| 
| class   | AbsoluteDeviationLossFunction | 
|   | Absolute Deviation Loss Function.  More...
  | 
|   | 
| class   | AbsoluteDeviationLossFunctionBDT | 
|   | Absolute Deviation BDT Loss Function.  More...
  | 
|   | 
| class   | AbsValue | 
|   | 
| class   | BDTEventWrapper | 
|   | 
| class   | BinarySearchTree | 
|   | A simple Binary search tree including a volume search method.  More...
  | 
|   | 
| class   | BinarySearchTreeNode | 
|   | Node for the BinarySearch or Decision Trees.  More...
  | 
|   | 
| class   | BinaryTree | 
|   | Base class for BinarySearch and Decision Trees.  More...
  | 
|   | 
| class   | CCPruner | 
|   | A helper class to prune a decision tree using the Cost Complexity method (see Classification and Regression Trees by Leo Breiman et al)  More...
  | 
|   | 
| class   | CCTreeWrapper | 
|   | 
| class   | ClassifierFactory | 
|   | This is the MVA factory.  More...
  | 
|   | 
| class   | ClassInfo | 
|   | Class that contains all the information of a class.  More...
  | 
|   | 
| class   | Config | 
|   | Singleton class for global configuration settings used by TMVA.  More...
  | 
|   | 
| class   | Configurable | 
|   | 
| class   | ConvergenceTest | 
|   | Check for convergence.  More...
  | 
|   | 
| class   | CostComplexityPruneTool | 
|   | A class to prune a decision tree using the Cost Complexity method.  More...
  | 
|   | 
| class   | CrossEntropy | 
|   | Implementation of the CrossEntropy as separation criterion.  More...
  | 
|   | 
| class   | CrossValidation | 
|   | Class to perform cross validation, splitting the dataloader into folds.  More...
  | 
|   | 
| class   | CrossValidationFoldResult | 
|   | 
| class   | CrossValidationResult | 
|   | Class to save the results of cross validation, the metric for the classification ins ROC and you can ROC curves ROC integrals, ROC average and ROC standard deviation.  More...
  | 
|   | 
| class   | CvSplit | 
|   | 
| class   | CvSplitKFolds | 
|   | 
| class   | CvSplitKFoldsExpr | 
|   | 
| class   | DataInputHandler | 
|   | Class that contains all the data information.  More...
  | 
|   | 
| class   | DataLoader | 
|   | 
| class   | DataSet | 
|   | Class that contains all the data information.  More...
  | 
|   | 
| class   | DataSetFactory | 
|   | Class that contains all the data information.  More...
  | 
|   | 
| class   | DataSetInfo | 
|   | Class that contains all the data information.  More...
  | 
|   | 
| class   | DataSetManager | 
|   | Class that contains all the data information.  More...
  | 
|   | 
| class   | DecisionTree | 
|   | Implementation of a Decision Tree.  More...
  | 
|   | 
| class   | DecisionTreeNode | 
|   | 
| struct   | DeleteFunctor_t | 
|   | 
| class   | DTNodeTrainingInfo | 
|   | 
| class   | Envelope | 
|   | Abstract base class for all high level ml algorithms, you can book ml methods like BDT, MLP.  More...
  | 
|   | 
| class   | Event | 
|   | 
| class   | Executor | 
|   | Base Executor class.  More...
  | 
|   | 
| class   | ExpectedErrorPruneTool | 
|   | A helper class to prune a decision tree using the expected error (C4.5) method.  More...
  | 
|   | 
| class   | Factory | 
|   | This is the main MVA steering class.  More...
  | 
|   | 
| class   | FitterBase | 
|   | Base class for TMVA fitters.  More...
  | 
|   | 
| class   | GeneticAlgorithm | 
|   | Base definition for genetic algorithm.  More...
  | 
|   | 
| class   | GeneticFitter | 
|   | Fitter using a Genetic Algorithm.  More...
  | 
|   | 
| class   | GeneticGenes | 
|   | Cut optimisation interface class for genetic algorithm.  More...
  | 
|   | 
| class   | GeneticPopulation | 
|   | Population definition for genetic algorithm.  More...
  | 
|   | 
| class   | GeneticRange | 
|   | Range definition for genetic algorithm.  More...
  | 
|   | 
| class   | GiniIndex | 
|   | Implementation of the GiniIndex as separation criterion.  More...
  | 
|   | 
| class   | GiniIndexWithLaplace | 
|   | Implementation of the GiniIndex With Laplace correction as separation criterion.  More...
