|
ROOT 6.10/09 Reference Guide |
Abstract ClassifierFactory template that handles arbitrary types. More...
Namespaces | |
| DNN | |
| kNN | |
| TMVAGlob | |
Classes | |
| class | AbsoluteDeviationLossFunction |
| Absolute Deviation Loss Function. More... | |
| class | AbsoluteDeviationLossFunctionBDT |
| Absolute Deviation BDT Loss Function. More... | |
| class | AbsValue |
| class | BDTEventWrapper |
| class | BinarySearchTree |
| A simple Binary search tree including a volume search method. More... | |
| class | BinarySearchTreeNode |
| Node for the BinarySearch or Decision Trees. More... | |
| class | BinaryTree |
| Base class for BinarySearch and Decision Trees. More... | |
| class | CCPruner |
| A helper class to prune a decision tree using the Cost Complexity method (see Classification and Regression Trees by Leo Breiman et al) More... | |
| class | CCTreeWrapper |
| class | ClassifierFactory |
| This is the MVA factory. More... | |
| class | ClassInfo |
| Class that contains all the information of a class. More... | |
| class | compose_binary_t |
| class | compose_unary_t |
| class | Config |
| Singleton class for global configuration settings used by TMVA. More... | |
| class | Configurable |
| class | ConvergenceTest |
| Check for convergence. More... | |
| class | CostComplexityPruneTool |
| A class to prune a decision tree using the Cost Complexity method. More... | |
| class | CrossEntropy |
| Implementation of the CrossEntropy as separation criterion. More... | |
| class | CrossValidation |
| class | CrossValidationResult |
| class | DataInputHandler |
| Class that contains all the data information. More... | |
| class | DataLoader |
| class | DataSet |
| Class that contains all the data information. More... | |
| class | DataSetFactory |
| Class that contains all the data information. More... | |
| class | DataSetInfo |
| Class that contains all the data information. More... | |
| class | DataSetManager |
| Class that contains all the data information. More... | |
| class | DecisionTree |
| Implementation of a Decision Tree. More... | |
| class | DecisionTreeNode |
| struct | DeleteFunctor_t |
| class | DTNodeTrainingInfo |
| class | Envelope |
| Base class for all machine learning algorithms. More... | |
| class | Event |
| class | ExpectedErrorPruneTool |
| A helper class to prune a decision tree using the expected error (C4.5) method. More... | |
| class | Factory |
| This is the main MVA steering class. More... | |
| class | FitterBase |
| Base class for TMVA fitters. More... | |
| class | GeneticAlgorithm |
| Base definition for genetic algorithm. More... | |
| class | GeneticFitter |
| Fitter using a Genetic Algorithm. More... | |
| class | GeneticGenes |
| Cut optimisation interface class for genetic algorithm. More... | |
| class | GeneticPopulation |
| Population definition for genetic algorithm. More... | |
| class | GeneticRange |
| Range definition for genetic algorithm. More... | |
| class | GiniIndex |
| Implementation of the GiniIndex as separation criterion. More... | |
| class | GiniIndexWithLaplace |
| Implementation of the GiniIndex With Laplace correction as separation criterion. More... | |
| class | HuberLossFunction |
| Huber Loss Function. More... | |
| class | HuberLossFunctionBDT |
| Huber BDT Loss Function. More... | |
| class | HyperParameterOptimisation |
| class | HyperParameterOptimisationResult |
| class | IFitterTarget |
| Interface for a fitter 'target'. More... | |
| class | IMethod |
| Interface for all concrete MVA method implementations. More... | |
| class | Increment |
| class | Interval |
| The TMVA::Interval Class. More... | |
| class | IPruneTool |
| IPruneTool - a helper interface class to prune a decision tree. More... | |
| class | IPythonInteractive |
| This class is needed by JsMVA, and it's a helper class for tracking errors during the training in Jupyter notebook. More... | |
| class | KDEKernel |
| KDE Kernel for "smoothing" the PDFs. More... | |
| class | kNN |
| This file contains binary tree and global function template that searches tree for k-nearest neigbors. More... | |
| class | LDA |
| class | LeastSquaresLossFunction |
| Least Squares Loss Function. More... | |
| class | LeastSquaresLossFunctionBDT |
| Least Squares BDT Loss Function. More... | |
| class | LogInterval |
| The TMVA::Interval Class. More... | |
| class | LossFunction |
| class | LossFunctionBDT |
| class | LossFunctionEventInfo |
| class | MCFitter |
| Fitter using Monte Carlo sampling of parameters. More... | |
| class | MethodANNBase |
| Base class for all TMVA methods using artificial neural networks. More... | |
| class | MethodBase |
| Virtual base Class for all MVA method. More... | |
| class | MethodBayesClassifier |
| Description of bayesian classifiers. More... | |
| class | MethodBDT |
| Analysis of Boosted Decision Trees. More... | |
| class | MethodBoost |
| Class for boosting a TMVA method. More... | |
| class | MethodC50 |
| class | MethodCategory |
| Class for categorizing the phase space. More... | |
