|
class | AbsoluteDeviationLossFunction |
| Absolute Deviation Loss Function. More...
|
|
class | AbsoluteDeviationLossFunctionBDT |
| Absolute Deviation BDT Loss Function. More...
|
|
class | AbsValue |
|
class | BDTEventWrapper |
|
class | BinarySearchTree |
| A simple Binary search tree including a volume search method. More...
|
|
class | BinarySearchTreeNode |
| Node for the BinarySearch or Decision Trees. More...
|
|
class | BinaryTree |
| Base class for BinarySearch and Decision Trees. More...
|
|
class | CCPruner |
| A helper class to prune a decision tree using the Cost Complexity method (see Classification and Regression Trees by Leo Breiman et al) More...
|
|
class | CCTreeWrapper |
|
class | ClassifierFactory |
| This is the MVA factory. More...
|
|
class | ClassInfo |
| Class that contains all the information of a class. More...
|
|
class | compose_binary_t |
|
class | compose_unary_t |
|
class | Config |
| Singleton class for global configuration settings used by TMVA. More...
|
|
class | Configurable |
|
class | ConvergenceTest |
| Check for convergence. More...
|
|
class | CostComplexityPruneTool |
| A class to prune a decision tree using the Cost Complexity method. More...
|
|
class | CrossEntropy |
| Implementation of the CrossEntropy as separation criterion. More...
|
|
class | CrossValidation |
| Class to perform cross validation, splitting the dataloader into folds. More...
|
|
class | CrossValidationFoldResult |
|
class | CrossValidationResult |
| Class to save the results of cross validation, the metric for the classification ins ROC and you can ROC curves ROC integrals, ROC average and ROC standard deviation. More...
|
|
class | CvSplit |
|
class | CvSplitKFolds |
|
class | CvSplitKFoldsExpr |
|
class | DataInputHandler |
| Class that contains all the data information. More...
|
|
class | DataLoader |
|
class | DataSet |
| Class that contains all the data information. More...
|
|
class | DataSetFactory |
| Class that contains all the data information. More...
|
|
class | DataSetInfo |
| Class that contains all the data information. More...
|
|
class | DataSetManager |
| Class that contains all the data information. More...
|
|
class | DecisionTree |
| Implementation of a Decision Tree. More...
|
|
class | DecisionTreeNode |
|
struct | DeleteFunctor_t |
|
class | DTNodeTrainingInfo |
|
class | Envelope |
| Abstract base class for all high level ml algorithms, you can book ml methods like BDT, MLP. More...
|
|
class | Event |
|
class | Executor |
| Base Excutor class. More...
|
|
class | ExpectedErrorPruneTool |
| A helper class to prune a decision tree using the expected error (C4.5) method. More...
|
|
class | Factory |
| This is the main MVA steering class. More...
|
|
class | FitterBase |
| Base class for TMVA fitters. More...
|
|
class | GeneticAlgorithm |
| Base definition for genetic algorithm. More...
|
|
class | GeneticFitter |
| Fitter using a Genetic Algorithm. More...
|
|
class | GeneticGenes |
| Cut optimisation interface class for genetic algorithm. More...
|
|
class | GeneticPopulation |
| Population definition for genetic algorithm. More...
|
|
class | GeneticRange |
| Range definition for genetic algorithm. More...
|
|
class | GiniIndex |
| Implementation of the GiniIndex as separation criterion. More...
|
|
class | GiniIndexWithLaplace |
| Implementation of the GiniIndex With Laplace correction as separation criterion. More...
|
|
class | HuberLossFunction |
| Huber Loss Function. More...
|
|
class | HuberLossFunctionBDT |
| Huber BDT Loss Function. More...
|
|
class | HyperParameterOptimisation |
|
class | HyperParameterOptimisationResult |
|
class | IFitterTarget |
| Interface for a fitter 'target'. More...
|
|
class | IMethod |
| Interface for all concrete MVA method implementations. More...