  | 
|   | 
| class   | HuberLossFunction | 
|   | Huber Loss Function.  More...
  | 
|   | 
| class   | HuberLossFunctionBDT | 
|   | Huber BDT Loss Function.  More...
  | 
|   | 
| class   | HyperParameterOptimisation | 
|   | 
| class   | HyperParameterOptimisationResult | 
|   | 
| class   | IFitterTarget | 
|   | Interface for a fitter 'target'.  More...
  | 
|   | 
| class   | IMethod | 
|   | Interface for all concrete MVA method implementations.  More...
  | 
|   | 
| class   | Increment | 
|   | 
| class   | Interval | 
|   | The TMVA::Interval Class.  More...
  | 
|   | 
| class   | IPruneTool | 
|   | IPruneTool - a helper interface class to prune a decision tree.  More...
  | 
|   | 
| class   | IPythonInteractive | 
|   | This class is needed by JsMVA, and it's a helper class for tracking errors during the training in Jupyter notebook.  More...
  | 
|   | 
| class   | KDEKernel | 
|   | KDE Kernel for "smoothing" the PDFs.  More...
  | 
|   | 
| class   | LDA | 
|   | 
| class   | LeastSquaresLossFunction | 
|   | Least Squares Loss Function.  More...
  | 
|   | 
| class   | LeastSquaresLossFunctionBDT | 
|   | Least Squares BDT Loss Function.  More...
  | 
|   | 
| class   | LogInterval | 
|   | The TMVA::Interval Class.  More...
  | 
|   | 
| class   | LossFunction | 
|   | 
| class   | LossFunctionBDT | 
|   | 
| class   | LossFunctionEventInfo | 
|   | 
| class   | MCFitter | 
|   | Fitter using Monte Carlo sampling of parameters.  More...
  | 
|   | 
| class   | MethodANNBase | 
|   | Base class for all TMVA methods using artificial neural networks.  More...
  | 
|   | 
| class   | MethodBase | 
|   | Virtual base Class for all MVA method.  More...
  | 
|   | 
| class   | MethodBayesClassifier | 
|   | Description of bayesian classifiers.  More...
  | 
|   | 
| class   | MethodBDT | 
|   | Analysis of Boosted Decision Trees.  More...
  | 
|   | 
| class   | MethodBoost | 
|   | Class for boosting a TMVA method.  More...
  | 
|   | 
| class   | MethodC50 | 
|   | 
| class   | MethodCategory | 
|   | Class for categorizing the phase space.  More...
  | 
|   | 
| class   | MethodCFMlpANN | 
|   | Interface to Clermond-Ferrand artificial neural network.  More...
  | 
|   | 
| class   | MethodCFMlpANN_Utils | 
|   | Implementation of Clermond-Ferrand artificial neural network.  More...
  | 
|   | 
| class   | MethodCompositeBase | 
|   | Virtual base class for combining several TMVA method.  More...
  | 
|   | 
| class   | MethodCrossValidation | 
|   | 
| class   | MethodCuts | 
|   | Multivariate optimisation of signal efficiency for given background efficiency, applying rectangular minimum and maximum requirements.  More...
  | 
|   | 
| class   | MethodDL | 
|   | 
| class   | MethodDNN | 
|   | Deep Neural Network Implementation.  More...
  | 
|   | 
| class   | MethodDT | 
|   | Analysis of Boosted Decision Trees.  More...
  | 
|   | 
| class   | MethodFDA | 
|   | Function discriminant analysis (FDA).  More...
  | 
|   | 
| class   | MethodFisher | 
|   | Fisher and Mahalanobis Discriminants (Linear Discriminant Analysis)  More...
  | 
|   | 
| class   | MethodHMatrix | 
|   | H-Matrix method, which is implemented as a simple comparison of chi-squared estimators for signal and background, taking into account the linear correlations between the input variables.  More...
  | 
|   | 
| class   | MethodInfo | 
|   | 
| class   | MethodKNN | 
|   | Analysis of k-nearest neighbor.  More...
  | 
|   | 
| class   | MethodLD | 
|   | Linear Discriminant.  More...
  | 
|   | 
| class   | MethodLikelihood | 
|   | Likelihood analysis ("non-parametric approach")  More...
  | 
|   | 
| class   | MethodMLP | 
|   | Multilayer Perceptron class built off of MethodANNBase.  More...
