ROOT 6.10/09 Reference Guide |
Abstract ClassifierFactory template that handles arbitrary types. More...
Namespaces | |
DNN | |
kNN | |
TMVAGlob | |
Classes | |
class | AbsoluteDeviationLossFunction |
Absolute Deviation Loss Function. More... | |
class | AbsoluteDeviationLossFunctionBDT |
Absolute Deviation BDT Loss Function. More... | |
class | AbsValue |
class | BDTEventWrapper |
class | BinarySearchTree |
A simple Binary search tree including a volume search method. More... | |
class | BinarySearchTreeNode |
Node for the BinarySearch or Decision Trees. More... | |
class | BinaryTree |
Base class for BinarySearch and Decision Trees. More... | |
class | CCPruner |
A helper class to prune a decision tree using the Cost Complexity method (see Classification and Regression Trees by Leo Breiman et al) More... | |
class | CCTreeWrapper |
class | ClassifierFactory |
This is the MVA factory. More... | |
class | ClassInfo |
Class that contains all the information of a class. More... | |
class | compose_binary_t |
class | compose_unary_t |
class | Config |
Singleton class for global configuration settings used by TMVA. More... | |
class | Configurable |
class | ConvergenceTest |
Check for convergence. More... | |
class | CostComplexityPruneTool |
A class to prune a decision tree using the Cost Complexity method. More... | |
class | CrossEntropy |
Implementation of the CrossEntropy as separation criterion. More... | |
class | CrossValidation |
class | CrossValidationResult |
class | DataInputHandler |
Class that contains all the data information. More... | |
class | DataLoader |
class | DataSet |
Class that contains all the data information. More... | |
class | DataSetFactory |
Class that contains all the data information. More... | |
class | DataSetInfo |
Class that contains all the data information. More... | |
class | DataSetManager |
Class that contains all the data information. More... | |
class | DecisionTree |
Implementation of a Decision Tree. More... | |
class | DecisionTreeNode |
struct | DeleteFunctor_t |
class | DTNodeTrainingInfo |
class | Envelope |
Base class for all machine learning algorithms. More... | |
class | Event |
class | ExpectedErrorPruneTool |
A helper class to prune a decision tree using the expected error (C4.5) method. More... | |
class | Factory |
This is the main MVA steering class. More... | |
class | FitterBase |
Base class for TMVA fitters. More... | |
class | GeneticAlgorithm |
Base definition for genetic algorithm. More... | |
class | GeneticFitter |
Fitter using a Genetic Algorithm. More... | |
class | GeneticGenes |
Cut optimisation interface class for genetic algorithm. More... | |
class | GeneticPopulation |
Population definition for genetic algorithm. More... | |
class | GeneticRange |
Range definition for genetic algorithm. More... | |
class | GiniIndex |
Implementation of the GiniIndex as separation criterion. More... | |
class | GiniIndexWithLaplace |
Implementation of the GiniIndex With Laplace correction as separation criterion. More... | |
class | HuberLossFunction |
Huber Loss Function. More... | |
class | HuberLossFunctionBDT |
Huber BDT Loss Function. More... | |
class | HyperParameterOptimisation |
class | HyperParameterOptimisationResult |
class | IFitterTarget |
Interface for a fitter 'target'. More... | |
class | IMethod |
Interface for all concrete MVA method implementations. More... | |
class | Increment |
class | Interval |
The TMVA::Interval Class. More... | |
class | IPruneTool |
IPruneTool - a helper interface class to prune a decision tree. More... | |
class | IPythonInteractive |
This class is needed by JsMVA, and it's a helper class for tracking errors during the training in Jupyter notebook. More... | |
class | KDEKernel |
KDE Kernel for "smoothing" the PDFs. More... | |
class | kNN |
This file contains binary tree and global function template that searches tree for k-nearest neigbors. More... | |
class | LDA |
class | LeastSquaresLossFunction |
Least Squares Loss Function. More... | |
class | LeastSquaresLossFunctionBDT |
Least Squares BDT Loss Function. More... | |
class | LogInterval |
The TMVA::Interval Class. More... | |
class | LossFunction |
class | LossFunctionBDT |
class | LossFunctionEventInfo |
class | MCFitter |
Fitter using Monte Carlo sampling of parameters. More... | |
class | MethodANNBase |
Base class for all TMVA methods using artificial neural networks. More... | |
class | MethodBase |
Virtual base Class for all MVA method. More... | |
class | MethodBayesClassifier |
Description of bayesian classifiers. More... | |
class | MethodBDT |
Analysis of Boosted Decision Trees. More... | |
class | MethodBoost |
Class for boosting a TMVA method. More... | |
class | MethodC50 |
class | MethodCategory |
Class for categorizing the phase space. More... | |
class | MethodCFMlpANN |