|
|
class | Increment |
|
class | Interval |
| The TMVA::Interval Class. More...
|
|
class | IPruneTool |
| IPruneTool - a helper interface class to prune a decision tree. More...
|
|
class | IPythonInteractive |
| This class is needed by JsMVA, and it's a helper class for tracking errors during the training in Jupyter notebook. More...
|
|
class | KDEKernel |
| KDE Kernel for "smoothing" the PDFs. More...
|
|
class | LDA |
|
class | LeastSquaresLossFunction |
| Least Squares Loss Function. More...
|
|
class | LeastSquaresLossFunctionBDT |
| Least Squares BDT Loss Function. More...
|
|
class | LogInterval |
| The TMVA::Interval Class. More...
|
|
class | LossFunction |
|
class | LossFunctionBDT |
|
class | LossFunctionEventInfo |
|
class | MCFitter |
| Fitter using Monte Carlo sampling of parameters. More...
|
|
class | MethodANNBase |
| Base class for all TMVA methods using artificial neural networks. More...
|
|
class | MethodBase |
| Virtual base Class for all MVA method. More...
|
|
class | MethodBayesClassifier |
| Description of bayesian classifiers. More...
|
|
class | MethodBDT |
| Analysis of Boosted Decision Trees. More...
|
|
class | MethodBoost |
| Class for boosting a TMVA method. More...
|
|
class | MethodC50 |
|
class | MethodCategory |
| Class for categorizing the phase space. More...
|
|
class | MethodCFMlpANN |
| Interface to Clermond-Ferrand artificial neural network. More...
|
|
class | MethodCFMlpANN_Utils |
| Implementation of Clermond-Ferrand artificial neural network. More...
|
|
class | MethodCompositeBase |
| Virtual base class for combining several TMVA method. More...
|
|
class | MethodCrossValidation |
|
class | MethodCuts |
| Multivariate optimisation of signal efficiency for given background efficiency, applying rectangular minimum and maximum requirements. More...
|
|
class | MethodDL |
|
class | MethodDNN |
| Deep Neural Network Implementation. More...
|
|
class | MethodDT |
| Analysis of Boosted Decision Trees. More...
|
|
class | MethodFDA |
| Function discriminant analysis (FDA). More...
|
|
class | MethodFisher |
| Fisher and Mahalanobis Discriminants (Linear Discriminant Analysis) More...
|
|
class | MethodHMatrix |
| H-Matrix method, which is implemented as a simple comparison of chi-squared estimators for signal and background, taking into account the linear correlations between the input variables. More...
|
|
class | MethodInfo |
|
class | MethodKNN |
| Analysis of k-nearest neighbor. More...
|
|
class | MethodLD |
| Linear Discriminant. More...
|
|
class | MethodLikelihood |
| Likelihood analysis ("non-parametric approach") More...
|
|
class | MethodMLP |
| Multilayer Perceptron class built off of MethodANNBase. More...
|
|
class | MethodPDEFoam |
| The PDEFoam method is an extension of the PDERS method, which divides the multi-dimensional phase space in a finite number of hyper-rectangles (cells) of constant event density. More...
|
|
class | MethodPDERS |
| This is a generalization of the above Likelihood methods to \( N_{var} \) dimensions, where \( N_{var} \) is the number of input variables used in the MVA. More...
|
|
class | MethodPyAdaBoost |
|
class | MethodPyGTB |
|
class | MethodPyKeras |
|
class | MethodPyRandomForest |
|
class | MethodPyTorch |
|
class | MethodRSNNS |
|
class | MethodRSVM |
|
class | MethodRuleFit |
| J Friedman's RuleFit method. More...
|
|
class | MethodRXGB |
|
class | MethodSVM |
| SMO Platt's SVM classifier with Keerthi & Shavade improvements. More...
|
|
class | MethodTMlpANN |
| This is the TMVA TMultiLayerPerceptron interface class. More...