  | 
|   | 
| class   | MethodPDEFoam | 
|   | The PDEFoam method is an extension of the PDERS method, which divides the multi-dimensional phase space in a finite number of hyper-rectangles (cells) of constant event density.  More...
  | 
|   | 
| class   | MethodPDERS | 
|   | This is a generalization of the above Likelihood methods to \( N_{var} \) dimensions, where \( N_{var} \) is the number of input variables used in the MVA.  More...
  | 
|   | 
| class   | MethodPyAdaBoost | 
|   | 
| class   | MethodPyGTB | 
|   | 
| class   | MethodPyKeras | 
|   | 
| class   | MethodPyRandomForest | 
|   | 
| class   | MethodPyTorch | 
|   | 
| class   | MethodRSNNS | 
|   | 
| class   | MethodRSVM | 
|   | 
| class   | MethodRuleFit | 
|   | J Friedman's RuleFit method.  More...
  | 
|   | 
| class   | MethodRXGB | 
|   | 
| class   | MethodSVM | 
|   | SMO Platt's SVM classifier with Keerthi & Shavade improvements.  More...
  | 
|   | 
| class   | MethodTMlpANN | 
|   | This is the TMVA TMultiLayerPerceptron interface class.  More...
  | 
|   | 
| class   | MinuitFitter | 
|   | /Fitter using MINUIT  More...
  | 
|   | 
| class   | MinuitWrapper | 
|   | Wrapper around MINUIT.  More...
  | 
|   | 
| class   | MisClassificationError | 
|   | Implementation of the MisClassificationError as separation criterion.  More...
  | 
|   | 
| class   | Monitoring | 
|   | 
| class   | MsgLogger | 
|   | ostringstream derivative to redirect and format output  More...
  | 
|   | 
| class   | Node | 
|   | Node for the BinarySearch or Decision Trees.  More...
  | 
|   | 
| class   | null_t | 
|   | 
| class   | OptimizeConfigParameters | 
|   | 
| class   | Option | 
|   | 
| class   | Option< T * > | 
|   | 
| class   | OptionBase | 
|   | Class for TMVA-option handling.  More...
  | 
|   | 
| class   | OptionMap | 
|   | class to storage options for the differents methods  More...
  | 
|   | 
| class   | PDEFoam | 
|   | Implementation of PDEFoam.  More...
  | 
|   | 
| class   | PDEFoamCell | 
|   | 
| class   | PDEFoamDecisionTree | 
|   | This PDEFoam variant acts like a decision tree and stores in every cell the discriminant.  More...
  | 
|   | 
| class   | PDEFoamDecisionTreeDensity | 
|   | This is a concrete implementation of PDEFoam.  More...
  | 
|   | 
| class   | PDEFoamDensityBase | 
|   | This is an abstract class, which provides an interface for a PDEFoam density estimator.  More...
  | 
|   | 
| class   | PDEFoamDiscriminant | 
|   | This PDEFoam variant stores in every cell the discriminant.  More...
  | 
|   | 
| class   | PDEFoamDiscriminantDensity | 
|   | This is a concrete implementation of PDEFoam.  More...
  | 
|   | 
| class   | PDEFoamEvent | 
|   | This PDEFoam variant stores in every cell the sum of event weights and the sum of the squared event weights.  More...
  | 
|   | 
| class   | PDEFoamEventDensity | 
|   | This is a concrete implementation of PDEFoam.  More...
  | 
|   | 
| class   | PDEFoamKernelBase | 
|   | This class is the abstract kernel interface for PDEFoam.  More...
  | 
|   | 
| class   | PDEFoamKernelGauss | 
|   | This PDEFoam kernel estimates a cell value for a given event by weighting all cell values with a gauss function.  More...
  | 
|   | 
| class   | PDEFoamKernelLinN | 
|   | This PDEFoam kernel estimates a cell value for a given event by weighting with cell values of the nearest neighbor cells.  More...
  | 
|   | 
| class   | PDEFoamKernelTrivial | 
|   | This class is a trivial PDEFoam kernel estimator.  More...
  | 
|   | 
| class   | PDEFoamMultiTarget | 
|   | This PDEFoam variant is used to estimate multiple targets by creating an event density foam (PDEFoamEvent), which has dimension:  More...
  | 
|   | 
| class   | PDEFoamTarget | 
|   | This PDEFoam variant stores in every cell the average target fTarget (see the Constructor) as well as the statistical error on the target fTarget.  More...
  | 
|   | 
| class   | PDEFoamTargetDensity | 
|   | This is a concrete implementation of PDEFoam.  More...