| class | MethodCFMlpANN |
| Interface to Clermond-Ferrand artificial neural network. More... | |
| class | MethodCFMlpANN_Utils |
| Implementation of Clermond-Ferrand artificial neural network. More... | |
| class | MethodCompositeBase |
| Virtual base class for combining several TMVA method. More... | |
| class | MethodCuts |
| Multivariate optimisation of signal efficiency for given background efficiency, applying rectangular minimum and maximum requirements. More... | |
| class | MethodDNN |
| Deep Neural Network Implementation. More... | |
| class | MethodDT |
| Analysis of Boosted Decision Trees. More... | |
| class | MethodFDA |
| Function discriminant analysis (FDA). More... | |
| class | MethodFisher |
| Fisher and Mahalanobis Discriminants (Linear Discriminant Analysis) More... | |
| class | MethodHMatrix |
| H-Matrix method, which is implemented as a simple comparison of chi-squared estimators for signal and background, taking into account the linear correlations between the input variables. More... | |
| class | MethodInfo |
| class | MethodKNN |
| Analysis of k-nearest neighbor. More... | |
| class | MethodLD |
| Linear Discriminant. More... | |
| class | MethodLikelihood |
| Likelihood analysis ("non-parametric approach") More... | |
| class | MethodMLP |
| Multilayer Perceptron class built off of MethodANNBase. More... | |
| class | MethodPDEFoam |
| The PDEFoam method is an extension of the PDERS method, which divides the multi-dimensional phase space in a finite number of hyper-rectangles (cells) of constant event density. More... | |
| class | MethodPDERS |
| This is a generalization of the above Likelihood methods to \( N_{var} \) dimensions, where \( N_{var} \) is the number of input variables used in the MVA. More... | |
| class | MethodPyAdaBoost |
| class | MethodPyGTB |
| class | MethodPyKeras |
| class | MethodPyRandomForest |
| class | MethodRSNNS |
| class | MethodRSVM |
| class | MethodRuleFit |
| J Friedman's RuleFit method. More... | |
| class | MethodRXGB |
| class | MethodSVM |
| SMO Platt's SVM classifier with Keerthi & Shavade improvements. More... | |
| class | MethodTMlpANN |
| This is the TMVA TMultiLayerPerceptron interface class. More... | |
| class | MinuitFitter |
| /Fitter using MINUIT More... | |
| class | MinuitWrapper |
| Wrapper around MINUIT. More... | |
| class | MisClassificationError |
| Implementation of the MisClassificationError as separation criterion. More... | |
| class | Monitoring |
| class | MsgLogger |
| ostringstream derivative to redirect and format output More... | |
| class | Node |
| Node for the BinarySearch or Decision Trees. More... | |
| class | null_t |
| class | OptimizeConfigParameters |
| class | Option |
| class | Option< T * > |
| class | OptionBase |
| Class for TMVA-option handling. More... | |
| class | OptionMap |
| class to storage options for the differents methods More... | |
| class | PDEFoam |
| Implementation of PDEFoam. More... | |
| class | PDEFoamCell |
| class | PDEFoamDecisionTree |
| This PDEFoam variant acts like a decision tree and stores in every cell the discriminant. More... | |
| class | PDEFoamDecisionTreeDensity |
| This is a concrete implementation of PDEFoam. More... | |
| class | PDEFoamDensityBase |
| This is an abstract class, which provides an interface for a PDEFoam density estimator. More... | |
| class | PDEFoamDiscriminant |
| This PDEFoam variant stores in every cell the discriminant. More... | |
| class | PDEFoamDiscriminantDensity |
| This is a concrete implementation of PDEFoam. More... | |
| class | PDEFoamEvent |
| This PDEFoam variant stores in every cell the sum of event weights and the sum of the squared event weights. More... | |
| class | PDEFoamEventDensity |
| This is a concrete implementation of PDEFoam. More... | |
| class | PDEFoamKernelBase |
| This class is the abstract kernel interface for PDEFoam. More... | |
| class | PDEFoamKernelGauss |
| This PDEFoam kernel estimates a cell value for a given event by weighting all cell values with a gauss function. More... | |
| class | PDEFoamKernelLinN |
| This PDEFoam kernel estimates a cell value for a given event by weighting with cell values of the nearest neighbor cells. More... | |
| class | PDEFoamKernelTrivial |
| This class is a trivial PDEFoam kernel estimator. More... | |
| class | PDEFoamMultiTarget |
| This PDEFoam variant is used to estimate multiple targets by creating an event density foam (PDEFoamEvent), which has dimension: More... | |
| class | PDEFoamTarget |
| This PDEFoam variant stores in every cell the average target fTarget (see the Constructor) as well as the statistical error on the target fTarget. More... | |
| class | PDEFoamTargetDensity |
| This is a concrete implementation of PDEFoam. More... | |
| class | PDEFoamVect |
| class | |
| PDF wrapper for histograms; uses user-defined spline interpolation. More... | |
| class | PruningInfo |
| class | PyMethodBase |
| class | QuickMVAProbEstimator |
| class | RandomGenerator |
| class | Rank |