Interface to Clermond-Ferrand artificial neural network. More... | |
class | MethodCFMlpANN_Utils |
Implementation of Clermond-Ferrand artificial neural network. More... | |
class | MethodCompositeBase |
Virtual base class for combining several TMVA method. More... | |
class | MethodCuts |
Multivariate optimisation of signal efficiency for given background efficiency, applying rectangular minimum and maximum requirements. More... | |
class | MethodDNN |
Deep Neural Network Implementation. More... | |
class | MethodDT |
Analysis of Boosted Decision Trees. More... | |
class | MethodFDA |
Function discriminant analysis (FDA). More... | |
class | MethodFisher |
Fisher and Mahalanobis Discriminants (Linear Discriminant Analysis) More... | |
class | MethodHMatrix |
H-Matrix method, which is implemented as a simple comparison of chi-squared estimators for signal and background, taking into account the linear correlations between the input variables. More... | |
class | MethodInfo |
class | MethodKNN |
Analysis of k-nearest neighbor. More... | |
class | MethodLD |
Linear Discriminant. More... | |
class | MethodLikelihood |
Likelihood analysis ("non-parametric approach") More... | |
class | MethodMLP |
Multilayer Perceptron class built off of MethodANNBase. More... | |
class | MethodPDEFoam |
The PDEFoam method is an extension of the PDERS method, which divides the multi-dimensional phase space in a finite number of hyper-rectangles (cells) of constant event density. More... | |
class | MethodPDERS |
This is a generalization of the above Likelihood methods to \( N_{var} \) dimensions, where \( N_{var} \) is the number of input variables used in the MVA. More... | |
class | MethodPyAdaBoost |
class | MethodPyGTB |
class | MethodPyKeras |
class | MethodPyRandomForest |
class | MethodRSNNS |
class | MethodRSVM |
class | MethodRuleFit |
J Friedman's RuleFit method. More... | |
class | MethodRXGB |
class | MethodSVM |
SMO Platt's SVM classifier with Keerthi & Shavade improvements. More... | |
class | MethodTMlpANN |
This is the TMVA TMultiLayerPerceptron interface class. More... | |
class | MinuitFitter |
/Fitter using MINUIT More... | |
class | MinuitWrapper |
Wrapper around MINUIT. More... | |
class | MisClassificationError |
Implementation of the MisClassificationError as separation criterion. More... | |
class | Monitoring |
class | MsgLogger |
ostringstream derivative to redirect and format output More... | |
class | Node |
Node for the BinarySearch or Decision Trees. More... | |
class | null_t |
class | OptimizeConfigParameters |
class | Option |
class | Option< T * > |
class | OptionBase |
Class for TMVA-option handling. More... | |
class | OptionMap |
class to storage options for the differents methods More... | |
class | PDEFoam |
Implementation of PDEFoam. More... | |
class | PDEFoamCell |
class | PDEFoamDecisionTree |
This PDEFoam variant acts like a decision tree and stores in every cell the discriminant. More... | |
class | PDEFoamDecisionTreeDensity |
This is a concrete implementation of PDEFoam. More... | |
class | PDEFoamDensityBase |
This is an abstract class, which provides an interface for a PDEFoam density estimator. More... | |
class | PDEFoamDiscriminant |
This PDEFoam variant stores in every cell the discriminant. More... | |
class | PDEFoamDiscriminantDensity |
This is a concrete implementation of PDEFoam. More... | |
class | PDEFoamEvent |
This PDEFoam variant stores in every cell the sum of event weights and the sum of the squared event weights. More... | |
class | PDEFoamEventDensity |
This is a concrete implementation of PDEFoam. More... | |
class | PDEFoamKernelBase |
This class is the abstract kernel interface for PDEFoam. More... | |
class | PDEFoamKernelGauss |
This PDEFoam kernel estimates a cell value for a given event by weighting all cell values with a gauss function. More... | |
class | PDEFoamKernelLinN |
This PDEFoam kernel estimates a cell value for a given event by weighting with cell values of the nearest neighbor cells. More... | |
class | PDEFoamKernelTrivial |
This class is a trivial PDEFoam kernel estimator. More... | |
class | PDEFoamMultiTarget |
This PDEFoam variant is used to estimate multiple targets by creating an event density foam (PDEFoamEvent), which has dimension: More... | |
class | PDEFoamTarget |
This PDEFoam variant stores in every cell the average target fTarget (see the Constructor) as well as the statistical error on the target fTarget. More... | |
class | PDEFoamTargetDensity |
This is a concrete implementation of PDEFoam. More... | |
class | PDEFoamVect |
class | |
PDF wrapper for histograms; uses user-defined spline interpolation. More... | |
class | PruningInfo |
class | PyMethodBase |
class | QuickMVAProbEstimator |
class | RandomGenerator |
class | Rank |
class | Ranking |
Ranking for variables in method (implementation) More... | |