  | 
|   | 
| class   | PDEFoamVect | 
|   | 
| class   | PDF | 
|   | PDF wrapper for histograms; uses user-defined spline interpolation.  More...
  | 
|   | 
| class   | PruningInfo | 
|   | 
| class   | PyMethodBase | 
|   | 
| class   | QuickMVAProbEstimator | 
|   | 
| class   | RandomGenerator | 
|   | 
| class   | Rank | 
|   | 
| class   | Ranking | 
|   | Ranking for variables in method (implementation)  More...
  | 
|   | 
| class   | Reader | 
|   | The Reader class serves to use the MVAs in a specific analysis context.  More...
  | 
|   | 
| class   | RegressionVariance | 
|   | Calculate the "SeparationGain" for Regression analysis separation criteria used in various training algorithms.  More...
  | 
|   | 
| class   | Results | 
|   | Class that is the base-class for a vector of result.  More...
  | 
|   | 
| class   | ResultsClassification | 
|   | Class that is the base-class for a vector of result.  More...
  | 
|   | 
| class   | ResultsMulticlass | 
|   | Class which takes the results of a multiclass classification.  More...
  | 
|   | 
| class   | ResultsRegression | 
|   | Class that is the base-class for a vector of result.  More...
  | 
|   | 
| class   | RMethodBase | 
|   | 
| class   | ROCCalc | 
|   | 
| class   | ROCCurve | 
|   | 
| class   | RootFinder | 
|   | Root finding using Brents algorithm (translated from CERNLIB function RZERO)  More...
  | 
|   | 
| class   | Rule | 
|   | Implementation of a rule.  More...
  | 
|   | 
| class   | RuleCut | 
|   | A class describing a 'rule cut'.  More...
  | 
|   | 
| class   | RuleEnsemble | 
|   | 
| class   | RuleFit | 
|   | A class implementing various fits of rule ensembles.  More...
  | 
|   | 
| class   | RuleFitAPI | 
|   | J Friedman's RuleFit method.  More...
  | 
|   | 
| class   | RuleFitParams | 
|   | A class doing the actual fitting of a linear model using rules as base functions.  More...
  | 
|   | 
| class   | SdivSqrtSplusB | 
|   | Implementation of the SdivSqrtSplusB as separation criterion.  More...
  | 
|   | 
| class   | SeparationBase | 
|   | An interface to calculate the "SeparationGain" for different separation criteria used in various training algorithms.  More...
  | 
|   | 
| class   | SimulatedAnnealing | 
|   | Base implementation of simulated annealing fitting procedure.  More...
  | 
|   | 
| class   | SimulatedAnnealingFitter | 
|   | Fitter using a Simulated Annealing Algorithm.  More...
  | 
|   | 
| class   | StatDialogBDT | 
|   | 
| class   | StatDialogBDTReg | 
|   | 
| class   | StatDialogMVAEffs | 
|   | 
| class   | SVEvent | 
|   | Event class for Support Vector Machine.  More...
  | 
|   | 
| class   | SVKernelFunction | 
|   | Kernel for Support Vector Machine.  More...
  | 
|   | 
| class   | SVKernelMatrix | 
|   | Kernel matrix for Support Vector Machine.  More...
  | 
|   | 
| class   | SVWorkingSet | 
|   | Working class for Support Vector Machine.  More...
  | 
|   | 
| class   | TActivation | 
|   | Interface for TNeuron activation function classes.  More...
  | 
|   | 
| class   | TActivationChooser | 
|   | Class for easily choosing activation functions.  More...
  | 
|   | 
| class   | TActivationIdentity | 
|   | Identity activation function for TNeuron.  More...
  | 
|   | 
| class   | TActivationRadial | 
|   | Radial basis activation function for ANN.  More...
  | 
|   | 
| class   | TActivationReLU | 
|   | Rectified Linear Unit activation function for TNeuron.  More...
  | 
|   | 
| class   | TActivationSigmoid | 
|   | Sigmoid activation function for TNeuron.  More...
  | 
|   | 
| class   | TActivationTanh | 
|   | Tanh activation function for ANN.  More...
  | 
|   | 
| class   | Timer | 
|   | Timing information for training and evaluation of MVA methods.  More...
  | 
|   | 
| class   | TMVAGaussPair | 
|   | 
| struct   | TMVAGUI | 
|   | 
| class   | TNeuron | 
|   | Neuron class used by TMVA artificial neural network methods.  More...
