create variable transformations More...
Namespaces | |
namespace | DNN |
namespace | Experimental |
namespace | Internal |
namespace | kNN |
namespace | TMVAGlob |
Classes | |
class | AbsoluteDeviationLossFunction |
Absolute Deviation Loss Function. More... | |
class | AbsoluteDeviationLossFunctionBDT |
Absolute Deviation BDT Loss Function. More... | |
class | AbsValue |
class | BDTEventWrapper |
class | BinarySearchTree |
A simple Binary search tree including a volume search method. More... | |
class | BinarySearchTreeNode |
Node for the BinarySearch or Decision Trees. More... | |
class | BinaryTree |
Base class for BinarySearch and Decision Trees. More... | |
class | CCPruner |
A helper class to prune a decision tree using the Cost Complexity method (see Classification and Regression Trees by Leo Breiman et al) More... | |
class | CCTreeWrapper |
class | ClassifierFactory |
This is the MVA factory. More... | |
class | ClassInfo |
Class that contains all the information of a class. More... | |
class | Config |
Singleton class for global configuration settings used by TMVA. More... | |
class | Configurable |
class | ConvergenceTest |
Check for convergence. More... | |
class | CostComplexityPruneTool |
A class to prune a decision tree using the Cost Complexity method. More... | |
class | CrossEntropy |
Implementation of the CrossEntropy as separation criterion. More... | |
class | CrossValidation |
Class to perform cross validation, splitting the dataloader into folds. More... | |
class | CrossValidationFoldResult |
class | CrossValidationResult |
Class to save the results of cross validation, the metric for the classification ins ROC and you can ROC curves ROC integrals, ROC average and ROC standard deviation. More... | |
class | CvSplit |
class | CvSplitKFolds |
class | CvSplitKFoldsExpr |
class | DataInputHandler |
Class that contains all the data information. More... | |
class | DataLoader |
class | DataSet |
Class that contains all the data information. More... | |
class | DataSetFactory |
Class that contains all the data information. More... | |
class | DataSetInfo |
Class that contains all the data information. More... | |
class | DataSetManager |
Class that contains all the data information. More... | |
class | DecisionTree |
Implementation of a Decision Tree. More... | |
class | DecisionTreeNode |
struct | DeleteFunctor_t |
class | DTNodeTrainingInfo |
class | Envelope |
Abstract base class for all high level ml algorithms, you can book ml methods like BDT, MLP. More... | |
class | Event |
class | Executor |
Base Excutor class. More... | |
class | ExpectedErrorPruneTool |
A helper class to prune a decision tree using the expected error (C4.5) method. More... | |
class | Factory |
This is the main MVA steering class. More... | |
class | FitterBase |
Base class for TMVA fitters. More... | |
class | GeneticAlgorithm |
Base definition for genetic algorithm. More... | |
class | GeneticFitter |
Fitter using a Genetic Algorithm. More... | |
class | GeneticGenes |
Cut optimisation interface class for genetic algorithm. More... | |
class | GeneticPopulation |
Population definition for genetic algorithm. More... | |
class | GeneticRange |
Range definition for genetic algorithm. More... | |
class | GiniIndex |
Implementation of the GiniIndex as separation criterion. More... | |
class | GiniIndexWithLaplace |
Implementation of the GiniIndex With Laplace correction as separation criterion. More... | |
class | HuberLossFunction |
Huber Loss Function. More... | |
class | HuberLossFunctionBDT |
Huber BDT Loss Function. More... | |
class | HyperParameterOptimisation |
class | HyperParameterOptimisationResult |
class | IFitterTarget |
Interface for a fitter 'target'. More... | |
class | IMethod |
Interface for all concrete MVA method implementations. More... | |
class | Increment |
class | Interval |
The TMVA::Interval Class. More... | |
class | IPruneTool |
IPruneTool - a helper interface class to prune a decision tree. More... | |
class | IPythonInteractive |
This class is needed by JsMVA, and it's a helper class for tracking errors during the training in Jupyter notebook. More... | |
class | KDEKernel |
KDE Kernel for "smoothing" the PDFs. More... | |
class | LDA |
class | LeastSquaresLossFunction |
Least Squares Loss Function. More... | |
class | LeastSquaresLossFunctionBDT |
Least Squares BDT Loss Function. More... | |
class | LogInterval |
The TMVA::Interval Class. More... | |
class | LossFunction |
class | LossFunctionBDT |
class | LossFunctionEventInfo |
class | MCFitter |
Fitter using Monte Carlo sampling of parameters. More... | |
class | MethodANNBase |
Base class for all TMVA methods using artificial neural networks. More... | |
class | MethodBase |
Virtual base Class for all MVA method. More... | |
class | MethodBayesClassifier |
Description of bayesian classifiers. More... | |
class | MethodBDT |