|
|
class | MinuitFitter |
| /Fitter using MINUIT More...
|
|
class | MinuitWrapper |
| Wrapper around MINUIT. More...
|
|
class | MisClassificationError |
| Implementation of the MisClassificationError as separation criterion. More...
|
|
class | Monitoring |
|
class | MsgLogger |
| ostringstream derivative to redirect and format output More...
|
|
class | Node |
| Node for the BinarySearch or Decision Trees. More...
|
|
class | null_t |
|
class | OptimizeConfigParameters |
|
class | Option |
|
class | Option< T * > |
|
class | OptionBase |
| Class for TMVA-option handling. More...
|
|
class | OptionMap |
| class to storage options for the differents methods More...
|
|
class | PDEFoam |
| Implementation of PDEFoam. More...
|
|
class | PDEFoamCell |
|
class | PDEFoamDecisionTree |
| This PDEFoam variant acts like a decision tree and stores in every cell the discriminant. More...
|
|
class | PDEFoamDecisionTreeDensity |
| This is a concrete implementation of PDEFoam. More...
|
|
class | PDEFoamDensityBase |
| This is an abstract class, which provides an interface for a PDEFoam density estimator. More...
|
|
class | PDEFoamDiscriminant |
| This PDEFoam variant stores in every cell the discriminant. More...
|
|
class | PDEFoamDiscriminantDensity |
| This is a concrete implementation of PDEFoam. More...
|
|
class | PDEFoamEvent |
| This PDEFoam variant stores in every cell the sum of event weights and the sum of the squared event weights. More...
|
|
class | PDEFoamEventDensity |
| This is a concrete implementation of PDEFoam. More...
|
|
class | PDEFoamKernelBase |
| This class is the abstract kernel interface for PDEFoam. More...
|
|
class | PDEFoamKernelGauss |
| This PDEFoam kernel estimates a cell value for a given event by weighting all cell values with a gauss function. More...
|
|
class | PDEFoamKernelLinN |
| This PDEFoam kernel estimates a cell value for a given event by weighting with cell values of the nearest neighbor cells. More...
|
|
class | PDEFoamKernelTrivial |
| This class is a trivial PDEFoam kernel estimator. More...
|
|
class | PDEFoamMultiTarget |
| This PDEFoam variant is used to estimate multiple targets by creating an event density foam (PDEFoamEvent), which has dimension: More...
|
|
class | PDEFoamTarget |
| This PDEFoam variant stores in every cell the average target fTarget (see the Constructor) as well as the statistical error on the target fTarget. More...
|
|
class | PDEFoamTargetDensity |
| This is a concrete implementation of PDEFoam. More...
|
|
class | PDEFoamVect |
|
class | PDF |
| PDF wrapper for histograms; uses user-defined spline interpolation. More...
|
|
class | PruningInfo |
|
class | PyMethodBase |
|
class | QuickMVAProbEstimator |
|
class | RandomGenerator |
|
class | Rank |
|
class | Ranking |
| Ranking for variables in method (implementation) More...
|
|
class | Reader |
| The Reader class serves to use the MVAs in a specific analysis context. More...
|
|
class | RegressionVariance |
| Calculate the "SeparationGain" for Regression analysis separation criteria used in various training algorithms. More...
|
|
class | Results |
| Class that is the base-class for a vector of result. More...
|
|
class | ResultsClassification |
| Class that is the base-class for a vector of result. More...
|
|
class | ResultsMulticlass |
| Class which takes the results of a multiclass classification. More...
|
|
class | ResultsRegression |
| Class that is the base-class for a vector of result. More...
|
|
class | RMethodBase |
|
class | ROCCalc |
|
class | ROCCurve |
|
class | RootFinder |
| Root finding using Brents algorithm (translated from CERNLIB function RZERO) More...
|
|
class | Rule |
| Implementation of a rule. More...
|
|
class | RuleCut |
| A class describing a 'rule cut'. More...