| class | Ranking |
| Ranking for variables in method (implementation) More... | |
| class | Reader |
| The Reader class serves to use the MVAs in a specific analysis context. More... | |
| class | RegressionVariance |
| Calculate the "SeparationGain" for Regression analysis separation criteria used in various training algorithms. More... | |
| class | Results |
| Class that is the base-class for a vector of result. More... | |
| class | ResultsClassification |
| Class that is the base-class for a vector of result. More... | |
| class | ResultsMulticlass |
| Class which takes the results of a multiclass classification. More... | |
| class | ResultsRegression |
| Class that is the base-class for a vector of result. More... | |
| class | RMethodBase |
| class | ROCCalc |
| class | ROCCurve |
| class | RootFinder |
| Root finding using Brents algorithm (translated from CERNLIB function RZERO) More... | |
| class | Rule |
| Implementation of a rule. More... | |
| class | RuleCut |
| A class describing a 'rule cut'. More... | |
| class | RuleEnsemble |
| class | RuleFit |
| A class implementing various fits of rule ensembles. More... | |
| class | RuleFitAPI |
| J Friedman's RuleFit method. More... | |
| class | RuleFitParams |
| A class doing the actual fitting of a linear model using rules as base functions. More... | |
| class | SdivSqrtSplusB |
| Implementation of the SdivSqrtSplusB as separation criterion. More... | |
| class | SeparationBase |
| An interface to calculate the "SeparationGain" for different separation criteria used in various training algorithms. More... | |
| class | SimulatedAnnealing |
| Base implementation of simulated annealing fitting procedure. More... | |
| class | SimulatedAnnealingFitter |
| Fitter using a Simulated Annealing Algorithm. More... | |
| class | StatDialogBDT |
| class | StatDialogBDTReg |
| class | StatDialogMVAEffs |
| class | SVEvent |
| Event class for Support Vector Machine. More... | |
| class | SVKernelFunction |
| Kernel for Support Vector Machine. More... | |
| class | SVKernelMatrix |
| Kernel matrix for Support Vector Machine. More... | |
| class | SVWorkingSet |
| Working class for Support Vector Machine. More... | |
| class | TActivation |
| Interface for TNeuron activation function classes. More... | |
| class | TActivationChooser |
| Class for easily choosing activation functions. More... | |
| class | TActivationIdentity |
| Identity activation function for TNeuron. More... | |
| class | TActivationRadial |
| Radial basis activation function for ANN. More... | |
| class | TActivationReLU |
| Rectified Linear Unit activation function for TNeuron. More... | |
| class | TActivationSigmoid |
| Sigmoid activation function for TNeuron. More... | |
| class | TActivationTanh |
| Tanh activation function for ANN. More... | |
| class | Timer |
| Timing information for training and evaluation of MVA methods. More... | |
| class | TMVAGaussPair |
| struct | TMVAGUI |
| class | TNeuron |
| Neuron class used by TMVA artificial neural network methods. More... | |
| class | TNeuronInput |
| Interface for TNeuron input calculation classes. More... | |
| class | TNeuronInputAbs |
| TNeuron input calculator – calculates the sum of the absolute values of the weighted inputs. More... | |
| class | TNeuronInputChooser |
| Class for easily choosing neuron input functions. More... | |
| class | TNeuronInputSqSum |
| TNeuron input calculator – calculates the squared weighted sum of inputs. More... | |
| class | TNeuronInputSum |
| TNeuron input calculator – calculates the weighted sum of inputs. More... | |
| class | Tools |
| Global auxiliary applications and data treatment routines. More... | |
| class | TransformationHandler |
| Class that contains all the data information. More... | |
| class | TreeInfo |
| class | TSpline1 |
| Linear interpolation of TGraph. More... | |
| class | TSpline2 |
| Quadratic interpolation of TGraph. More... | |
| class | TSynapse |
| Synapse class used by TMVA artificial neural network methods. More... | |
| class | Types |
| Singleton class for Global types used by TMVA. More... | |
| class | VariableDecorrTransform |
| Linear interpolation class. More... | |
| class | VariableGaussTransform |
| Gaussian Transformation of input variables. More... | |
| class | VariableIdentityTransform |
| Linear interpolation class. More... | |
| class | VariableImportance |
| class | VariableImportanceResult |
| class | VariableInfo |
| Class for type info of MVA input variable. More... | |
| class | VariableNormalizeTransform |
| Linear interpolation class. More... | |
| class | VariablePCATransform |
| Linear interpolation class. More... | |
| class | VariableRearrangeTransform |
| Rearrangement of input variables. More... | |
| class | VariableTransformBase |
| Linear interpolation class. More... | |
| class | VarTransformHandler |
| class | Volume |
| Volume for BinarySearchTree. More... | |
Functions | |
| void | ActionButton (TControlBar *cbar, const TString &title, const TString ¯o, const TString &comment, const TString &buttonType, TString requiredKey="") |