Analysis of Boosted Decision Trees. More... | |
class | MethodBoost |
Class for boosting a TMVA method. More... | |
class | MethodC50 |
class | MethodCategory |
Class for categorizing the phase space. More... | |
class | MethodCFMlpANN |
Interface to Clermond-Ferrand artificial neural network. More... | |
class | MethodCFMlpANN_Utils |
Implementation of Clermond-Ferrand artificial neural network. More... | |
class | MethodCompositeBase |
Virtual base class for combining several TMVA method. More... | |
class | MethodCrossValidation |
class | MethodCuts |
Multivariate optimisation of signal efficiency for given background efficiency, applying rectangular minimum and maximum requirements. More... | |
class | MethodDL |
class | MethodDNN |
Deep Neural Network Implementation. More... | |
class | MethodDT |
Analysis of Boosted Decision Trees. More... | |
class | MethodFDA |
Function discriminant analysis (FDA). More... | |
class | MethodFisher |
Fisher and Mahalanobis Discriminants (Linear Discriminant Analysis) More... | |
class | MethodHMatrix |
H-Matrix method, which is implemented as a simple comparison of chi-squared estimators for signal and background, taking into account the linear correlations between the input variables. More... | |
class | MethodInfo |
class | MethodKNN |
Analysis of k-nearest neighbor. More... | |
class | MethodLD |
Linear Discriminant. More... | |
class | MethodLikelihood |
Likelihood analysis ("non-parametric approach") More... | |
class | MethodMLP |
Multilayer Perceptron class built off of MethodANNBase. More... | |
class | MethodPDEFoam |
The PDEFoam method is an extension of the PDERS method, which divides the multi-dimensional phase space in a finite number of hyper-rectangles (cells) of constant event density. More... | |
class | MethodPDERS |
This is a generalization of the above Likelihood methods to N_{var} dimensions, where N_{var} is the number of input variables used in the MVA. More... | |
class | MethodPyAdaBoost |
class | MethodPyGTB |
class | MethodPyKeras |
class | MethodPyRandomForest |
class | MethodPyTorch |
class | MethodRSNNS |
class | MethodRSVM |
class | MethodRuleFit |
J Friedman's RuleFit method. More... | |
class | MethodRXGB |
class | MethodSVM |
SMO Platt's SVM classifier with Keerthi & Shavade improvements. More... | |
class | MethodTMlpANN |
This is the TMVA TMultiLayerPerceptron interface class. More... | |
class | MinuitFitter |
/Fitter using MINUIT More... | |
class | MinuitWrapper |
Wrapper around MINUIT. More... | |
class | MisClassificationError |
Implementation of the MisClassificationError as separation criterion. More... | |
class | Monitoring |
class | MsgLogger |
ostringstream derivative to redirect and format output More... | |
class | Node |
Node for the BinarySearch or Decision Trees. More... | |
class | null_t |
class | OptimizeConfigParameters |
class | Option |
class | Option< T * > |
class | OptionBase |
Class for TMVA-option handling. More... | |
class | OptionMap |
class to storage options for the differents methods More... | |
class | PDEFoam |
Implementation of PDEFoam. More... | |
class | PDEFoamCell |
class | PDEFoamDecisionTree |
This PDEFoam variant acts like a decision tree and stores in every cell the discriminant. More... | |
class | PDEFoamDecisionTreeDensity |
This is a concrete implementation of PDEFoam. More... | |
class | PDEFoamDensityBase |
This is an abstract class, which provides an interface for a PDEFoam density estimator. More... | |
class | PDEFoamDiscriminant |
This PDEFoam variant stores in every cell the discriminant. More... | |
class | PDEFoamDiscriminantDensity |
This is a concrete implementation of PDEFoam. More... | |
class | PDEFoamEvent |
This PDEFoam variant stores in every cell the sum of event weights and the sum of the squared event weights. More... | |
class | PDEFoamEventDensity |
This is a concrete implementation of PDEFoam. More... | |
class | PDEFoamKernelBase |
This class is the abstract kernel interface for PDEFoam. More... | |
class | PDEFoamKernelGauss |
This PDEFoam kernel estimates a cell value for a given event by weighting all cell values with a gauss function. More... | |
class | PDEFoamKernelLinN |
This PDEFoam kernel estimates a cell value for a given event by weighting with cell values of the nearest neighbor cells. More... | |
class | PDEFoamKernelTrivial |
This class is a trivial PDEFoam kernel estimator. More... | |
class | PDEFoamMultiTarget |
This PDEFoam variant is used to estimate multiple targets by creating an event density foam (PDEFoamEvent), which has dimension: More... | |
class | PDEFoamTarget |
This PDEFoam variant stores in every cell the average target fTarget (see the Constructor) as well as the statistical error on the target fTarget. More... | |
class | PDEFoamTargetDensity |
This is a concrete implementation of PDEFoam. More... | |
class | PDEFoamVect |
class | |