|
|
class | RuleEnsemble |
|
class | RuleFit |
| A class implementing various fits of rule ensembles. More...
|
|
class | RuleFitAPI |
| J Friedman's RuleFit method. More...
|
|
class | RuleFitParams |
| A class doing the actual fitting of a linear model using rules as base functions. More...
|
|
class | SdivSqrtSplusB |
| Implementation of the SdivSqrtSplusB as separation criterion. More...
|
|
class | SeparationBase |
| An interface to calculate the "SeparationGain" for different separation criteria used in various training algorithms. More...
|
|
class | SimulatedAnnealing |
| Base implementation of simulated annealing fitting procedure. More...
|
|
class | SimulatedAnnealingFitter |
| Fitter using a Simulated Annealing Algorithm. More...
|
|
class | StatDialogBDT |
|
class | StatDialogBDTReg |
|
class | StatDialogMVAEffs |
|
class | SVEvent |
| Event class for Support Vector Machine. More...
|
|
class | SVKernelFunction |
| Kernel for Support Vector Machine. More...
|
|
class | SVKernelMatrix |
| Kernel matrix for Support Vector Machine. More...
|
|
class | SVWorkingSet |
| Working class for Support Vector Machine. More...
|
|
class | TActivation |
| Interface for TNeuron activation function classes. More...
|
|
class | TActivationChooser |
| Class for easily choosing activation functions. More...
|
|
class | TActivationIdentity |
| Identity activation function for TNeuron. More...
|
|
class | TActivationRadial |
| Radial basis activation function for ANN. More...
|
|
class | TActivationReLU |
| Rectified Linear Unit activation function for TNeuron. More...
|
|
class | TActivationSigmoid |
| Sigmoid activation function for TNeuron. More...
|
|
class | TActivationTanh |
| Tanh activation function for ANN. More...
|
|
class | Timer |
| Timing information for training and evaluation of MVA methods. More...
|
|
class | TMVAGaussPair |
|
struct | TMVAGUI |
|
class | TNeuron |
| Neuron class used by TMVA artificial neural network methods. More...
|
|
class | TNeuronInput |
| Interface for TNeuron input calculation classes. More...
|
|
class | TNeuronInputAbs |
| TNeuron input calculator – calculates the sum of the absolute values of the weighted inputs. More...
|
|
class | TNeuronInputChooser |
| Class for easily choosing neuron input functions. More...
|
|
class | TNeuronInputSqSum |
| TNeuron input calculator – calculates the squared weighted sum of inputs. More...
|
|
class | TNeuronInputSum |
| TNeuron input calculator – calculates the weighted sum of inputs. More...
|
|
class | Tools |
| Global auxiliary applications and data treatment routines. More...
|
|
class | TrainingHistory |
| Tracking data from training. More...
|
|
class | TransformationHandler |
| Class that contains all the data information. More...
|
|
class | TreeInfo |
|
class | TSpline1 |
| Linear interpolation of TGraph. More...
|
|
class | TSpline2 |
| Quadratic interpolation of TGraph. More...
|
|
class | TSynapse |
| Synapse class used by TMVA artificial neural network methods. More...
|
|
struct | TTrainingSettings |
| All of the options that can be specified in the training string. More...
|
|
class | Types |
| Singleton class for Global types used by TMVA. More...
|
|
class | VariableDecorrTransform |
| Linear interpolation class. More...
|
|
class | VariableGaussTransform |
| Gaussian Transformation of input variables. More...
|
|
class | VariableIdentityTransform |
| Linear interpolation class. More...
|
|
class | VariableImportance |
|
class | VariableImportanceResult |
|
class | VariableInfo |
| Class for type info of MVA input variable. More...
|
|
class | VariableNormalizeTransform |
| Linear interpolation class. More...
|
|
class | VariablePCATransform |
| Linear interpolation class. More...
|
|
class | VariableRearrangeTransform |
| Rearrangement of input variables. More...
