t GetNdim() const =0
virtual Color_t GetMarkerColor() const
Return the marker color.
virtual Int_t GetNbinsX() const
Option_t * GetDrawOption() const
Get option used by the graphics system to draw this object.
virtual Int_t Poisson(Double_t mean)
Generates a random integer N according to a Poisson law.
virtual Style_t GetFillStyle() const
Return the fill area style.
Double_t Sqrt(Double_t x)
virtual void AddBinContent(Int_t bin)
Increment bin content by 1.
Bool_t GetCanvasPreferGL() const
virtual const char * GetName() const
Returns name of object.
virtual Int_t GetSize() const
virtual void Set(Int_t nbins, Double_t xmin, Double_t xmax)
Initialize axis with fix bins.
static Bool_t AlmostEqual(Double_t a, Double_t b, Double_t epsilon=0.00000001)
Test if two double are almost equal.
virtual Double_t EvalPar(const Double_t *x, const Double_t *params=0)
Evaluate function with given coordinates and parameters.
virtual void SetTitle(const char *title="")
Set the title of the TNamed.
TList * GetListOfFunctions() const
void SetHistLineColor(Color_t color=1)
virtual TObject * GetUserFunc() const
virtual TObject * GetObjectFit() const
Double_t * fBuffer
[fBufferSize] entry buffer
virtual Int_t GetValue(const char *name, Int_t dflt) const
Returns the integer value for a resource.
virtual TFitResultPtr Fit(const char *formula, Option_t *option="", Option_t *goption="", Double_t xmin=0, Double_t xmax=0)
Fit histogram with function fname.
void AbstractMethod(const char *method) const
Use this method to implement an "abstract" method that you don't want to leave purely abstract...
virtual void UpdateBinContent(Int_t bin, Double_t content)
Raw update of bin content on internal data structure see convention for numbering bins in TH1::GetBin...
virtual Double_t GetStdDev(Int_t axis=1) const
Returns the Standard Deviation (Sigma).
void Set(Int_t n)
Set size of this array to n doubles.
virtual Double_t GetRandom() const
Return a random number distributed according the histogram bin contents.
static bool CheckEqualAxes(const TAxis *a1, const TAxis *a2)
Check that the axis are the same.
double gamma_quantile(double z, double alpha, double theta)
Inverse ( ) of the cumulative distribution function of the lower tail of the gamma distribution (gamm...
virtual ~TH1S()
Destructor.
void Copy(TArrayD &array) const
virtual Int_t GetMaximumBin() const
Return location of bin with maximum value in the range.
virtual void GetCenter(Double_t *center) const
Fill array with center of bins for 1D histogram Better to use h1.GetXaxis().GetCenter(center) ...
void H1InitPolynom()
Compute Initial values of parameters for a polynom.
virtual void SetStats(Bool_t stats=kTRUE)
Set statistics option on/off.
TH1F & operator=(const TH1F &h1)
Operator =.
virtual Float_t GetBarWidth() const
Long64_t BinarySearch(Long64_t n, const T *array, T value)
const TArrayD * GetXbins() const
virtual void GetLowEdge(Double_t *edge) const
Fill array with low edge of bins for 1D histogram Better to use h1.GetXaxis().GetLowEdge(edge) ...
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.
TAxis * GetXaxis()
Get the behaviour adopted by the object about the statoverflows. See EStatOverflows for more informat...
virtual void SetBinsLength(Int_t n=-1)
Set total number of bins including under/overflow Reallocate bin contents array.
virtual Style_t GetLabelFont() const
void Copy(TArrayS &array) const
virtual Long64_t Merge(TCollection *list)
Add all histograms in the collection to this histogram.
virtual Version_t ReadVersion(UInt_t *start=0, UInt_t *bcnt=0, const TClass *cl=0)=0
double ldexp(double, int)
virtual const char * GetTitle() const
Returns title of object.
virtual Int_t GetNbinsY() const
virtual Option_t * GetType() const =0
virtual Double_t GetBinError(Int_t bin) const
Return value of error associated to bin number bin.
virtual Int_t ReadArray(Bool_t *&b)=0
Int_t fNcells
number of bins(1D), cells (2D) +U/Overflows
void Copy(TAttFill &attfill) const
Copy this fill attributes to a new TAttFill.
void AndersonDarling2SamplesTest(Double_t &pvalue, Double_t &testStat) const
T MinElement(Long64_t n, const T *a)
void H1LeastSquareLinearFit(Int_t ndata, Double_t &a0, Double_t &a1, Int_t &ifail)
Least square linear fit without weights.
const char * Data() const
Array of chars or bytes (8 bits per element).
virtual void SavePrimitive(std::ostream &out, Option_t *option="")
Save a primitive as a C++ statement(s) on output stream "out".