PDF wrapper for histograms; uses user-defined spline interpolation. More... | |
class | PruningInfo |
class | PyMethodBase |
class | QuickMVAProbEstimator |
class | RandomGenerator |
class | Rank |
class | Ranking |
Ranking for variables in method (implementation) More... | |
class | Reader |
The Reader class serves to use the MVAs in a specific analysis context. More... | |
class | RegressionVariance |
Calculate the "SeparationGain" for Regression analysis separation criteria used in various training algorithms. More... | |
class | Results |
Class that is the base-class for a vector of result. More... | |
class | ResultsClassification |
Class that is the base-class for a vector of result. More... | |
class | ResultsMulticlass |
Class which takes the results of a multiclass classification. More... | |
class | ResultsRegression |
Class that is the base-class for a vector of result. More... | |
class | RMethodBase |
class | ROCCalc |
class | ROCCurve |
class | RootFinder |
Root finding using Brents algorithm (translated from CERNLIB function RZERO) More... | |
class | Rule |
Implementation of a rule. More... | |
class | RuleCut |
A class describing a 'rule cut'. More... | |
class | RuleEnsemble |
class | RuleFit |
A class implementing various fits of rule ensembles. More... | |
class | RuleFitAPI |
J Friedman's RuleFit method. More... | |
class | RuleFitParams |
A class doing the actual fitting of a linear model using rules as base functions. More... | |
class | SdivSqrtSplusB |
Implementation of the SdivSqrtSplusB as separation criterion. More... | |
class | SeparationBase |
An interface to calculate the "SeparationGain" for different separation criteria used in various training algorithms. More... | |
class | SimulatedAnnealing |
Base implementation of simulated annealing fitting procedure. More... | |
class | SimulatedAnnealingFitter |
Fitter using a Simulated Annealing Algorithm. More... | |
class | StatDialogBDT |
class | StatDialogBDTReg |
class | StatDialogMVAEffs |
class | SVEvent |
Event class for Support Vector Machine. More... | |
class | SVKernelFunction |
Kernel for Support Vector Machine. More... | |
class | SVKernelMatrix |
Kernel matrix for Support Vector Machine. More... | |
class | SVWorkingSet |
Working class for Support Vector Machine. More... | |
class | TActivation |
Interface for TNeuron activation function classes. More... | |
class | TActivationChooser |
Class for easily choosing activation functions. More... | |
class | TActivationIdentity |
Identity activation function for TNeuron. More... | |
class | TActivationRadial |
Radial basis activation function for ANN. More... | |
class | TActivationReLU |
Rectified Linear Unit activation function for TNeuron. More... | |
class | TActivationSigmoid |
Sigmoid activation function for TNeuron. More... | |
class | TActivationTanh |
Tanh activation function for ANN. More... | |
class | Timer |
Timing information for training and evaluation of MVA methods. More... | |
class | TMVAGaussPair |
struct | TMVAGUI |
class | TNeuron |
Neuron class used by TMVA artificial neural network methods. More... | |
class | TNeuronInput |
Interface for TNeuron input calculation classes. More... | |
class | TNeuronInputAbs |
TNeuron input calculator – calculates the sum of the absolute values of the weighted inputs. More... | |
class | TNeuronInputChooser |
Class for easily choosing neuron input functions. More... | |
class | TNeuronInputSqSum |
TNeuron input calculator – calculates the squared weighted sum of inputs. More... | |
class | TNeuronInputSum |
TNeuron input calculator – calculates the weighted sum of inputs. More... | |
class | Tools |
Global auxiliary applications and data treatment routines. More... | |
class | TrainingHistory |
Tracking data from training. More... | |
class | TransformationHandler |
Class that contains all the data information. More... | |
class | TreeInfo |
class | TSpline1 |
Linear interpolation of TGraph. More... | |
class | TSpline2 |
Quadratic interpolation of TGraph. More... | |
class | TSynapse |
Synapse class used by TMVA artificial neural network methods. More... | |
struct | TTrainingSettings |
All of the options that can be specified in the training string. More... | |
class | Types |
Singleton class for Global types used by TMVA. More... | |
class | VariableDecorrTransform |
Linear interpolation class. More... | |
class | VariableGaussTransform |
Gaussian Transformation of input variables. More... | |
class | VariableIdentityTransform |
Linear interpolation class. More... | |
class | VariableImportance |
class | VariableImportanceResult |
class | VariableInfo |
Class for type info of MVA input variable. More... | |
class | VariableNormalizeTransform |
Linear interpolation class. More... | |
class | VariablePCATransform |
Linear interpolation class. More... | |
class | VariableRearrangeTransform |
Rearrangement of input variables. More... | |