|
|
class | VariableTransformBase |
| Linear interpolation class. More...
|
|
class | VarTransformHandler |
|
class | Volume |
| Volume for BinarySearchTree. More...
|
|
|
void | ActionButton (TControlBar *cbar, const TString &title, const TString ¯o, const TString &comment, const TString &buttonType, TString requiredKey="") |
|
void | annconvergencetest (TString dataset, TDirectory *lhdir) |
|
void | annconvergencetest (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) |
|
void | BDT (TString dataset, const TString &fin="TMVA.root") |
|
void | BDT (TString dataset, Int_t itree, TString wfile, TString methName="BDT", Bool_t useTMVAStyle=kTRUE) |
|
void | BDT_DeleteTBar (int i) |
|
void | BDT_Reg (TString dataset, const TString &fin="TMVAReg.root") |
|
void | BDT_Reg (TString dataset, Int_t itree, TString wfile="", TString methName="BDT", Bool_t useTMVAStyle=kTRUE) |
|
void | bdtcontrolplots (TString dataset, TDirectory *) |
|
void | BDTControlPlots (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) |
|
void | BDTReg_DeleteTBar (int i) |
|
void | boostcontrolplots (TString dataset, TDirectory *boostdir) |
|
void | BoostControlPlots (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) |
|
void | compareanapp (TString finAn="TMVA.root", TString finApp="TMVApp.root", HistType htype=kMVAType, bool useTMVAStyle=kTRUE) |
|
template<typename F , typename G , typename H > |
compose_binary_t< F, G, H > | compose_binary (const F &_f, const G &_g, const H &_h) |
|
template<typename F , typename G > |
compose_unary_t< F, G > | compose_unary (const F &_f, const G &_g) |
|
void | correlations (TString dataset, TString fin="TMVA.root", Bool_t isRegression=kFALSE, Bool_t greyScale=kFALSE, Bool_t useTMVAStyle=kTRUE) |
|
void | correlationscatters (TString dataset, TString fin, TString var="var3", TString dirName_="InputVariables_Id", TString title="TMVA Input Variable", Bool_t isRegression=kFALSE, Bool_t useTMVAStyle=kTRUE) |
|
void | correlationscattersMultiClass (TString dataset, TString fin="TMVA.root", TString var="var3", TString dirName_="InputVariables_Id", TString title="TMVA Input Variable", Bool_t isRegression=kFALSE, Bool_t useTMVAStyle=kTRUE) |
|
void | correlationsMultiClass (TString dataset, TString fin="TMVA.root", Bool_t isRegression=kFALSE, Bool_t greyScale=kFALSE, Bool_t useTMVAStyle=kTRUE) |
|
void | CorrGui (TString dataset, TString fin="TMVA.root", TString dirName="InputVariables_Id", TString title="TMVA Input Variable", Bool_t isRegression=kFALSE) |
|
void | CorrGui_DeleteTBar () |
|
void | CorrGuiMultiClass (TString dataset, TString fin="TMVA.root", TString dirName="InputVariables_Id", TString title="TMVA Input Variable", Bool_t isRegression=kFALSE) |
|
void | CorrGuiMultiClass_DeleteTBar () |
|
void | CreateVariableTransforms (const TString &trafoDefinition, TMVA::DataSetInfo &dataInfo, TMVA::TransformationHandler &transformationHandler, TMVA::MsgLogger &log) |
|
void | DataLoaderCopy (TMVA::DataLoader *des, TMVA::DataLoader *src) |
|
template<class T > |
DeleteFunctor_t< const T > | DeleteFunctor () |
|
void | deviations (TString dataset, TString fin="TMVAReg.root", HistType htype=kMVAType, Bool_t showTarget=kTRUE, Bool_t useTMVAStyle=kTRUE) |
|
void | draw_activation (TCanvas *c, Double_t cx, Double_t cy, Double_t radx, Double_t rady, Int_t whichActivation) |
|