| void | annconvergencetest (TString dataset, TDirectory *lhdir) |
| void | annconvergencetest (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) |
| void | BDT (TString dataset, const TString &fin="TMVA.root") |
| void | BDT (TString dataset, Int_t itree, TString wfile, TString methName="BDT", Bool_t useTMVAStyle=kTRUE) |
| void | BDT_DeleteTBar (int i) |
| void | BDT_Reg (TString dataset, const TString &fin="TMVAReg.root") |
| void | BDT_Reg (TString dataset, Int_t itree, TString wfile="", TString methName="BDT", Bool_t useTMVAStyle=kTRUE) |
| void | bdtcontrolplots (TString dataset, TDirectory *) |
| void | BDTControlPlots (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) |
| void | BDTReg_DeleteTBar (int i) |
| void | BoostControlPlots (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) |
| void | boostcontrolplots (TString dataset, TDirectory *boostdir) |
| void | compareanapp (TString finAn="TMVA.root", TString finApp="TMVApp.root", HistType htype=kMVAType, bool useTMVAStyle=kTRUE) |
| template<typename F , typename G , typename H > | |
| compose_binary_t< F, G, H > | compose_binary (const F &_f, const G &_g, const H &_h) |
| template<typename F , typename G > | |
| compose_unary_t< F, G > | compose_unary (const F &_f, const G &_g) |
| void | correlations (TString dataset, TString fin="TMVA.root", Bool_t isRegression=kFALSE, Bool_t greyScale=kFALSE, Bool_t useTMVAStyle=kTRUE) |
| void | correlationscatters (TString dataset, TString fin, TString var="var3", TString dirName_="InputVariables_Id", TString title="TMVA Input Variable", Bool_t isRegression=kFALSE, Bool_t useTMVAStyle=kTRUE) |
| void | correlationscattersMultiClass (TString dataset, TString fin="TMVA.root", TString var="var3", TString dirName_="InputVariables_Id", TString title="TMVA Input Variable", Bool_t isRegression=kFALSE, Bool_t useTMVAStyle=kTRUE) |
| void | correlationsMultiClass (TString dataset, TString fin="TMVA.root", Bool_t isRegression=kFALSE, Bool_t greyScale=kFALSE, Bool_t useTMVAStyle=kTRUE) |
| void | CorrGui (TString dataset, TString fin="TMVA.root", TString dirName="InputVariables_Id", TString title="TMVA Input Variable", Bool_t isRegression=kFALSE) |
| void | CorrGui_DeleteTBar () |
| void | CorrGuiMultiClass (TString dataset, TString fin="TMVA.root", TString dirName="InputVariables_Id", TString title="TMVA Input Variable", Bool_t isRegression=kFALSE) |
| void | CorrGuiMultiClass_DeleteTBar () |
| void | CreateVariableTransforms (const TString &trafoDefinition, TMVA::DataSetInfo &dataInfo, TMVA::TransformationHandler &transformationHandler, TMVA::MsgLogger &log) |
| void | DataLoaderCopy (TMVA::DataLoader *des, TMVA::DataLoader *src) |
| template<class T > | |
| DeleteFunctor_t< const T > | DeleteFunctor () |
| void | deviations (TString dataset, TString fin="TMVAReg.root", HistType htype=kMVAType, Bool_t showTarget=kTRUE, Bool_t useTMVAStyle=kTRUE) |
| void | draw_activation (TCanvas *c, Double_t cx, Double_t cy, Double_t radx, Double_t rady, Int_t whichActivation) |
| void | draw_input_labels (TString dataset, Int_t nInputs, Double_t *cy, Double_t rad, Double_t layerWidth) |
| void | draw_layer (TString dataset, TCanvas *c, TH2F *h, Int_t iHist, Int_t nLayers, Double_t maxWeight) |
| void | draw_layer_labels (Int_t nLayers) |
| void | draw_network (TString dataset, TFile *f, TDirectory *d, const TString &hName="weights_hist", Bool_t movieMode=kFALSE, const TString &epoch="") |
| void | draw_synapse (Double_t cx1, Double_t cy1, Double_t cx2, Double_t cy2, Double_t rad1, Double_t rad2, Double_t weightNormed) |
| void | DrawCell (TMVA::PDEFoamCell *cell, TMVA::PDEFoam *foam, Double_t x, Double_t y, Double_t xscale, Double_t yscale) |
| void | DrawMLPoutputMovie (TString dataset, TFile *file, const TString &methodType, const TString &methodTitle) |
| void | DrawNetworkMovie (TString dataset, TFile *file, const TString &methodType, const TString &methodTitle) |
| void | efficiencies (TString dataset, TString fin="TMVA.root", Int_t type=2, Bool_t useTMVAStyle=kTRUE) |
| void | efficienciesMulticlass (TString dataset, TString filename_input="TMVAMulticlass.root", EEfficiencyPlotType plotType=EEfficiencyPlotType::kRejBvsEffS, Bool_t useTMVAStyle=kTRUE) |
| MsgLogger & | Endl (MsgLogger &ml) |
| TString | fetchValue (const std::map< TString, TString > &keyValueMap, TString key) |
| template<typename T > | |
| T | fetchValue (const std::map< TString, TString > &keyValueMap, TString key, T defaultValue) |
| template<> | |
| int | fetchValue (const std::map< TString, TString > &keyValueMap, TString key, int defaultValue) |
| template<> | |
| double | fetchValue (const std::map< TString, TString > &keyValueMap, TString key, double defaultValue) |
| template<> | |
| TString | fetchValue (const std::map< TString, TString > &keyValueMap, TString key, TString defaultValue) |
| template<> | |
| bool | fetchValue (const std::map< TString, TString > &keyValueMap, TString key, bool defaultValue) |