class | Reader |
The Reader class serves to use the MVAs in a specific analysis context. More... | |
class | RegressionVariance |
Calculate the "SeparationGain" for Regression analysis separation criteria used in various training algorithms. More... | |
class | Results |
Class that is the base-class for a vector of result. More... | |
class | ResultsClassification |
Class that is the base-class for a vector of result. More... | |
class | ResultsMulticlass |
Class which takes the results of a multiclass classification. More... | |
class | ResultsRegression |
Class that is the base-class for a vector of result. More... | |
class | RMethodBase |
class | ROCCalc |
class | ROCCurve |
class | RootFinder |
Root finding using Brents algorithm (translated from CERNLIB function RZERO) More... | |
class | Rule |
Implementation of a rule. More... | |
class | RuleCut |
A class describing a 'rule cut'. More... | |
class | RuleEnsemble |
class | RuleFit |
A class implementing various fits of rule ensembles. More... | |
class | RuleFitAPI |
J Friedman's RuleFit method. More... | |
class | RuleFitParams |
A class doing the actual fitting of a linear model using rules as base functions. More... | |
class | SdivSqrtSplusB |
Implementation of the SdivSqrtSplusB as separation criterion. More... | |
class | SeparationBase |
An interface to calculate the "SeparationGain" for different separation criteria used in various training algorithms. More... | |
class | SimulatedAnnealing |
Base implementation of simulated annealing fitting procedure. More... | |
class | SimulatedAnnealingFitter |
Fitter using a Simulated Annealing Algorithm. More... | |
class | StatDialogBDT |
class | StatDialogBDTReg |
class | StatDialogMVAEffs |
class | SVEvent |
Event class for Support Vector Machine. More... | |
class | SVKernelFunction |
Kernel for Support Vector Machine. More... | |
class | SVKernelMatrix |
Kernel matrix for Support Vector Machine. More... | |
class | SVWorkingSet |
Working class for Support Vector Machine. More... | |
class | TActivation |
Interface for TNeuron activation function classes. More... | |
class | TActivationChooser |
Class for easily choosing activation functions. More... | |
class | TActivationIdentity |
Identity activation function for TNeuron. More... | |
class | TActivationRadial |
Radial basis activation function for ANN. More... | |
class | TActivationReLU |
Rectified Linear Unit activation function for TNeuron. More... | |
class | TActivationSigmoid |
Sigmoid activation function for TNeuron. More... | |
class | TActivationTanh |
Tanh activation function for ANN. More... | |
class | Timer |
Timing information for training and evaluation of MVA methods. More... | |
class | TMVAGaussPair |
struct | TMVAGUI |
class | TNeuron |
Neuron class used by TMVA artificial neural network methods. More... | |
class | TNeuronInput |
Interface for TNeuron input calculation classes. More... | |
class | TNeuronInputAbs |
TNeuron input calculator – calculates the sum of the absolute values of the weighted inputs. More... | |
class | TNeuronInputChooser |
Class for easily choosing neuron input functions. More... | |
class | TNeuronInputSqSum |
TNeuron input calculator – calculates the squared weighted sum of inputs. More... | |
class | TNeuronInputSum |
TNeuron input calculator – calculates the weighted sum of inputs. More... | |
class | Tools |
Global auxiliary applications and data treatment routines. More... | |
class | TransformationHandler |
Class that contains all the data information. More... | |
class | TreeInfo |
class | TSpline1 |
Linear interpolation of TGraph. More... | |
class | TSpline2 |
Quadratic interpolation of TGraph. More... | |
class | TSynapse |
Synapse class used by TMVA artificial neural network methods. More... | |
class | Types |
Singleton class for Global types used by TMVA. More... | |
class | VariableDecorrTransform |
Linear interpolation class. More... | |
class | VariableGaussTransform |
Gaussian Transformation of input variables. More... | |
class | VariableIdentityTransform |
Linear interpolation class. More... | |
class | VariableImportance |
class | VariableImportanceResult |
class | VariableInfo |
Class for type info of MVA input variable. More... | |
class | VariableNormalizeTransform |
Linear interpolation class. More... | |
class | VariablePCATransform |
Linear interpolation class. More... | |
class | VariableRearrangeTransform |
Rearrangement of input variables. More... | |
class | VariableTransformBase |
Linear interpolation class. More... | |
class | VarTransformHandler |
class | Volume |
Volume for BinarySearchTree. More... | |
Functions | |
void | ActionButton (TControlBar *cbar, const TString &title, const TString ¯o, const TString &comment, const TString &buttonType, TString requiredKey="") |
void | annconvergencetest (TString dataset, TDirectory *lhdir) |