  | 
|   | 
| class   | TNeuronInput | 
|   | Interface for TNeuron input calculation classes.  More...
  | 
|   | 
| class   | TNeuronInputAbs | 
|   | TNeuron input calculator – calculates the sum of the absolute values of the weighted inputs.  More...
  | 
|   | 
| class   | TNeuronInputChooser | 
|   | Class for easily choosing neuron input functions.  More...
  | 
|   | 
| class   | TNeuronInputSqSum | 
|   | TNeuron input calculator – calculates the squared weighted sum of inputs.  More...
  | 
|   | 
| class   | TNeuronInputSum | 
|   | TNeuron input calculator – calculates the weighted sum of inputs.  More...
  | 
|   | 
| class   | Tools | 
|   | Global auxiliary applications and data treatment routines.  More...
  | 
|   | 
| class   | TrainingHistory | 
|   | Tracking data from training.  More...
  | 
|   | 
| class   | TransformationHandler | 
|   | Class that contains all the data information.  More...
  | 
|   | 
| class   | TreeInfo | 
|   | 
| class   | TSpline1 | 
|   | Linear interpolation of TGraph.  More...
  | 
|   | 
| class   | TSpline2 | 
|   | Quadratic interpolation of TGraph.  More...
  | 
|   | 
| class   | TSynapse | 
|   | Synapse class used by TMVA artificial neural network methods.  More...
  | 
|   | 
| struct   | TTrainingSettings | 
|   | All of the options that can be specified in the training string.  More...
  | 
|   | 
| class   | Types | 
|   | Singleton class for Global types used by TMVA.  More...
  | 
|   | 
| class   | VariableDecorrTransform | 
|   | Linear interpolation class.  More...
  | 
|   | 
| class   | VariableGaussTransform | 
|   | Gaussian Transformation of input variables.  More...
  | 
|   | 
| class   | VariableIdentityTransform | 
|   | Linear interpolation class.  More...
  | 
|   | 
| class   | VariableImportance | 
|   | 
| class   | VariableImportanceResult | 
|   | 
| class   | VariableInfo | 
|   | Class for type info of MVA input variable.  More...
  | 
|   | 
| class   | VariableNormalizeTransform | 
|   | Linear interpolation class.  More...
  | 
|   | 
| class   | VariablePCATransform | 
|   | Linear interpolation class.  More...
  | 
|   | 
| class   | VariableRearrangeTransform | 
|   | Rearrangement of input variables.  More...
  | 
|   | 
| class   | VariableTransformBase | 
|   | Linear interpolation class.  More...
  | 
|   | 
| class   | VarTransformHandler | 
|   | 
| class   | Volume | 
|   | Volume for BinarySearchTree.  More...
  | 
|   | 
 | 
| void  | ActionButton (TControlBar *cbar, const TString &title, const TString ¯o, const TString &comment, const TString &buttonType, TString requiredKey="") | 
|   | 
| void  | annconvergencetest (TString dataset, TDirectory *lhdir) | 
|   | 
| void  | annconvergencetest (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) | 
|   | 
| void  | BDT (TString dataset, const TString &fin="TMVA.root") | 
|   | 
| void  | BDT (TString dataset, Int_t itree, TString wfile, TString methName="BDT", Bool_t useTMVAStyle=kTRUE) | 
|   | 
| void  | BDT_DeleteTBar (int i) | 
|   | 
| void  | BDT_Reg (TString dataset, const TString &fin="TMVAReg.root") | 
|   | 
| void  | BDT_Reg (TString dataset, Int_t itree, TString wfile="", TString methName="BDT", Bool_t useTMVAStyle=kTRUE) | 
|   | 
| void  | bdtcontrolplots (TString dataset, TDirectory *) | 
|   | 
| void  | BDTControlPlots (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) | 
|   | 
| void  | BDTReg_DeleteTBar (int i) | 
|   | 
| void  | boostcontrolplots (TString dataset, TDirectory *boostdir) | 
|   | 
| void  | BoostControlPlots (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) | 
|   | 
| void  | compareanapp (TString finAn="TMVA.root", TString finApp="TMVApp.root", HistType htype=kMVAType, bool useTMVAStyle=kTRUE) | 