| template<> | |
| std::vector< double > | fetchValue (const std::map< TString, TString > &keyValueMap, TString key, std::vector< double > defaultValue) |
| Config & | gConfig () |
| TString * | get_var_names (TString dataset, Int_t nVars) |
| Int_t | getBkgColorF () |
| Int_t | getBkgColorT () |
| Int_t | getIntColorF () |
| Int_t | getIntColorT () |
| TList * | GetKeyList (const TString &pattern) |
| Int_t | getSigColorF () |
| Int_t | getSigColorT () |
| Tools & | gTools () |
| Int_t | LargestCommonDivider (Int_t a, Int_t b) |
| void | likelihoodrefs (TString dataset, TDirectory *lhdir) |
| void | likelihoodrefs (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) |
| void | MovieMaker (TString dataset, TString methodType="Method_MLP", TString methodTitle="MLP") |
| void | MultiClassActionButton (TControlBar *cbar, const TString &title, const TString ¯o, const TString &comment, const TString &buttonType, TString requiredKey="") |
| TList * | MultiClassGetKeyList (const TString &pattern) |
| void | mvaeffs (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE, TString formula="S/sqrt(S+B)") |
| void | mvas (TString dataset, TString fin="TMVA.root", HistType htype=kMVAType, Bool_t useTMVAStyle=kTRUE) |
| void | mvasMulticlass (TString dataset, TString fin="TMVAMulticlass.root", HistType htype=kMVAType, Bool_t useTMVAStyle=kTRUE) |
| void | mvaweights (TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) |
| void | network (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) |
| template<typename F > | |
| null_t< F > | null () |
| Bool_t | operator< (const GeneticGenes &, const GeneticGenes &) |
| std::ostream & | operator<< (std::ostream &os, const Rule &rule) |
| std::ostream & | operator<< (std::ostream &os, const Event &event) |
| std::ostream & | operator<< (std::ostream &os, const Node &node) |
| std::ostream & | operator<< (std::ostream &os, const Node *node) |
| std::ostream & | operator<< (std::ostream &os, const RuleEnsemble &event) |
| std::ostream & | operator<< (std::ostream &os, const BinaryTree &tree) |
| std::ostream & | operator<< (std::ostream &os, const PDF &tree) |
| std::istream & | operator>> (std::istream &istr, BinaryTree &tree) |
| std::istream & | operator>> (std::istream &istr, PDF &tree) |
| void | paracoor (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) |
| void | Plot (TString fileName, TMVA::ECellValue cv, TString cv_long, bool useTMVAStyle=kTRUE) |
| void | Plot1DimFoams (TList &foam_list, TMVA::ECellValue cell_value, const TString &cell_value_description, TMVA::PDEFoamKernelBase *kernel) |
| void | plot_efficiencies (TString dataset, TFile *file, Int_t type=2, TDirectory *BinDir=0) |
| void | PlotCellTree (TString fileName, TString cv_long, bool useTMVAStyle=kTRUE) |
| void | plotEfficienciesMulticlass (EEfficiencyPlotType plotType=EEfficiencyPlotType::kRejBvsEffS, TDirectory *BinDir=0) |
| void | PlotFoams (TString fileName="weights/TMVAClassification_PDEFoam.weights_foams.root", bool useTMVAStyle=kTRUE) |
| void | PlotNDimFoams (TList &foam_list, TMVA::ECellValue cell_value, const TString &cell_value_description, TMVA::PDEFoamKernelBase *kernel) |
| void | probas (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) |
| void | RegGuiActionButton (TControlBar *cbar, const TString &title, const TString ¯o, const TString &comment, const TString &buttonType, TString requiredKey="") |
| TList * | RegGuiGetKeyList (const TString &pattern) |
| void | regression_averagedevs (TString dataset, TString fin, Int_t Nevt=-1, Bool_t useTMVAStyle=kTRUE) |
| void | rulevis (TString fin="TMVA.root", TMVAGlob::TypeOfPlot type=TMVAGlob::kNorm, bool useTMVAStyle=kTRUE) |
| void | rulevisCorr (TString fin="TMVA.root", TMVAGlob::TypeOfPlot type=TMVAGlob::kNorm, bool useTMVAStyle=kTRUE) |
| void | rulevisCorr (TDirectory *rfdir, TDirectory *vardir, TDirectory *corrdir, TMVAGlob::TypeOfPlot type) |
| void | rulevisHists (TString fin="TMVA.root", TMVAGlob::TypeOfPlot type=TMVAGlob::kNorm, bool useTMVAStyle=kTRUE) |
| void | rulevisHists (TDirectory *rfdir, TDirectory *vardir, TDirectory *corrdir, TMVAGlob::TypeOfPlot type) |
| void | TMVAGui (const char *fName="TMVA.root", TString dataset="") |
| void | TMVAMultiClassGui (const char *fName="TMVAMulticlass.root", TString dataset="") |
| void | TMVARegGui (const char *fName="TMVAReg.root", TString dataset="") |
| void | variables (TString dataset, TString fin="TMVA.root", TString dirName="InputVariables_Id", TString title="TMVA Input Variables", Bool_t isRegression=kFALSE, Bool_t useTMVAStyle=kTRUE) |
| void | variablesMultiClass (TString dataset, TString fin="TMVA.root", TString dirName="InputVariables_Id", TString title="TMVA Input Variables", Bool_t isRegression=kFALSE, Bool_t useTMVAStyle=kTRUE) |
Abstract ClassifierFactory template that handles arbitrary types.
create variable transformations
This template creates ClassifierFactory stores creator functors to template parameter class. ClassifierFactory is a singelton class which is explicitly deleted.