void | annconvergencetest (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) |
void | BDT (TString dataset, const TString &fin="TMVA.root") |
void | BDT (TString dataset, Int_t itree, TString wfile, TString methName="BDT", Bool_t useTMVAStyle=kTRUE) |
void | BDT_DeleteTBar (int i) |
void | BDT_Reg (TString dataset, const TString &fin="TMVAReg.root") |
void | BDT_Reg (TString dataset, Int_t itree, TString wfile="", TString methName="BDT", Bool_t useTMVAStyle=kTRUE) |
void | bdtcontrolplots (TString dataset, TDirectory *) |
void | BDTControlPlots (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) |
void | BDTReg_DeleteTBar (int i) |
void | BoostControlPlots (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) |
void | boostcontrolplots (TString dataset, TDirectory *boostdir) |
void | compareanapp (TString finAn="TMVA.root", TString finApp="TMVApp.root", HistType htype=kMVAType, bool useTMVAStyle=kTRUE) |
template<typename F , typename G , typename H > | |
compose_binary_t< F, G, H > | compose_binary (const F &_f, const G &_g, const H &_h) |
template<typename F , typename G > | |
compose_unary_t< F, G > | compose_unary (const F &_f, const G &_g) |
void | correlations (TString dataset, TString fin="TMVA.root", Bool_t isRegression=kFALSE, Bool_t greyScale=kFALSE, Bool_t useTMVAStyle=kTRUE) |
void | correlationscatters (TString dataset, TString fin, TString var="var3", TString dirName_="InputVariables_Id", TString title="TMVA Input Variable", Bool_t isRegression=kFALSE, Bool_t useTMVAStyle=kTRUE) |
void | correlationscattersMultiClass (TString dataset, TString fin="TMVA.root", TString var="var3", TString dirName_="InputVariables_Id", TString title="TMVA Input Variable", Bool_t isRegression=kFALSE, Bool_t useTMVAStyle=kTRUE) |
void | correlationsMultiClass (TString dataset, TString fin="TMVA.root", Bool_t isRegression=kFALSE, Bool_t greyScale=kFALSE, Bool_t useTMVAStyle=kTRUE) |
void | CorrGui (TString dataset, TString fin="TMVA.root", TString dirName="InputVariables_Id", TString title="TMVA Input Variable", Bool_t isRegression=kFALSE) |
void | CorrGui_DeleteTBar () |
void | CorrGuiMultiClass (TString dataset, TString fin="TMVA.root", TString dirName="InputVariables_Id", TString title="TMVA Input Variable", Bool_t isRegression=kFALSE) |
void | CorrGuiMultiClass_DeleteTBar () |
void | CreateVariableTransforms (const TString &trafoDefinition, TMVA::DataSetInfo &dataInfo, TMVA::TransformationHandler &transformationHandler, TMVA::MsgLogger &log) |
void | DataLoaderCopy (TMVA::DataLoader *des, TMVA::DataLoader *src) |
template<class T > | |
DeleteFunctor_t< const T > | DeleteFunctor () |
void | deviations (TString dataset, TString fin="TMVAReg.root", HistType htype=kMVAType, Bool_t showTarget=kTRUE, Bool_t useTMVAStyle=kTRUE) |
void | draw_activation (TCanvas *c, Double_t cx, Double_t cy, Double_t radx, Double_t rady, Int_t whichActivation) |
void | draw_input_labels (TString dataset, Int_t nInputs, Double_t *cy, Double_t rad, Double_t layerWidth) |
void | draw_layer (TString dataset, TCanvas *c, TH2F *h, Int_t iHist, Int_t nLayers, Double_t maxWeight) |
void | draw_layer_labels (Int_t nLayers) |
void | draw_network (TString dataset, TFile *f, TDirectory *d, const TString &hName="weights_hist", Bool_t movieMode=kFALSE, const TString &epoch="") |
void | draw_synapse (Double_t cx1, Double_t cy1, Double_t cx2, Double_t cy2, Double_t rad1, Double_t rad2, Double_t weightNormed) |
void | DrawCell (TMVA::PDEFoamCell *cell, TMVA::PDEFoam *foam, Double_t x, Double_t y, Double_t xscale, Double_t yscale) |
void | DrawMLPoutputMovie (TString dataset, TFile *file, const TString &methodType, const TString &methodTitle) |
void | DrawNetworkMovie (TString dataset, TFile *file, const TString &methodType, const TString &methodTitle) |
void | efficiencies (TString dataset, TString fin="TMVA.root", Int_t type=2, Bool_t useTMVAStyle=kTRUE) |
void | efficienciesMulticlass (TString dataset, TString filename_input="TMVAMulticlass.root", EEfficiencyPlotType plotType=EEfficiencyPlotType::kRejBvsEffS, Bool_t useTMVAStyle=kTRUE) |
MsgLogger & | Endl (MsgLogger &ml) |
TString | fetchValue (const std::map< TString, TString > &keyValueMap, TString key) |
template<typename T > | |
T | fetchValue (const std::map< TString, TString > &keyValueMap, TString key, T defaultValue) |
template<> | |
int | fetchValue (const std::map< TString, TString > &keyValueMap, TString key, int defaultValue) |
template<> | |
double | fetchValue (const std::map< TString, TString > &keyValueMap, TString key, double defaultValue) |
template<> | |
TString | fetchValue (const std::map< TString, TString > &keyValueMap, TString key, TString defaultValue) |
template<> | |
bool | fetchValue (const std::map< TString, TString > &keyValueMap, TString key, bool defaultValue) |
template<> | |