class | VariableTransformBase |
Linear interpolation class. More... | |
class | VarTransformHandler |
class | Volume |
Volume for BinarySearchTree. More... | |
Functions | |
void | ActionButton (TControlBar *cbar, const TString &title, const TString ¯o, const TString &comment, const TString &buttonType, TString requiredKey="") |
void | annconvergencetest (TString dataset, TDirectory *lhdir) |
void | annconvergencetest (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) |
void | BDT (TString dataset, const TString &fin="TMVA.root") |
void | BDT (TString dataset, Int_t itree, TString wfile, TString methName="BDT", Bool_t useTMVAStyle=kTRUE) |
void | BDT_DeleteTBar (int i) |
void | BDT_Reg (TString dataset, const TString &fin="TMVAReg.root") |
void | BDT_Reg (TString dataset, Int_t itree, TString wfile="", TString methName="BDT", Bool_t useTMVAStyle=kTRUE) |
void | bdtcontrolplots (TString dataset, TDirectory *) |
void | BDTControlPlots (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) |
void | BDTReg_DeleteTBar (int i) |
void | boostcontrolplots (TString dataset, TDirectory *boostdir) |
void | BoostControlPlots (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) |
void | compareanapp (TString finAn="TMVA.root", TString finApp="TMVApp.root", HistType htype=kMVAType, bool useTMVAStyle=kTRUE) |
void | correlations (TString dataset, TString fin="TMVA.root", Bool_t isRegression=kFALSE, Bool_t greyScale=kFALSE, Bool_t useTMVAStyle=kTRUE) |
void | correlationscatters (TString dataset, TString fin, TString var="var3", TString dirName_="InputVariables_Id", TString title="TMVA Input Variable", Bool_t isRegression=kFALSE, Bool_t useTMVAStyle=kTRUE) |
void | correlationscattersMultiClass (TString dataset, TString fin="TMVA.root", TString var="var3", TString dirName_="InputVariables_Id", TString title="TMVA Input Variable", Bool_t isRegression=kFALSE, Bool_t useTMVAStyle=kTRUE) |
void | correlationsMultiClass (TString dataset, TString fin="TMVA.root", Bool_t isRegression=kFALSE, Bool_t greyScale=kFALSE, Bool_t useTMVAStyle=kTRUE) |
void | CorrGui (TString dataset, TString fin="TMVA.root", TString dirName="InputVariables_Id", TString title="TMVA Input Variable", Bool_t isRegression=kFALSE) |
void | CorrGui_DeleteTBar () |
void | CorrGuiMultiClass (TString dataset, TString fin="TMVA.root", TString dirName="InputVariables_Id", TString title="TMVA Input Variable", Bool_t isRegression=kFALSE) |
void | CorrGuiMultiClass_DeleteTBar () |
void | CreateVariableTransforms (const TString &trafoDefinition, TMVA::DataSetInfo &dataInfo, TMVA::TransformationHandler &transformationHandler, TMVA::MsgLogger &log) |
void | DataLoaderCopy (TMVA::DataLoader *des, TMVA::DataLoader *src) |
template<class T > | |
DeleteFunctor_t< const T > | DeleteFunctor () |
void | deviations (TString dataset, TString fin="TMVAReg.root", HistType htype=kMVAType, Bool_t showTarget=kTRUE, Bool_t useTMVAStyle=kTRUE) |
void | draw_activation (TCanvas *c, Double_t cx, Double_t cy, Double_t radx, Double_t rady, Int_t whichActivation) |
void | draw_input_labels (TString dataset, Int_t nInputs, Double_t *cy, Double_t rad, Double_t layerWidth) |
void | draw_layer (TString dataset, TCanvas *c, TH2F *h, Int_t iHist, Int_t nLayers, Double_t maxWeight) |
void | draw_layer_labels (Int_t nLayers) |
void | draw_network (TString dataset, TFile *f, TDirectory *d, const TString &hName="weights_hist", Bool_t movieMode=kFALSE, const TString &epoch="") |
void | draw_synapse (Double_t cx1, Double_t cy1, Double_t cx2, Double_t cy2, Double_t rad1, Double_t rad2, Double_t weightNormed) |
void | DrawCell (TMVA::PDEFoamCell *cell, TMVA::PDEFoam *foam, Double_t x, Double_t y, Double_t xscale, Double_t yscale) |
void | DrawMLPoutputMovie (TString dataset, TFile *file, const TString &methodType, const TString &methodTitle) |
void | DrawNetworkMovie (TString dataset, TFile *file, const TString &methodType, const TString &methodTitle) |
void | efficiencies (TString dataset, TString fin="TMVA.root", Int_t type=2, Bool_t useTMVAStyle=kTRUE) |
void | efficienciesMulticlass1vs1 (TString dataset, TString fin) |
void | efficienciesMulticlass1vsRest (TString dataset, TString filename_input="TMVAMulticlass.root", EEfficiencyPlotType plotType=EEfficiencyPlotType::kRejBvsEffS, Bool_t useTMVAStyle=kTRUE) |
MsgLogger & | Endl (MsgLogger &ml) |
TString | fetchValue (const std::map< TString, TString > &keyValueMap, TString key) |
template<> | |
bool | fetchValue (const std::map< TString, TString > &keyValueMap, TString key, bool defaultValue) |
template<> | |
double | fetchValue (const std::map< TString, TString > &keyValueMap, TString key, double defaultValue) |
template<> | |
int | fetchValue (const std::map< TString, TString > &keyValueMap, TString key, int defaultValue) |
template<> | |
std::vector< double > | fetchValue (const std::map< TString, TString > &keyValueMap, TString key, std::vector< double > defaultValue) |