Source: Andrei Alexandrescu, Modern C++ Design
| void TMVA::ActionButton | ( | TControlBar * | cbar, |
| const TString & | title, | ||
| const TString & | macro, | ||
| const TString & | comment, | ||
| const TString & | buttonType, | ||
| TString | requiredKey = "" |
||
| ) |
| void TMVA::annconvergencetest | ( | TString | dataset, |
| TDirectory * | lhdir | ||
| ) |
| void TMVA::annconvergencetest | ( | TString | dataset, |
| TString | fin = "TMVA.root", |
||
| Bool_t | useTMVAStyle = kTRUE |
||
| ) |
| void TMVA::BDT | ( | TString | dataset, |
| Int_t | itree, | ||
| TString | wfile, | ||
| TString | methName = "BDT", |
||
| Bool_t | useTMVAStyle = kTRUE |
||
| ) |
| void TMVA::BDT_DeleteTBar | ( | int | i | ) |
| void TMVA::BDT_Reg | ( | TString | dataset, |
| Int_t | itree, | ||
| TString | wfile = "", |
||
| TString | methName = "BDT", |
||
| Bool_t | useTMVAStyle = kTRUE |
||
| ) |
| void TMVA::bdtcontrolplots | ( | TString | dataset, |
| TDirectory * | |||
| ) |
| void TMVA::BDTControlPlots | ( | TString | dataset, |
| TString | fin = "TMVA.root", |
||
| Bool_t | useTMVAStyle = kTRUE |
||
| ) |
| void TMVA::BDTReg_DeleteTBar | ( | int | i | ) |
| void TMVA::BoostControlPlots | ( | TString | dataset, |
| TString | fin = "TMVA.root", |
||
| Bool_t | useTMVAStyle = kTRUE |
||
| ) |
| void TMVA::boostcontrolplots | ( | TString | dataset, |
| TDirectory * | boostdir | ||
| ) |
| void TMVA::compareanapp | ( | TString | finAn = "TMVA.root", |
| TString | finApp = "TMVApp.root", |
||
| HistType | htype = kMVAType, |
||
| bool | useTMVAStyle = kTRUE |
||
| ) |
|
inline |
Definition at line 152 of file DataSetFactory.h.
|
inline |
Definition at line 178 of file DataSetFactory.h.
| void TMVA::correlations | ( | TString | dataset, |
| TString | fin = "TMVA.root", |
||
| Bool_t | isRegression = kFALSE, |
||
| Bool_t | greyScale = kFALSE, |
||
| Bool_t | useTMVAStyle = kTRUE |
||
| ) |
| void TMVA::correlationscatters | ( | TString | dataset, |
| TString | fin, | ||
| TString | var = "var3", |
||
| TString | dirName_ = "InputVariables_Id", |
||
| TString | title = "TMVA Input Variable", |
||
| Bool_t | isRegression = kFALSE, |
||
| Bool_t | useTMVAStyle = kTRUE |
||
| ) |
| void TMVA::correlationscattersMultiClass | ( | TString | dataset, |
| TString | fin = "TMVA.root", |
||
| TString | var = "var3", |
||
| TString | dirName_ = "InputVariables_Id", |
||
| TString | title = "TMVA Input Variable", |
||
| Bool_t | isRegression = kFALSE, |
||
| Bool_t | useTMVAStyle = kTRUE |
||
| ) |
| void TMVA::correlationsMultiClass | ( | TString | dataset, |
| TString | fin = "TMVA.root", |
||
| Bool_t | isRegression = kFALSE, |
||
| Bool_t | greyScale = kFALSE, |
||
| Bool_t | useTMVAStyle = kTRUE |
||
| ) |
| void TMVA::CorrGui | ( | TString | dataset, |
| TString | fin = "TMVA.root", |
||
| TString | dirName = "InputVariables_Id", |
||
| TString | title = "TMVA Input Variable", |
||
| Bool_t | isRegression = kFALSE |
||
| ) |
| void TMVA::CorrGui_DeleteTBar | ( | ) |
| void TMVA::CorrGuiMultiClass | ( | TString | dataset, |
| TString | fin = "TMVA.root", |
||
| TString | dirName = "InputVariables_Id", |
||
| TString | title = "TMVA Input Variable", |
||
| Bool_t | isRegression = kFALSE |
||
| ) |
| void TMVA::CorrGuiMultiClass_DeleteTBar | ( | ) |
| void TMVA::CreateVariableTransforms | ( | const TString & | trafoDefinition, |
| TMVA::DataSetInfo & | dataInfo, | ||
| TMVA::TransformationHandler & | transformationHandler, | ||
| TMVA::MsgLogger & | log | ||
| ) |
Definition at line 67 of file VariableTransform.cxx.
| void TMVA::DataLoaderCopy | ( | TMVA::DataLoader * | des, |
| TMVA::DataLoader * | src | ||
| ) |
| DeleteFunctor_t<const T> TMVA::DeleteFunctor | ( | ) |
Definition at line 92 of file DataSetFactory.h.