std::vector< double > | fetchValue (const std::map< TString, TString > &keyValueMap, TString key, std::vector< double > defaultValue) |
Config & | gConfig () |
TString * | get_var_names (TString dataset, Int_t nVars) |
Int_t | getBkgColorF () |
Int_t | getBkgColorT () |
Int_t | getIntColorF () |
Int_t | getIntColorT () |
TList * | GetKeyList (const TString &pattern) |
Int_t | getSigColorF () |
Int_t | getSigColorT () |
Tools & | gTools () |
Int_t | LargestCommonDivider (Int_t a, Int_t b) |
void | likelihoodrefs (TString dataset, TDirectory *lhdir) |
void | likelihoodrefs (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) |
void | MovieMaker (TString dataset, TString methodType="Method_MLP", TString methodTitle="MLP") |
void | MultiClassActionButton (TControlBar *cbar, const TString &title, const TString ¯o, const TString &comment, const TString &buttonType, TString requiredKey="") |
TList * | MultiClassGetKeyList (const TString &pattern) |
void | mvaeffs (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE, TString formula="S/sqrt(S+B)") |
void | mvas (TString dataset, TString fin="TMVA.root", HistType htype=kMVAType, Bool_t useTMVAStyle=kTRUE) |
void | mvasMulticlass (TString dataset, TString fin="TMVAMulticlass.root", HistType htype=kMVAType, Bool_t useTMVAStyle=kTRUE) |
void | mvaweights (TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) |
void | network (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) |
template<typename F > | |
null_t< F > | null () |
Bool_t | operator< (const GeneticGenes &, const GeneticGenes &) |
std::ostream & | operator<< (std::ostream &os, const Rule &rule) |
std::ostream & | operator<< (std::ostream &os, const Event &event) |
std::ostream & | operator<< (std::ostream &os, const Node &node) |
std::ostream & | operator<< (std::ostream &os, const Node *node) |
std::ostream & | operator<< (std::ostream &os, const RuleEnsemble &event) |
std::ostream & | operator<< (std::ostream &os, const BinaryTree &tree) |
std::ostream & | operator<< (std::ostream &os, const PDF &tree) |
std::istream & | operator>> (std::istream &istr, BinaryTree &tree) |
std::istream & | operator>> (std::istream &istr, PDF &tree) |
void | paracoor (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) |
void | Plot (TString fileName, TMVA::ECellValue cv, TString cv_long, bool useTMVAStyle=kTRUE) |
void | Plot1DimFoams (TList &foam_list, TMVA::ECellValue cell_value, const TString &cell_value_description, TMVA::PDEFoamKernelBase *kernel) |
void | plot_efficiencies (TString dataset, TFile *file, Int_t type=2, TDirectory *BinDir=0) |
void | PlotCellTree (TString fileName, TString cv_long, bool useTMVAStyle=kTRUE) |
void | plotEfficienciesMulticlass (EEfficiencyPlotType plotType=EEfficiencyPlotType::kRejBvsEffS, TDirectory *BinDir=0) |
void | PlotFoams (TString fileName="weights/TMVAClassification_PDEFoam.weights_foams.root", bool useTMVAStyle=kTRUE) |
void | PlotNDimFoams (TList &foam_list, TMVA::ECellValue cell_value, const TString &cell_value_description, TMVA::PDEFoamKernelBase *kernel) |
void | probas (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) |
void | RegGuiActionButton (TControlBar *cbar, const TString &title, const TString ¯o, const TString &comment, const TString &buttonType, TString requiredKey="") |
TList * | RegGuiGetKeyList (const TString &pattern) |
void | regression_averagedevs (TString dataset, TString fin, Int_t Nevt=-1, Bool_t useTMVAStyle=kTRUE) |
void | rulevis (TString fin="TMVA.root", TMVAGlob::TypeOfPlot type=TMVAGlob::kNorm, bool useTMVAStyle=kTRUE) |
void | rulevisCorr (TString fin="TMVA.root", TMVAGlob::TypeOfPlot type=TMVAGlob::kNorm, bool useTMVAStyle=kTRUE) |
void | rulevisCorr (TDirectory *rfdir, TDirectory *vardir, TDirectory *corrdir, TMVAGlob::TypeOfPlot type) |
void | rulevisHists (TString fin="TMVA.root", TMVAGlob::TypeOfPlot type=TMVAGlob::kNorm, bool useTMVAStyle=kTRUE) |
void | rulevisHists (TDirectory *rfdir, TDirectory *vardir, TDirectory *corrdir, TMVAGlob::TypeOfPlot type) |
void | TMVAGui (const char *fName="TMVA.root", TString dataset="") |
void | TMVAMultiClassGui (const char *fName="TMVAMulticlass.root", TString dataset="") |
void | TMVARegGui (const char *fName="TMVAReg.root", TString dataset="") |
void | variables (TString dataset, TString fin="TMVA.root", TString dirName="InputVariables_Id", TString title="TMVA Input Variables", Bool_t isRegression=kFALSE, Bool_t useTMVAStyle=kTRUE) |
void | variablesMultiClass (TString dataset, TString fin="TMVA.root", TString dirName="InputVariables_Id", TString title="TMVA Input Variables", Bool_t isRegression=kFALSE, Bool_t useTMVAStyle=kTRUE) |
Abstract ClassifierFactory template that handles arbitrary types.
create variable transformations
This template creates ClassifierFactory stores creator functors to template parameter class. ClassifierFactory is a singelton class which is explicitly deleted.