template<typename T > | |
T | fetchValue (const std::map< TString, TString > &keyValueMap, TString key, T defaultValue) |
template<> | |
TString | fetchValue (const std::map< TString, TString > &keyValueMap, TString key, TString defaultValue) |
TString | fetchValueTmp (const std::map< TString, TString > &keyValueMap, TString key) |
template<> | |
bool | fetchValueTmp (const std::map< TString, TString > &keyValueMap, TString key, bool defaultValue) |
template<> | |
double | fetchValueTmp (const std::map< TString, TString > &keyValueMap, TString key, double defaultValue) |
template<> | |
int | fetchValueTmp (const std::map< TString, TString > &keyValueMap, TString key, int defaultValue) |
template<> | |
std::vector< double > | fetchValueTmp (const std::map< TString, TString > &keyValueMap, TString key, std::vector< double > defaultValue) |
template<typename T > | |
T | fetchValueTmp (const std::map< TString, TString > &keyValueMap, TString key, T defaultValue) |
template<> | |
TString | fetchValueTmp (const std::map< TString, TString > &keyValueMap, TString key, TString defaultValue) |
Config & | gConfig () |
TString * | get_var_names (TString dataset, Int_t nVars) |
Int_t | getBkgColorF () |
Int_t | getBkgColorT () |
std::vector< TString > | getclassnames (TString dataset, TString fin) |
Int_t | getIntColorF () |
Int_t | getIntColorT () |
TList * | GetKeyList (const TString &pattern) |
roccurvelist_t | getRocCurves (TDirectory *binDir, TString methodPrefix, TString graphNameRef) |
Int_t | getSigColorF () |
Int_t | getSigColorT () |
Tools & | gTools () |
Int_t | LargestCommonDivider (Int_t a, Int_t b) |
void | likelihoodrefs (TString dataset, TDirectory *lhdir) |
void | likelihoodrefs (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) |
void | MovieMaker (TString dataset, TString methodType="Method_MLP", TString methodTitle="MLP") |
void | MultiClassActionButton (TControlBar *cbar, const TString &title, const TString ¯o, const TString &comment, const TString &buttonType, TString requiredKey="") |
TList * | MultiClassGetKeyList (const TString &pattern) |
void | mvaeffs (TString dataset, TString fin="TMVA.root", Float_t nSignal=1000, Float_t nBackground=1000, Bool_t useTMVAStyle=kTRUE, TString formula="S/sqrt(S+B)") |
void | mvas (TString dataset, TString fin="TMVA.root", HistType htype=kMVAType, Bool_t useTMVAStyle=kTRUE) |
void | mvasMulticlass (TString dataset, TString fin="TMVAMulticlass.root", HistType htype=kMVAType, Bool_t useTMVAStyle=kTRUE) |
void | mvaweights (TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) |
void | network (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) |
template<typename F > | |
null_t< F > | null () |
Bool_t | operator< (const GeneticGenes &, const GeneticGenes &) |
std::ostream & | operator<< (std::ostream &os, const BinaryTree &tree) |
std::ostream & | operator<< (std::ostream &os, const Event &event) |
std::ostream & | operator<< (std::ostream &os, const Node &node) |
std::ostream & | operator<< (std::ostream &os, const Node *node) |
std::ostream & | operator<< (std::ostream &os, const PDF &tree) |
std::ostream & | operator<< (std::ostream &os, const Rule &rule) |
std::ostream & | operator<< (std::ostream &os, const RuleEnsemble &event) |
std::istream & | operator>> (std::istream &istr, BinaryTree &tree) |
std::istream & | operator>> (std::istream &istr, PDF &tree) |
void | paracoor (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) |
void | Plot (TString fileName, TMVA::ECellValue cv, TString cv_long, bool useTMVAStyle=kTRUE) |
void | Plot1DimFoams (TList &foam_list, TMVA::ECellValue cell_value, const TString &cell_value_description, TMVA::PDEFoamKernelBase *kernel) |
void | plot_efficiencies (TString dataset, TFile *file, Int_t type=2, TDirectory *BinDir=0) |
void | plot_training_history (TString dataset, TFile *file, TDirectory *BinDir=0) |
void | PlotCellTree (TString fileName, TString cv_long, bool useTMVAStyle=kTRUE) |
void | plotEfficienciesMulticlass (roccurvelist_t rocCurves, classcanvasmap_t classCanvasMap) |
void | plotEfficienciesMulticlass1vs1 (TString dataset, TString fin, TString baseClassname) |
void | plotEfficienciesMulticlass1vsRest (TString dataset, EEfficiencyPlotType plotType=EEfficiencyPlotType::kRejBvsEffS, TString filename_input="TMVAMulticlass.root") |
void | PlotFoams (TString fileName="weights/TMVAClassification_PDEFoam.weights_foams.root", bool useTMVAStyle=kTRUE) |
void | PlotNDimFoams (TList &foam_list, TMVA::ECellValue cell_value, const TString &cell_value_description, TMVA::PDEFoamKernelBase *kernel) |
void | probas (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) |
TString | Python_Executable () |
Function to find current Python executable used by ROOT If Python2 is installed return "python" Instead if "Python3" return "python3". | |