| void TMVA::deviations | ( | TString | dataset, |
| TString | fin = "TMVAReg.root", |
||
| HistType | htype = kMVAType, |
||
| Bool_t | showTarget = kTRUE, |
||
| Bool_t | useTMVAStyle = kTRUE |
||
| ) |
| void TMVA::draw_activation | ( | TCanvas * | c, |
| Double_t | cx, | ||
| Double_t | cy, | ||
| Double_t | radx, | ||
| Double_t | rady, | ||
| Int_t | whichActivation | ||
| ) |
| void TMVA::draw_input_labels | ( | TString | dataset, |
| Int_t | nInputs, | ||
| Double_t * | cy, | ||
| Double_t | rad, | ||
| Double_t | layerWidth | ||
| ) |
| void TMVA::draw_layer | ( | TString | dataset, |
| TCanvas * | c, | ||
| TH2F * | h, | ||
| Int_t | iHist, | ||
| Int_t | nLayers, | ||
| Double_t | maxWeight | ||
| ) |
| void TMVA::draw_network | ( | TString | dataset, |
| TFile * | f, | ||
| TDirectory * | d, | ||
| const TString & | hName = "weights_hist", |
||
| Bool_t | movieMode = kFALSE, |
||
| const TString & | epoch = "" |
||
| ) |
| void TMVA::draw_synapse | ( | Double_t | cx1, |
| Double_t | cy1, | ||
| Double_t | cx2, | ||
| Double_t | cy2, | ||
| Double_t | rad1, | ||
| Double_t | rad2, | ||
| Double_t | weightNormed | ||
| ) |
| void TMVA::DrawCell | ( | TMVA::PDEFoamCell * | cell, |
| TMVA::PDEFoam * | foam, | ||
| Double_t | x, | ||
| Double_t | y, | ||
| Double_t | xscale, | ||
| Double_t | yscale | ||
| ) |
| void TMVA::DrawMLPoutputMovie | ( | TString | dataset, |
| TFile * | file, | ||
| const TString & | methodType, | ||
| const TString & | methodTitle | ||
| ) |
| void TMVA::DrawNetworkMovie | ( | TString | dataset, |
| TFile * | file, | ||
| const TString & | methodType, | ||
| const TString & | methodTitle | ||
| ) |
| void TMVA::efficiencies | ( | TString | dataset, |
| TString | fin = "TMVA.root", |
||
| Int_t | type = 2, |
||
| Bool_t | useTMVAStyle = kTRUE |
||
| ) |
| void TMVA::efficienciesMulticlass | ( | TString | dataset, |
| TString | filename_input = "TMVAMulticlass.root", |
||
| EEfficiencyPlotType | plotType = EEfficiencyPlotType::kRejBvsEffS, |
||
| Bool_t | useTMVAStyle = kTRUE |
||
| ) |
Definition at line 158 of file MsgLogger.h.
Definition at line 307 of file MethodDNN.cxx.
| T TMVA::fetchValue | ( | const std::map< TString, TString > & | keyValueMap, |
| TString | key, | ||
| T | defaultValue | ||
| ) |
| int TMVA::fetchValue | ( | const std::map< TString, TString > & | keyValueMap, |
| TString | key, | ||
| int | defaultValue | ||
| ) |
Definition at line 327 of file MethodDNN.cxx.
| double TMVA::fetchValue | ( | const std::map< TString, TString > & | keyValueMap, |
| TString | key, | ||
| double | defaultValue | ||
| ) |
Definition at line 341 of file MethodDNN.cxx.
| TString TMVA::fetchValue | ( | const std::map< TString, TString > & | keyValueMap, |
| TString | key, | ||
| TString | defaultValue | ||
| ) |
Definition at line 354 of file MethodDNN.cxx.
| bool TMVA::fetchValue | ( | const std::map< TString, TString > & | keyValueMap, |
| TString | key, | ||
| bool | defaultValue | ||
| ) |
Definition at line 367 of file MethodDNN.cxx.
| std::vector<double> TMVA::fetchValue | ( | const std::map< TString, TString > & | keyValueMap, |
| TString | key, | ||
| std::vector< double > | defaultValue | ||
| ) |
Definition at line 384 of file MethodDNN.cxx.
| Config& TMVA::gConfig | ( | ) |
| Tools& TMVA::gTools | ( | ) |
Definition at line 80 of file DataSetFactory.cxx.
| void TMVA::likelihoodrefs | ( | TString | dataset, |
| TDirectory * | lhdir | ||
| ) |
| void TMVA::likelihoodrefs | ( | TString | dataset, |
| TString | fin = "TMVA.root", |
||
| Bool_t | useTMVAStyle = kTRUE |
||
| ) |
| void TMVA::MovieMaker | ( | TString | dataset, |
| TString | methodType = "Method_MLP", |
||
| TString | methodTitle = "MLP" |
||
| ) |
| void TMVA::MultiClassActionButton | ( | TControlBar * | cbar, |
| const TString & | title, | ||
| const TString & | macro, | ||
| const TString & | comment, | ||
| const TString & | buttonType, | ||
| TString | requiredKey = "" |
||
| ) |
| void TMVA::mvaeffs | ( | TString | dataset, |
| TString | fin = "TMVA.root", |
||
| Bool_t | useTMVAStyle = kTRUE, |
||
| TString | formula = "S/sqrt(S+B)" |
||
| ) |
| void TMVA::mvas | ( | TString | dataset, |
| TString | fin = "TMVA.root", |
||
| HistType | htype = kMVAType, |
||
| Bool_t | useTMVAStyle = kTRUE |
||
| ) |
| void TMVA::mvasMulticlass | ( | TString | dataset, |
| TString | fin = "TMVAMulticlass.root", |
||
| HistType | htype = kMVAType, |
||
| Bool_t | useTMVAStyle = kTRUE |
||
| ) |
Definition at line 124 of file DataSetFactory.h.