Source: Andrei Alexandrescu, Modern C++ Design
void TMVA::ActionButton | ( | TControlBar * | cbar, |
const TString & | title, | ||
const TString & | macro, | ||
const TString & | comment, | ||
const TString & | buttonType, | ||
TString | requiredKey = "" |
||
) |
void TMVA::annconvergencetest | ( | TString | dataset, |
TDirectory * | lhdir | ||
) |
void TMVA::annconvergencetest | ( | TString | dataset, |
TString | fin = "TMVA.root" , |
||
Bool_t | useTMVAStyle = kTRUE |
||
) |
void TMVA::BDT | ( | TString | dataset, |
Int_t | itree, | ||
TString | wfile, | ||
TString | methName = "BDT" , |
||
Bool_t | useTMVAStyle = kTRUE |
||
) |
void TMVA::BDT_DeleteTBar | ( | int | i | ) |
void TMVA::BDT_Reg | ( | TString | dataset, |
Int_t | itree, | ||
TString | wfile = "" , |
||
TString | methName = "BDT" , |
||
Bool_t | useTMVAStyle = kTRUE |
||
) |
void TMVA::bdtcontrolplots | ( | TString | dataset, |
TDirectory * | |||
) |
void TMVA::BDTControlPlots | ( | TString | dataset, |
TString | fin = "TMVA.root" , |
||
Bool_t | useTMVAStyle = kTRUE |
||
) |
void TMVA::BDTReg_DeleteTBar | ( | int | i | ) |
void TMVA::BoostControlPlots | ( | TString | dataset, |
TString | fin = "TMVA.root" , |
||
Bool_t | useTMVAStyle = kTRUE |
||
) |
void TMVA::boostcontrolplots | ( | TString | dataset, |
TDirectory * | boostdir | ||
) |
void TMVA::compareanapp | ( | TString | finAn = "TMVA.root" , |
TString | finApp = "TMVApp.root" , |
||
HistType | htype = kMVAType , |
||
bool | useTMVAStyle = kTRUE |
||
) |
|
inline |
Definition at line 152 of file DataSetFactory.h.
|
inline |
Definition at line 178 of file DataSetFactory.h.
void TMVA::correlations | ( | TString | dataset, |
TString | fin = "TMVA.root" , |
||
Bool_t | isRegression = kFALSE , |
||
Bool_t | greyScale = kFALSE , |
||
Bool_t | useTMVAStyle = kTRUE |
||
) |
void TMVA::correlationscatters | ( | TString | dataset, |
TString | fin, | ||
TString | var = "var3" , |
||
TString | dirName_ = "InputVariables_Id" , |
||
TString | title = "TMVA Input Variable" , |
||
Bool_t | isRegression = kFALSE , |
||
Bool_t | useTMVAStyle = kTRUE |
||
) |
void TMVA::correlationscattersMultiClass | ( | TString | dataset, |
TString | fin = "TMVA.root" , |
||
TString | var = "var3" , |
||
TString | dirName_ = "InputVariables_Id" , |
||
TString | title = "TMVA Input Variable" , |
||
Bool_t | isRegression = kFALSE , |
||
Bool_t | useTMVAStyle = kTRUE |
||
) |
void TMVA::correlationsMultiClass | ( | TString | dataset, |
TString | fin = "TMVA.root" , |
||
Bool_t | isRegression = kFALSE , |
||
Bool_t | greyScale = kFALSE , |
||
Bool_t | useTMVAStyle = kTRUE |
||
) |
void TMVA::CorrGui | ( | TString | dataset, |
TString | fin = "TMVA.root" , |
||
TString | dirName = "InputVariables_Id" , |
||
TString | title = "TMVA Input Variable" , |
||
Bool_t | isRegression = kFALSE |
||
) |
void TMVA::CorrGui_DeleteTBar | ( | ) |
void TMVA::CorrGuiMultiClass | ( | TString | dataset, |
TString | fin = "TMVA.root" , |
||
TString | dirName = "InputVariables_Id" , |
||
TString | title = "TMVA Input Variable" , |
||
Bool_t | isRegression = kFALSE |
||
) |
void TMVA::CorrGuiMultiClass_DeleteTBar | ( | ) |
void TMVA::CreateVariableTransforms | ( | const TString & | trafoDefinition, |
TMVA::DataSetInfo & | dataInfo, | ||
TMVA::TransformationHandler & | transformationHandler, | ||
TMVA::MsgLogger & | log | ||
) |
Definition at line 67 of file VariableTransform.cxx.
void TMVA::DataLoaderCopy | ( | TMVA::DataLoader * | des, |
TMVA::DataLoader * | src | ||
) |
DeleteFunctor_t<const T> TMVA::DeleteFunctor | ( | ) |
Definition at line 92 of file DataSetFactory.h.