void | RegGuiActionButton (TControlBar *cbar, const TString &title, const TString ¯o, const TString &comment, const TString &buttonType, TString requiredKey="") |
TList * | RegGuiGetKeyList (const TString &pattern) |
void | regression_averagedevs (TString dataset, TString fin, Int_t Nevt=-1, Bool_t useTMVAStyle=kTRUE) |
void | rulevis (TString fin="TMVA.root", TMVAGlob::TypeOfPlot type=TMVAGlob::kNorm, bool useTMVAStyle=kTRUE) |
void | rulevisCorr (TDirectory *rfdir, TDirectory *vardir, TDirectory *corrdir, TMVAGlob::TypeOfPlot type) |
void | rulevisCorr (TString fin="TMVA.root", TMVAGlob::TypeOfPlot type=TMVAGlob::kNorm, bool useTMVAStyle=kTRUE) |
void | rulevisHists (TDirectory *rfdir, TDirectory *vardir, TDirectory *corrdir, TMVAGlob::TypeOfPlot type) |
void | rulevisHists (TString fin="TMVA.root", TMVAGlob::TypeOfPlot type=TMVAGlob::kNorm, bool useTMVAStyle=kTRUE) |
void | TMVAGui (const char *fName="TMVA.root", TString dataset="") |
void | TMVAMultiClassGui (const char *fName="TMVAMulticlass.root", TString dataset="") |
void | TMVARegGui (const char *fName="TMVAReg.root", TString dataset="") |
void | training_history (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) |
void | variables (TString dataset, TString fin="TMVA.root", TString dirName="InputVariables_Id", TString title="TMVA Input Variables", Bool_t isRegression=kFALSE, Bool_t useTMVAStyle=kTRUE) |
void | variablesMultiClass (TString dataset, TString fin="TMVA.root", TString dirName="InputVariables_Id", TString title="TMVA Input Variables", Bool_t isRegression=kFALSE, Bool_t useTMVAStyle=kTRUE) |
create variable transformations
void TMVA::ActionButton | ( | TControlBar * | cbar, |
const TString & | title, | ||
const TString & | macro, | ||
const TString & | comment, | ||
const TString & | buttonType, | ||
TString | requiredKey = "" |
||
) |
void TMVA::annconvergencetest | ( | TString | dataset, |
TDirectory * | lhdir | ||
) |
void TMVA::annconvergencetest | ( | TString | dataset, |
TString | fin = "TMVA.root" , |
||
Bool_t | useTMVAStyle = kTRUE |
||
) |
void TMVA::BDT | ( | TString | dataset, |
Int_t | itree, | ||
TString | wfile, | ||
TString | methName = "BDT" , |
||
Bool_t | useTMVAStyle = kTRUE |
||
) |
void TMVA::BDT_Reg | ( | TString | dataset, |
Int_t | itree, | ||
TString | wfile = "" , |
||
TString | methName = "BDT" , |
||
Bool_t | useTMVAStyle = kTRUE |
||
) |
void TMVA::bdtcontrolplots | ( | TString | dataset, |
TDirectory * | |||
) |
void TMVA::BDTControlPlots | ( | TString | dataset, |
TString | fin = "TMVA.root" , |
||
Bool_t | useTMVAStyle = kTRUE |
||
) |
void TMVA::boostcontrolplots | ( | TString | dataset, |
TDirectory * | boostdir | ||
) |
void TMVA::BoostControlPlots | ( | TString | dataset, |
TString | fin = "TMVA.root" , |
||
Bool_t | useTMVAStyle = kTRUE |
||
) |
void TMVA::compareanapp | ( | TString | finAn = "TMVA.root" , |
TString | finApp = "TMVApp.root" , |
||
HistType | htype = kMVAType , |
||
bool | useTMVAStyle = kTRUE |
||
) |
void TMVA::correlations | ( | TString | dataset, |
TString | fin = "TMVA.root" , |
||
Bool_t | isRegression = kFALSE , |
||
Bool_t | greyScale = kFALSE , |
||
Bool_t | useTMVAStyle = kTRUE |
||
) |
void TMVA::correlationscatters | ( | TString | dataset, |
TString | fin, | ||
TString | var = "var3" , |
||
TString | dirName_ = "InputVariables_Id" , |
||
TString | title = "TMVA Input Variable" , |
||
Bool_t | isRegression = kFALSE , |
||
Bool_t | useTMVAStyle = kTRUE |
||
) |
void TMVA::correlationscattersMultiClass | ( | TString | dataset, |
TString | fin = "TMVA.root" , |
||
TString | var = "var3" , |
||
TString | dirName_ = "InputVariables_Id" , |
||
TString | title = "TMVA Input Variable" , |
||
Bool_t | isRegression = kFALSE , |
||
Bool_t | useTMVAStyle = kTRUE |
||
) |
void TMVA::correlationsMultiClass | ( | TString | dataset, |
TString | fin = "TMVA.root" , |
||
Bool_t | isRegression = kFALSE , |
||
Bool_t | greyScale = kFALSE , |
||
Bool_t | useTMVAStyle = kTRUE |
||
) |
void TMVA::CorrGui | ( | TString | dataset, |
TString | fin = "TMVA.root" , |
||
TString | dirName = "InputVariables_Id" , |
||
TString | title = "TMVA Input Variable" , |
||
Bool_t | isRegression = kFALSE |
||
) |
void TMVA::CorrGui_DeleteTBar | ( | ) |
void TMVA::CorrGuiMultiClass | ( | TString | dataset, |
TString | fin = "TMVA.root" , |
||
TString | dirName = "InputVariables_Id" , |
||
TString | title = "TMVA Input Variable" , |
||
Bool_t | isRegression = kFALSE |
||
) |
void TMVA::CorrGuiMultiClass_DeleteTBar | ( | ) |
void TMVA::CreateVariableTransforms | ( | const TString & | trafoDefinition, |
TMVA::DataSetInfo & | dataInfo, | ||
TMVA::TransformationHandler & | transformationHandler, | ||
TMVA::MsgLogger & | log | ||
) |
Definition at line 59 of file VariableTransform.cxx.
void TMVA::DataLoaderCopy | ( | TMVA::DataLoader * | des, |
TMVA::DataLoader * | src | ||
) |
DeleteFunctor_t< const T > TMVA::DeleteFunctor | ( | ) |
Definition at line 78 of file DataSetFactory.h.