| Bool_t TMVA::operator< | ( | const GeneticGenes & | , |
| const GeneticGenes & | |||
| ) |
| std::ostream& TMVA::operator<< | ( | std::ostream & | os, |
| const Rule & | rule | ||
| ) |
| std::ostream& TMVA::operator<< | ( | std::ostream & | os, |
| const Event & | event | ||
| ) |
| std::ostream& TMVA::operator<< | ( | std::ostream & | os, |
| const Node & | node | ||
| ) |
| std::ostream& TMVA::operator<< | ( | std::ostream & | os, |
| const Node * | node | ||
| ) |
| std::ostream& TMVA::operator<< | ( | std::ostream & | os, |
| const RuleEnsemble & | event | ||
| ) |
| std::ostream& TMVA::operator<< | ( | std::ostream & | os, |
| const BinaryTree & | tree | ||
| ) |
| std::ostream& TMVA::operator<< | ( | std::ostream & | os, |
| const PDF & | tree | ||
| ) |
| std::istream& TMVA::operator>> | ( | std::istream & | istr, |
| BinaryTree & | tree | ||
| ) |
| std::istream& TMVA::operator>> | ( | std::istream & | istr, |
| PDF & | tree | ||
| ) |
| void TMVA::Plot | ( | TString | fileName, |
| TMVA::ECellValue | cv, | ||
| TString | cv_long, | ||
| bool | useTMVAStyle = kTRUE |
||
| ) |
| void TMVA::Plot1DimFoams | ( | TList & | foam_list, |
| TMVA::ECellValue | cell_value, | ||
| const TString & | cell_value_description, | ||
| TMVA::PDEFoamKernelBase * | kernel | ||
| ) |
| void TMVA::plot_efficiencies | ( | TString | dataset, |
| TFile * | file, | ||
| Int_t | type = 2, |
||
| TDirectory * | BinDir = 0 |
||
| ) |
| void TMVA::plotEfficienciesMulticlass | ( | EEfficiencyPlotType | plotType = EEfficiencyPlotType::kRejBvsEffS, |
| TDirectory * | BinDir = 0 |
||
| ) |
| void TMVA::PlotFoams | ( | TString | fileName = "weights/TMVAClassification_PDEFoam.weights_foams.root", |
| bool | useTMVAStyle = kTRUE |
||
| ) |
| void TMVA::PlotNDimFoams | ( | TList & | foam_list, |
| TMVA::ECellValue | cell_value, | ||
| const TString & | cell_value_description, | ||
| TMVA::PDEFoamKernelBase * | kernel | ||
| ) |
| void TMVA::RegGuiActionButton | ( | TControlBar * | cbar, |
| const TString & | title, | ||
| const TString & | macro, | ||
| const TString & | comment, | ||
| const TString & | buttonType, | ||
| TString | requiredKey = "" |
||
| ) |
| void TMVA::regression_averagedevs | ( | TString | dataset, |
| TString | fin, | ||
| Int_t | Nevt = -1, |
||
| Bool_t | useTMVAStyle = kTRUE |
||
| ) |
| void TMVA::rulevis | ( | TString | fin = "TMVA.root", |
| TMVAGlob::TypeOfPlot | type = TMVAGlob::kNorm, |
||
| bool | useTMVAStyle = kTRUE |
||
| ) |
| void TMVA::rulevisCorr | ( | TString | fin = "TMVA.root", |
| TMVAGlob::TypeOfPlot | type = TMVAGlob::kNorm, |
||
| bool | useTMVAStyle = kTRUE |
||
| ) |
| void TMVA::rulevisCorr | ( | TDirectory * | rfdir, |
| TDirectory * | vardir, | ||
| TDirectory * | corrdir, | ||
| TMVAGlob::TypeOfPlot | type | ||
| ) |
| void TMVA::rulevisHists | ( | TString | fin = "TMVA.root", |
| TMVAGlob::TypeOfPlot | type = TMVAGlob::kNorm, |
||
| bool | useTMVAStyle = kTRUE |
||
| ) |
| void TMVA::rulevisHists | ( | TDirectory * | rfdir, |
| TDirectory * | vardir, | ||
| TDirectory * | corrdir, | ||
| TMVAGlob::TypeOfPlot | type | ||
| ) |
| void TMVA::variables | ( | TString | dataset, |
| TString | fin = "TMVA.root", |
||
| TString | dirName = "InputVariables_Id", |
||
| TString | title = "TMVA Input Variables", |
||
| Bool_t | isRegression = kFALSE, |
||
| Bool_t | useTMVAStyle = kTRUE |
||
| ) |