void TMVA::deviations | ( | TString | dataset, |
TString | fin = "TMVAReg.root" , |
||
HistType | htype = kMVAType , |
||
Bool_t | showTarget = kTRUE , |
||
Bool_t | useTMVAStyle = kTRUE |
||
) |
void TMVA::draw_activation | ( | TCanvas * | c, |
Double_t | cx, | ||
Double_t | cy, | ||
Double_t | radx, | ||
Double_t | rady, | ||
Int_t | whichActivation | ||
) |
void TMVA::draw_input_labels | ( | TString | dataset, |
Int_t | nInputs, | ||
Double_t * | cy, | ||
Double_t | rad, | ||
Double_t | layerWidth | ||
) |
void TMVA::draw_layer | ( | TString | dataset, |
TCanvas * | c, | ||
TH2F * | h, | ||
Int_t | iHist, | ||
Int_t | nLayers, | ||
Double_t | maxWeight | ||
) |
void TMVA::draw_network | ( | TString | dataset, |
TFile * | f, | ||
TDirectory * | d, | ||
const TString & | hName = "weights_hist" , |
||
Bool_t | movieMode = kFALSE , |
||
const TString & | epoch = "" |
||
) |
void TMVA::draw_synapse | ( | Double_t | cx1, |
Double_t | cy1, | ||
Double_t | cx2, | ||
Double_t | cy2, | ||
Double_t | rad1, | ||
Double_t | rad2, | ||
Double_t | weightNormed | ||
) |
void TMVA::DrawCell | ( | TMVA::PDEFoamCell * | cell, |
TMVA::PDEFoam * | foam, | ||
Double_t | x, | ||
Double_t | y, | ||
Double_t | xscale, | ||
Double_t | yscale | ||
) |
void TMVA::DrawMLPoutputMovie | ( | TString | dataset, |
TFile * | file, | ||
const TString & | methodType, | ||
const TString & | methodTitle | ||
) |
void TMVA::DrawNetworkMovie | ( | TString | dataset, |
TFile * | file, | ||
const TString & | methodType, | ||
const TString & | methodTitle | ||
) |
void TMVA::efficiencies | ( | TString | dataset, |
TString | fin = "TMVA.root" , |
||
Int_t | type = 2 , |
||
Bool_t | useTMVAStyle = kTRUE |
||
) |
void TMVA::efficienciesMulticlass | ( | TString | dataset, |
TString | filename_input = "TMVAMulticlass.root" , |
||
EEfficiencyPlotType | plotType = EEfficiencyPlotType::kRejBvsEffS , |
||
Bool_t | useTMVAStyle = kTRUE |
||
) |
Definition at line 158 of file MsgLogger.h.
Definition at line 307 of file MethodDNN.cxx.
T TMVA::fetchValue | ( | const std::map< TString, TString > & | keyValueMap, |
TString | key, | ||
T | defaultValue | ||
) |
int TMVA::fetchValue | ( | const std::map< TString, TString > & | keyValueMap, |
TString | key, | ||
int | defaultValue | ||
) |
Definition at line 327 of file MethodDNN.cxx.
double TMVA::fetchValue | ( | const std::map< TString, TString > & | keyValueMap, |
TString | key, | ||
double | defaultValue | ||
) |
Definition at line 341 of file MethodDNN.cxx.
TString TMVA::fetchValue | ( | const std::map< TString, TString > & | keyValueMap, |
TString | key, | ||
TString | defaultValue | ||
) |
Definition at line 354 of file MethodDNN.cxx.
bool TMVA::fetchValue | ( | const std::map< TString, TString > & | keyValueMap, |
TString | key, | ||
bool | defaultValue | ||
) |
Definition at line 367 of file MethodDNN.cxx.
std::vector<double> TMVA::fetchValue | ( | const std::map< TString, TString > & | keyValueMap, |
TString | key, | ||
std::vector< double > | defaultValue | ||
) |
Definition at line 384 of file MethodDNN.cxx.
Config& TMVA::gConfig | ( | ) |
Tools& TMVA::gTools | ( | ) |
Definition at line 80 of file DataSetFactory.cxx.
void TMVA::likelihoodrefs | ( | TString | dataset, |
TDirectory * | lhdir | ||
) |
void TMVA::likelihoodrefs | ( | TString | dataset, |
TString | fin = "TMVA.root" , |
||
Bool_t | useTMVAStyle = kTRUE |
||
) |
void TMVA::MovieMaker | ( | TString | dataset, |
TString | methodType = "Method_MLP" , |
||
TString | methodTitle = "MLP" |
||
) |
void TMVA::MultiClassActionButton | ( | TControlBar * | cbar, |
const TString & | title, | ||
const TString & | macro, | ||
const TString & | comment, | ||
const TString & | buttonType, | ||
TString | requiredKey = "" |
||
) |
void TMVA::mvaeffs | ( | TString | dataset, |
TString | fin = "TMVA.root" , |
||
Bool_t | useTMVAStyle = kTRUE , |
||
TString | formula = "S/sqrt(S+B)" |
||
) |
void TMVA::mvas | ( | TString | dataset, |
TString | fin = "TMVA.root" , |
||
HistType | htype = kMVAType , |
||
Bool_t | useTMVAStyle = kTRUE |
||
) |
void TMVA::mvasMulticlass | ( | TString | dataset, |
TString | fin = "TMVAMulticlass.root" , |
||
HistType | htype = kMVAType , |
||
Bool_t | useTMVAStyle = kTRUE |
||
) |
Definition at line 124 of file DataSetFactory.h.