void | draw_input_labels (TString dataset, Int_t nInputs, Double_t *cy, Double_t rad, Double_t layerWidth) |
|
void | draw_layer (TString dataset, TCanvas *c, TH2F *h, Int_t iHist, Int_t nLayers, Double_t maxWeight) |
|
void | draw_layer_labels (Int_t nLayers) |
|
void | draw_network (TString dataset, TFile *f, TDirectory *d, const TString &hName="weights_hist", Bool_t movieMode=kFALSE, const TString &epoch="") |
|
void | draw_synapse (Double_t cx1, Double_t cy1, Double_t cx2, Double_t cy2, Double_t rad1, Double_t rad2, Double_t weightNormed) |
|
void | DrawCell (TMVA::PDEFoamCell *cell, TMVA::PDEFoam *foam, Double_t x, Double_t y, Double_t xscale, Double_t yscale) |
|
void | DrawMLPoutputMovie (TString dataset, TFile *file, const TString &methodType, const TString &methodTitle) |
|
void | DrawNetworkMovie (TString dataset, TFile *file, const TString &methodType, const TString &methodTitle) |
|
void | efficiencies (TString dataset, TString fin="TMVA.root", Int_t type=2, Bool_t useTMVAStyle=kTRUE) |
|
void | efficienciesMulticlass1vs1 (TString dataset, TString fin) |
|
void | efficienciesMulticlass1vsRest (TString dataset, TString filename_input="TMVAMulticlass.root", EEfficiencyPlotType plotType=EEfficiencyPlotType::kRejBvsEffS, Bool_t useTMVAStyle=kTRUE) |
|
MsgLogger & | Endl (MsgLogger &ml) |
|
TString | fetchValue (const std::map< TString, TString > &keyValueMap, TString key) |
|
template<> |
bool | fetchValue (const std::map< TString, TString > &keyValueMap, TString key, bool defaultValue) |
|
template<> |
double | fetchValue (const std::map< TString, TString > &keyValueMap, TString key, double defaultValue) |
|
template<> |
int | fetchValue (const std::map< TString, TString > &keyValueMap, TString key, int defaultValue) |
|
template<> |
std::vector< double > | fetchValue (const std::map< TString, TString > &keyValueMap, TString key, std::vector< double > defaultValue) |
|
template<typename T > |
T | fetchValue (const std::map< TString, TString > &keyValueMap, TString key, T defaultValue) |
|
template<> |
TString | fetchValue (const std::map< TString, TString > &keyValueMap, TString key, TString defaultValue) |
|
TString | fetchValueTmp (const std::map< TString, TString > &keyValueMap, TString key) |
|
template<> |
bool | fetchValueTmp (const std::map< TString, TString > &keyValueMap, TString key, bool defaultValue) |
|
template<> |
double | fetchValueTmp (const std::map< TString, TString > &keyValueMap, TString key, double defaultValue) |
|
template<> |
int | fetchValueTmp (const std::map< TString, TString > &keyValueMap, TString key, int defaultValue) |
|
template<> |
std::vector< double > | fetchValueTmp (const std::map< TString, TString > &keyValueMap, TString key, std::vector< double > defaultValue) |
|
template<typename T > |
T | fetchValueTmp (const std::map< TString, TString > &keyValueMap, TString key, T defaultValue) |
|
template<> |
TString | fetchValueTmp (const std::map< TString, TString > &keyValueMap, TString key, TString defaultValue) |
|
Config & | gConfig () |
|
TString * | get_var_names (TString dataset, Int_t nVars) |
|
Int_t | getBkgColorF () |
|
Int_t | getBkgColorT () |
|
std::vector< TString > | getclassnames (TString dataset, TString fin) |
|
Int_t | getIntColorF () |
|
Int_t | getIntColorT () |
|
TList * | GetKeyList (const TString &pattern) |
|
roccurvelist_t | getRocCurves (TDirectory *binDir, TString methodPrefix, TString graphNameRef) |