void TMVA::deviations | ( | TString | dataset, |
TString | fin = "TMVAReg.root" , |
||
HistType | htype = kMVAType , |
||
Bool_t | showTarget = kTRUE , |
||
Bool_t | useTMVAStyle = kTRUE |
||
) |
void TMVA::draw_activation | ( | TCanvas * | c, |
Double_t | cx, | ||
Double_t | cy, | ||
Double_t | radx, | ||
Double_t | rady, | ||
Int_t | whichActivation | ||
) |
void TMVA::draw_input_labels | ( | TString | dataset, |
Int_t | nInputs, | ||
Double_t * | cy, | ||
Double_t | rad, | ||
Double_t | layerWidth | ||
) |
void TMVA::draw_layer | ( | TString | dataset, |
TCanvas * | c, | ||
TH2F * | h, | ||
Int_t | iHist, | ||
Int_t | nLayers, | ||
Double_t | maxWeight | ||
) |
void TMVA::draw_network | ( | TString | dataset, |
TFile * | f, | ||
TDirectory * | d, | ||
const TString & | hName = "weights_hist" , |
||
Bool_t | movieMode = kFALSE , |
||
const TString & | epoch = "" |
||
) |
void TMVA::draw_synapse | ( | Double_t | cx1, |
Double_t | cy1, | ||
Double_t | cx2, | ||
Double_t | cy2, | ||
Double_t | rad1, | ||
Double_t | rad2, | ||
Double_t | weightNormed | ||
) |
void TMVA::DrawCell | ( | TMVA::PDEFoamCell * | cell, |
TMVA::PDEFoam * | foam, | ||
Double_t | x, | ||
Double_t | y, | ||
Double_t | xscale, | ||
Double_t | yscale | ||
) |
void TMVA::DrawMLPoutputMovie | ( | TString | dataset, |
TFile * | file, | ||
const TString & | methodType, | ||
const TString & | methodTitle | ||
) |
void TMVA::DrawNetworkMovie | ( | TString | dataset, |
TFile * | file, | ||
const TString & | methodType, | ||
const TString & | methodTitle | ||
) |
void TMVA::efficiencies | ( | TString | dataset, |
TString | fin = "TMVA.root" , |
||
Int_t | type = 2 , |
||
Bool_t | useTMVAStyle = kTRUE |
||
) |
void TMVA::efficienciesMulticlass1vsRest | ( | TString | dataset, |
TString | filename_input = "TMVAMulticlass.root" , |
||
EEfficiencyPlotType | plotType = EEfficiencyPlotType::kRejBvsEffS , |
||
Bool_t | useTMVAStyle = kTRUE |
||
) |
|
inline |
Definition at line 148 of file MsgLogger.h.
Definition at line 320 of file MethodDNN.cxx.
bool TMVA::fetchValue | ( | const std::map< TString, TString > & | keyValueMap, |
TString | key, | ||
bool | defaultValue | ||
) |
Definition at line 380 of file MethodDNN.cxx.
double TMVA::fetchValue | ( | const std::map< TString, TString > & | keyValueMap, |
TString | key, | ||
double | defaultValue | ||
) |
Definition at line 354 of file MethodDNN.cxx.
int TMVA::fetchValue | ( | const std::map< TString, TString > & | keyValueMap, |
TString | key, | ||
int | defaultValue | ||
) |
Definition at line 340 of file MethodDNN.cxx.
std::vector< double > TMVA::fetchValue | ( | const std::map< TString, TString > & | keyValueMap, |
TString | key, | ||
std::vector< double > | defaultValue | ||
) |
Definition at line 397 of file MethodDNN.cxx.
T TMVA::fetchValue | ( | const std::map< TString, TString > & | keyValueMap, |
TString | key, | ||
T | defaultValue | ||
) |
TString TMVA::fetchValue | ( | const std::map< TString, TString > & | keyValueMap, |
TString | key, | ||
TString | defaultValue | ||
) |
Definition at line 367 of file MethodDNN.cxx.
Definition at line 75 of file MethodDL.cxx.
bool TMVA::fetchValueTmp | ( | const std::map< TString, TString > & | keyValueMap, |
TString | key, | ||
bool | defaultValue | ||
) |
Definition at line 124 of file MethodDL.cxx.
double TMVA::fetchValueTmp | ( | const std::map< TString, TString > & | keyValueMap, |
TString | key, | ||
double | defaultValue | ||
) |
Definition at line 102 of file MethodDL.cxx.
int TMVA::fetchValueTmp | ( | const std::map< TString, TString > & | keyValueMap, |
TString | key, | ||
int | defaultValue | ||
) |
Definition at line 91 of file MethodDL.cxx.
std::vector< double > TMVA::fetchValueTmp | ( | const std::map< TString, TString > & | keyValueMap, |
TString | key, | ||
std::vector< double > | defaultValue | ||
) |
Definition at line 141 of file MethodDL.cxx.
T TMVA::fetchValueTmp | ( | const std::map< TString, TString > & | keyValueMap, |
TString | key, | ||
T | defaultValue | ||
) |
TString TMVA::fetchValueTmp | ( | const std::map< TString, TString > & | keyValueMap, |
TString | key, | ||
TString | defaultValue | ||
) |
Definition at line 113 of file MethodDL.cxx.
Config & TMVA::gConfig | ( | ) |
roccurvelist_t TMVA::getRocCurves | ( | TDirectory * | binDir, |
TString | methodPrefix, | ||
TString | graphNameRef | ||
) |
Tools & TMVA::gTools | ( | ) |
Definition at line 80 of file DataSetFactory.cxx.
void TMVA::likelihoodrefs | ( | TString | dataset, |
TDirectory * | lhdir | ||
) |
void TMVA::likelihoodrefs | ( | TString | dataset, |
TString | fin = "TMVA.root" , |
||
Bool_t | useTMVAStyle = kTRUE |
||
) |
void TMVA::MovieMaker | ( | TString | dataset, |
TString | methodType = "Method_MLP" , |
||
TString | methodTitle = "MLP" |
||
) |
void TMVA::MultiClassActionButton | ( | TControlBar * | cbar, |
const TString & | title, | ||
const TString & | macro, | ||
const TString & | comment, | ||
const TString & | buttonType, | ||
TString | requiredKey = "" |
||
) |
void TMVA::mvaeffs | ( | TString | dataset, |
TString | fin = "TMVA.root" , |
||
Float_t | nSignal = 1000 , |
||
Float_t | nBackground = 1000 , |
||
Bool_t | useTMVAStyle = kTRUE , |
||
TString | formula = "S/sqrt(S+B)" |
||
) |
void TMVA::mvas | ( | TString | dataset, |
TString | fin = "TMVA.root" , |
||
HistType | htype = kMVAType , |
||
Bool_t | useTMVAStyle = kTRUE |
||
) |
void TMVA::mvasMulticlass | ( | TString | dataset, |
TString | fin = "TMVAMulticlass.root" , |
||
HistType | htype = kMVAType , |
||
Bool_t | useTMVAStyle = kTRUE |
||
) |
Definition at line 110 of file DataSetFactory.h.