|   | 
| void  | correlations (TString dataset, TString fin="TMVA.root", Bool_t isRegression=kFALSE, Bool_t greyScale=kFALSE, Bool_t useTMVAStyle=kTRUE) | 
|   | 
| void  | correlationscatters (TString dataset, TString fin, TString var="var3", TString dirName_="InputVariables_Id", TString title="TMVA Input Variable", Bool_t isRegression=kFALSE, Bool_t useTMVAStyle=kTRUE) | 
|   | 
| void  | correlationscattersMultiClass (TString dataset, TString fin="TMVA.root", TString var="var3", TString dirName_="InputVariables_Id", TString title="TMVA Input Variable", Bool_t isRegression=kFALSE, Bool_t useTMVAStyle=kTRUE) | 
|   | 
| void  | correlationsMultiClass (TString dataset, TString fin="TMVA.root", Bool_t isRegression=kFALSE, Bool_t greyScale=kFALSE, Bool_t useTMVAStyle=kTRUE) | 
|   | 
| void  | CorrGui (TString dataset, TString fin="TMVA.root", TString dirName="InputVariables_Id", TString title="TMVA Input Variable", Bool_t isRegression=kFALSE) | 
|   | 
| void  | CorrGui_DeleteTBar () | 
|   | 
| void  | CorrGuiMultiClass (TString dataset, TString fin="TMVA.root", TString dirName="InputVariables_Id", TString title="TMVA Input Variable", Bool_t isRegression=kFALSE) | 
|   | 
| void  | CorrGuiMultiClass_DeleteTBar () | 
|   | 
| void  | CreateVariableTransforms (const TString &trafoDefinition, TMVA::DataSetInfo &dataInfo, TMVA::TransformationHandler &transformationHandler, TMVA::MsgLogger &log) | 
|   | 
| void  | DataLoaderCopy (TMVA::DataLoader *des, TMVA::DataLoader *src) | 
|   | 
| template<class T >  | 
| DeleteFunctor_t< const T >  | DeleteFunctor () | 
|   | 
| void  | deviations (TString dataset, TString fin="TMVAReg.root", HistType htype=kMVAType, Bool_t showTarget=kTRUE, Bool_t useTMVAStyle=kTRUE) | 
|   | 
| void  | draw_activation (TCanvas *c, Double_t cx, Double_t cy, Double_t radx, Double_t rady, Int_t whichActivation) | 
|   | 
| void  | draw_input_labels (TString dataset, Int_t nInputs, Double_t *cy, Double_t rad, Double_t layerWidth) | 
|   | 
| void  | draw_layer (TString dataset, TCanvas *c, TH2F *h, Int_t iHist, Int_t nLayers, Double_t maxWeight) | 
|   | 
| void  | draw_layer_labels (Int_t nLayers) | 
|   | 
| void  | draw_network (TString dataset, TFile *f, TDirectory *d, const TString &hName="weights_hist", Bool_t movieMode=kFALSE, const TString &epoch="") | 
|   | 
| void  | draw_synapse (Double_t cx1, Double_t cy1, Double_t cx2, Double_t cy2, Double_t rad1, Double_t rad2, Double_t weightNormed) | 
|   | 
| void  | DrawCell (TMVA::PDEFoamCell *cell, TMVA::PDEFoam *foam, Double_t x, Double_t y, Double_t xscale, Double_t yscale) | 
|   | 
| void  | DrawMLPoutputMovie (TString dataset, TFile *file, const TString &methodType, const TString &methodTitle) | 
|   | 
| void  | DrawNetworkMovie (TString dataset, TFile *file, const TString &methodType, const TString &methodTitle) | 
|   | 
| void  | efficiencies (TString dataset, TString fin="TMVA.root", Int_t type=2, Bool_t useTMVAStyle=kTRUE) | 
|   | 
| void  | efficienciesMulticlass1vs1 (TString dataset, TString fin) | 
|   | 
| void  | efficienciesMulticlass1vsRest (TString dataset, TString filename_input="TMVAMulticlass.root", EEfficiencyPlotType plotType=EEfficiencyPlotType::kRejBvsEffS, Bool_t useTMVAStyle=kTRUE) | 
|   | 
| MsgLogger &  | Endl (MsgLogger &ml) | 
|   | 
| TString  | fetchValue (const std::map< TString, TString > &keyValueMap, TString key) | 
|   | 
| template<>  | 
| bool  | fetchValue (const std::map< TString, TString > &keyValueMap, TString key, bool defaultValue) | 
|   | 
| template<>  | 
| double  | fetchValue (const std::map< TString, TString > &keyValueMap, TString key, double defaultValue) | 
|   | 
| template<>  | 