Bool_t TMVA::operator< | ( | const GeneticGenes & | , |
const GeneticGenes & | |||
) |
std::ostream& TMVA::operator<< | ( | std::ostream & | os, |
const Rule & | rule | ||
) |
std::ostream& TMVA::operator<< | ( | std::ostream & | os, |
const Event & | event | ||
) |
std::ostream& TMVA::operator<< | ( | std::ostream & | os, |
const Node & | node | ||
) |
std::ostream& TMVA::operator<< | ( | std::ostream & | os, |
const Node * | node | ||
) |
std::ostream& TMVA::operator<< | ( | std::ostream & | os, |
const RuleEnsemble & | event | ||
) |
std::ostream& TMVA::operator<< | ( | std::ostream & | os, |
const BinaryTree & | tree | ||
) |
std::ostream& TMVA::operator<< | ( | std::ostream & | os, |
const PDF & | tree | ||
) |
std::istream& TMVA::operator>> | ( | std::istream & | istr, |
BinaryTree & | tree | ||
) |
std::istream& TMVA::operator>> | ( | std::istream & | istr, |
PDF & | tree | ||
) |
void TMVA::Plot | ( | TString | fileName, |
TMVA::ECellValue | cv, | ||
TString | cv_long, | ||
bool | useTMVAStyle = kTRUE |
||
) |
void TMVA::Plot1DimFoams | ( | TList & | foam_list, |
TMVA::ECellValue | cell_value, | ||
const TString & | cell_value_description, | ||
TMVA::PDEFoamKernelBase * | kernel | ||
) |
void TMVA::plot_efficiencies | ( | TString | dataset, |
TFile * | file, | ||
Int_t | type = 2 , |
||
TDirectory * | BinDir = 0 |
||
) |
void TMVA::plotEfficienciesMulticlass | ( | EEfficiencyPlotType | plotType = EEfficiencyPlotType::kRejBvsEffS , |
TDirectory * | BinDir = 0 |
||
) |
void TMVA::PlotFoams | ( | TString | fileName = "weights/TMVAClassification_PDEFoam.weights_foams.root" , |
bool | useTMVAStyle = kTRUE |
||
) |
void TMVA::PlotNDimFoams | ( | TList & | foam_list, |
TMVA::ECellValue | cell_value, | ||
const TString & | cell_value_description, | ||
TMVA::PDEFoamKernelBase * | kernel | ||
) |
void TMVA::RegGuiActionButton | ( | TControlBar * | cbar, |
const TString & | title, | ||
const TString & | macro, | ||
const TString & | comment, | ||
const TString & | buttonType, | ||
TString | requiredKey = "" |
||
) |
void TMVA::regression_averagedevs | ( | TString | dataset, |
TString | fin, | ||
Int_t | Nevt = -1 , |
||
Bool_t | useTMVAStyle = kTRUE |
||
) |
void TMVA::rulevis | ( | TString | fin = "TMVA.root" , |
TMVAGlob::TypeOfPlot | type = TMVAGlob::kNorm , |
||
bool | useTMVAStyle = kTRUE |
||
) |
void TMVA::rulevisCorr | ( | TString | fin = "TMVA.root" , |
TMVAGlob::TypeOfPlot | type = TMVAGlob::kNorm , |
||
bool | useTMVAStyle = kTRUE |
||
) |
void TMVA::rulevisCorr | ( | TDirectory * | rfdir, |
TDirectory * | vardir, | ||
TDirectory * | corrdir, | ||
TMVAGlob::TypeOfPlot | type | ||
) |
void TMVA::rulevisHists | ( | TString | fin = "TMVA.root" , |
TMVAGlob::TypeOfPlot | type = TMVAGlob::kNorm , |
||
bool | useTMVAStyle = kTRUE |
||
) |
void TMVA::rulevisHists | ( | TDirectory * | rfdir, |
TDirectory * | vardir, | ||
TDirectory * | corrdir, | ||
TMVAGlob::TypeOfPlot | type | ||
) |
void TMVA::variables | ( | TString | dataset, |
TString | fin = "TMVA.root" , |
||
TString | dirName = "InputVariables_Id" , |
||
TString | title = "TMVA Input Variables" , |
||
Bool_t | isRegression = kFALSE , |
||
Bool_t | useTMVAStyle = kTRUE |
||
) |