Bool_t TMVA::operator< | ( | const GeneticGenes & | , |
const GeneticGenes & | |||
) |
std::ostream & TMVA::operator<< | ( | std::ostream & | os, |
const BinaryTree & | tree | ||
) |
std::ostream & TMVA::operator<< | ( | std::ostream & | os, |
const Event & | event | ||
) |
std::ostream & TMVA::operator<< | ( | std::ostream & | os, |
const Node & | node | ||
) |
std::ostream & TMVA::operator<< | ( | std::ostream & | os, |
const Node * | node | ||
) |
std::ostream & TMVA::operator<< | ( | std::ostream & | os, |
const PDF & | tree | ||
) |
std::ostream & TMVA::operator<< | ( | std::ostream & | os, |
const Rule & | rule | ||
) |
std::ostream & TMVA::operator<< | ( | std::ostream & | os, |
const RuleEnsemble & | event | ||
) |
std::istream & TMVA::operator>> | ( | std::istream & | istr, |
BinaryTree & | tree | ||
) |
std::istream & TMVA::operator>> | ( | std::istream & | istr, |
PDF & | tree | ||
) |
void TMVA::Plot | ( | TString | fileName, |
TMVA::ECellValue | cv, | ||
TString | cv_long, | ||
bool | useTMVAStyle = kTRUE |
||
) |
void TMVA::Plot1DimFoams | ( | TList & | foam_list, |
TMVA::ECellValue | cell_value, | ||
const TString & | cell_value_description, | ||
TMVA::PDEFoamKernelBase * | kernel | ||
) |
void TMVA::plot_efficiencies | ( | TString | dataset, |
TFile * | file, | ||
Int_t | type = 2 , |
||
TDirectory * | BinDir = 0 |
||
) |
void TMVA::plot_training_history | ( | TString | dataset, |
TFile * | file, | ||
TDirectory * | BinDir = 0 |
||
) |
void TMVA::plotEfficienciesMulticlass | ( | roccurvelist_t | rocCurves, |
classcanvasmap_t | classCanvasMap | ||
) |
void TMVA::plotEfficienciesMulticlass1vsRest | ( | TString | dataset, |
EEfficiencyPlotType | plotType = EEfficiencyPlotType::kRejBvsEffS , |
||
TString | filename_input = "TMVAMulticlass.root" |
||
) |
void TMVA::PlotFoams | ( | TString | fileName = "weights/TMVAClassification_PDEFoam.weights_foams.root" , |
bool | useTMVAStyle = kTRUE |
||
) |
void TMVA::PlotNDimFoams | ( | TList & | foam_list, |
TMVA::ECellValue | cell_value, | ||
const TString & | cell_value_description, | ||
TMVA::PDEFoamKernelBase * | kernel | ||
) |
TString TMVA::Python_Executable | ( | ) |
Function to find current Python executable used by ROOT If Python2 is installed return "python" Instead if "Python3" return "python3".
get current Python executable used by ROOT
Definition at line 45 of file PyMethodBase.cxx.
void TMVA::RegGuiActionButton | ( | TControlBar * | cbar, |
const TString & | title, | ||
const TString & | macro, | ||
const TString & | comment, | ||
const TString & | buttonType, | ||
TString | requiredKey = "" |
||
) |
void TMVA::regression_averagedevs | ( | TString | dataset, |
TString | fin, | ||
Int_t | Nevt = -1 , |
||
Bool_t | useTMVAStyle = kTRUE |
||
) |
void TMVA::rulevis | ( | TString | fin = "TMVA.root" , |
TMVAGlob::TypeOfPlot | type = TMVAGlob::kNorm , |
||
bool | useTMVAStyle = kTRUE |
||
) |
void TMVA::rulevisCorr | ( | TDirectory * | rfdir, |
TDirectory * | vardir, | ||
TDirectory * | corrdir, | ||
TMVAGlob::TypeOfPlot | type | ||
) |
void TMVA::rulevisCorr | ( | TString | fin = "TMVA.root" , |
TMVAGlob::TypeOfPlot | type = TMVAGlob::kNorm , |
||
bool | useTMVAStyle = kTRUE |
||
) |
void TMVA::rulevisHists | ( | TDirectory * | rfdir, |
TDirectory * | vardir, | ||
TDirectory * | corrdir, | ||
TMVAGlob::TypeOfPlot | type | ||
) |
void TMVA::rulevisHists | ( | TString | fin = "TMVA.root" , |
TMVAGlob::TypeOfPlot | type = TMVAGlob::kNorm , |
||
bool | useTMVAStyle = kTRUE |
||
) |
void TMVA::training_history | ( | TString | dataset, |
TString | fin = "TMVA.root" , |
||
Bool_t | useTMVAStyle = kTRUE |
||
) |
void TMVA::variables | ( | TString | dataset, |
TString | fin = "TMVA.root" , |
||
TString | dirName = "InputVariables_Id" , |
||
TString | title = "TMVA Input Variables" , |
||
Bool_t | isRegression = kFALSE , |
||
Bool_t | useTMVAStyle = kTRUE |
||
) |