| int  | fetchValue (const std::map< TString, TString > &keyValueMap, TString key, int defaultValue) | 
|   | 
| template<>  | 
| std::vector< double >  | fetchValue (const std::map< TString, TString > &keyValueMap, TString key, std::vector< double > defaultValue) | 
|   | 
| template<typename T >  | 
| T  | fetchValue (const std::map< TString, TString > &keyValueMap, TString key, T defaultValue) | 
|   | 
| template<>  | 
| TString  | fetchValue (const std::map< TString, TString > &keyValueMap, TString key, TString defaultValue) | 
|   | 
| TString  | fetchValueTmp (const std::map< TString, TString > &keyValueMap, TString key) | 
|   | 
| template<>  | 
| bool  | fetchValueTmp (const std::map< TString, TString > &keyValueMap, TString key, bool defaultValue) | 
|   | 
| template<>  | 
| double  | fetchValueTmp (const std::map< TString, TString > &keyValueMap, TString key, double defaultValue) | 
|   | 
| template<>  | 
| int  | fetchValueTmp (const std::map< TString, TString > &keyValueMap, TString key, int defaultValue) | 
|   | 
| template<>  | 
| std::vector< double >  | fetchValueTmp (const std::map< TString, TString > &keyValueMap, TString key, std::vector< double > defaultValue) | 
|   | 
| template<typename T >  | 
| T  | fetchValueTmp (const std::map< TString, TString > &keyValueMap, TString key, T defaultValue) | 
|   | 
| template<>  | 
| TString  | fetchValueTmp (const std::map< TString, TString > &keyValueMap, TString key, TString defaultValue) | 
|   | 
| Config &  | gConfig () | 
|   | 
| TString *  | get_var_names (TString dataset, Int_t nVars) | 
|   | 
| Int_t  | getBkgColorF () | 
|   | 
| Int_t  | getBkgColorT () | 
|   | 
| std::vector< TString >  | getclassnames (TString dataset, TString fin) | 
|   | 
| Int_t  | getIntColorF () | 
|   | 
| Int_t  | getIntColorT () | 
|   | 
| TList *  | GetKeyList (const TString &pattern) | 
|   | 
| roccurvelist_t  | getRocCurves (TDirectory *binDir, TString methodPrefix, TString graphNameRef) | 
|   | 
| Int_t  | getSigColorF () | 
|   | 
| Int_t  | getSigColorT () | 
|   | 
| Tools &  | gTools () | 
|   | 
| Int_t  | LargestCommonDivider (Int_t a, Int_t b) | 
|   | 
| void  | likelihoodrefs (TString dataset, TDirectory *lhdir) | 
|   | 
| void  | likelihoodrefs (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) | 
|   | 
| void  | MovieMaker (TString dataset, TString methodType="Method_MLP", TString methodTitle="MLP") | 
|   | 
| void  | MultiClassActionButton (TControlBar *cbar, const TString &title, const TString ¯o, const TString &comment, const TString &buttonType, TString requiredKey="") | 
|   | 
| TList *  | MultiClassGetKeyList (const TString &pattern) | 
|   | 
| void  | mvaeffs (TString dataset, TString fin="TMVA.root", Float_t nSignal=1000, Float_t nBackground=1000, Bool_t useTMVAStyle=kTRUE, TString formula="S/sqrt(S+B)") | 
|   | 
| void  | mvas (TString dataset, TString fin="TMVA.root", HistType htype=kMVAType, Bool_t useTMVAStyle=kTRUE) | 
|   | 
| void  | mvasMulticlass (TString dataset, TString fin="TMVAMulticlass.root", HistType htype=kMVAType, Bool_t useTMVAStyle=kTRUE) | 
|   | 
| void  | mvaweights (TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) | 
|   | 
| void  | network (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) | 
|   | 
| template<typename F >  | 
| null_t< F >  | null () | 
|   | 
| Bool_t  | operator< (const GeneticGenes &, const GeneticGenes &) | 
|   | 
| std::ostream &  | operator<< (std::ostream &os, const BinaryTree &tree) | 
|   | 
| std::ostream &  | operator<< (std::ostream &os, const Event &event) | 
|   | 
| std::ostream &  | operator<< (std::ostream &os, const Node &node) | 
|   | 
| std::ostream &  | operator<< (std::ostream &os, const Node *node) | 
|   | 
| std::ostream &  | operator<< (std::ostream &os, const PDF &tree) | 
|   | 
| std::ostream &  | operator<< (std::ostream &os, const Rule &rule) | 
|   | 
| std::ostream &  | operator<< (std::ostream &os, const RuleEnsemble &event) | 
|   | 
| std::istream &  | operator>> (std::istream &istr, BinaryTree &tree) | 
|   | 
| std::istream &  | operator>> (std::istream &istr, PDF &tree) | 
|   | 
| void  | paracoor (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) | 
|   | 
| void  | Plot (TString fileName, TMVA::ECellValue cv, TString cv_long, bool useTMVAStyle=kTRUE) | 
|   | 
| void  | Plot1DimFoams (TList &foam_list, TMVA::ECellValue cell_value, const TString &cell_value_description, TMVA::PDEFoamKernelBase *kernel) | 
|   | 
| void  | plot_efficiencies (TString dataset, TFile *file, Int_t type=2, TDirectory *BinDir=nullptr) | 
|   | 
| void  | plot_training_history (TString dataset, TFile *file, TDirectory *BinDir=nullptr) | 
|   | 
| void  | PlotCellTree (TString fileName, TString cv_long, bool useTMVAStyle=kTRUE) | 
|   | 
| void  | plotEfficienciesMulticlass (roccurvelist_t rocCurves, classcanvasmap_t classCanvasMap) | 
|   | 
| void  | plotEfficienciesMulticlass1vs1 (TString dataset, TString fin, TString baseClassname) | 
|   | 
| void  | plotEfficienciesMulticlass1vsRest (TString dataset, EEfficiencyPlotType plotType=EEfficiencyPlotType::kRejBvsEffS, TString filename_input="TMVAMulticlass.root") | 
|   | 
| void  | PlotFoams (TString fileName="weights/TMVAClassification_PDEFoam.weights_foams.root", bool useTMVAStyle=kTRUE) | 
|   | 
| void  | PlotNDimFoams (TList &foam_list, TMVA::ECellValue cell_value, const TString &cell_value_description, TMVA::PDEFoamKernelBase *kernel) | 
|   | 
| void  | probas (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) | 
|   | 
| TString  | Python_Executable () | 
|   | Function to find current Python executable used by ROOT If Python2 is installed return "python" Instead if "Python3" return "python3".  
  | 
|   | 
| void  | RegGuiActionButton (TControlBar *cbar, const TString &title, const TString ¯o, const TString &comment, const TString &buttonType, TString requiredKey="") | 
|   | 
| TList *  | RegGuiGetKeyList (const TString &pattern) | 
|   | 
| void  | regression_averagedevs (TString dataset, TString fin, Int_t Nevt=-1, Bool_t useTMVAStyle=kTRUE) | 
|   | 
| void  | rulevis (TString fin="TMVA.root", TMVAGlob::TypeOfPlot type=TMVAGlob::kNorm, bool useTMVAStyle=kTRUE) | 
|   | 
| void  | rulevisCorr (TDirectory *rfdir, TDirectory *vardir, TDirectory *corrdir, TMVAGlob::TypeOfPlot type) | 
|   | 
| void  | rulevisCorr (TString fin="TMVA.root", TMVAGlob::TypeOfPlot type=TMVAGlob::kNorm, bool useTMVAStyle=kTRUE) | 
|   | 
| void  | rulevisHists (TDirectory *rfdir, TDirectory *vardir, TDirectory *corrdir, TMVAGlob::TypeOfPlot type) | 
|   | 
| void  | rulevisHists (TString fin="TMVA.root", TMVAGlob::TypeOfPlot type=TMVAGlob::kNorm, bool useTMVAStyle=kTRUE) | 
|   | 
| void  | TMVAGui (const char *fName="TMVA.root", TString dataset="") | 
|   | 
| void  | TMVAMultiClassGui (const char *fName="TMVAMulticlass.root", TString dataset="") | 
|   | 
| void  | TMVARegGui (const char *fName="TMVAReg.root", TString dataset="") | 
|   | 
| void  | training_history (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) | 
|   | 
| void  | variables (TString dataset, TString fin="TMVA.root", TString dirName="InputVariables_Id", TString title="TMVA Input Variables", Bool_t isRegression=kFALSE, Bool_t useTMVAStyle=kTRUE) | 
|   | 
| void  | variablesMultiClass (TString dataset, TString fin="TMVA.root", TString dirName="InputVariables_Id", TString title="TMVA Input Variables", Bool_t isRegression=kFALSE, Bool_t useTMVAStyle=kTRUE) | 
|   | 
create variable transformations