|
Int_t | getSigColorF () |
|
Int_t | getSigColorT () |
|
Tools & | gTools () |
|
Int_t | LargestCommonDivider (Int_t a, Int_t b) |
|
void | likelihoodrefs (TString dataset, TDirectory *lhdir) |
|
void | likelihoodrefs (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) |
|
void | MovieMaker (TString dataset, TString methodType="Method_MLP", TString methodTitle="MLP") |
|
void | MultiClassActionButton (TControlBar *cbar, const TString &title, const TString ¯o, const TString &comment, const TString &buttonType, TString requiredKey="") |
|
TList * | MultiClassGetKeyList (const TString &pattern) |
|
void | mvaeffs (TString dataset, TString fin="TMVA.root", Float_t nSignal=1000, Float_t nBackground=1000, Bool_t useTMVAStyle=kTRUE, TString formula="S/sqrt(S+B)") |
|
void | mvas (TString dataset, TString fin="TMVA.root", HistType htype=kMVAType, Bool_t useTMVAStyle=kTRUE) |
|
void | mvasMulticlass (TString dataset, TString fin="TMVAMulticlass.root", HistType htype=kMVAType, Bool_t useTMVAStyle=kTRUE) |
|
void | mvaweights (TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) |
|
void | network (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) |
|
template<typename F > |
null_t< F > | null () |
|
Bool_t | operator< (const GeneticGenes &, const GeneticGenes &) |
|
std::ostream & | operator<< (std::ostream &os, const BinaryTree &tree) |
|
std::ostream & | operator<< (std::ostream &os, const Event &event) |
|
std::ostream & | operator<< (std::ostream &os, const Node &node) |
|
std::ostream & | operator<< (std::ostream &os, const Node *node) |
|
std::ostream & | operator<< (std::ostream &os, const PDF &tree) |
|
std::ostream & | operator<< (std::ostream &os, const Rule &rule) |
|
std::ostream & | operator<< (std::ostream &os, const RuleEnsemble &event) |
|
std::istream & | operator>> (std::istream &istr, BinaryTree &tree) |
|
std::istream & | operator>> (std::istream &istr, PDF &tree) |
|
void | paracoor (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) |
|
void | Plot (TString fileName, TMVA::ECellValue cv, TString cv_long, bool useTMVAStyle=kTRUE) |
|
void | Plot1DimFoams (TList &foam_list, TMVA::ECellValue cell_value, const TString &cell_value_description, TMVA::PDEFoamKernelBase *kernel) |
|
void | plot_efficiencies (TString dataset, TFile *file, Int_t type=2, TDirectory *BinDir=0) |
|
void | plot_training_history (TString dataset, TFile *file, TDirectory *BinDir=0) |
|
void | PlotCellTree (TString fileName, TString cv_long, bool useTMVAStyle=kTRUE) |
|
void | plotEfficienciesMulticlass (roccurvelist_t rocCurves, classcanvasmap_t classCanvasMap) |
|
void | plotEfficienciesMulticlass1vs1 (TString dataset, TString fin, TString baseClassname) |
|
void | plotEfficienciesMulticlass1vsRest (TString dataset, EEfficiencyPlotType plotType=EEfficiencyPlotType::kRejBvsEffS, TString filename_input="TMVAMulticlass.root") |
|
void | PlotFoams (TString fileName="weights/TMVAClassification_PDEFoam.weights_foams.root", bool useTMVAStyle=kTRUE) |
|
void | PlotNDimFoams (TList &foam_list, TMVA::ECellValue cell_value, const TString &cell_value_description, TMVA::PDEFoamKernelBase *kernel) |
|
void | probas (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) |
|
void | RegGuiActionButton (TControlBar *cbar, const TString &title, const TString ¯o, const TString &comment, const TString &buttonType, TString requiredKey="") |
|
TList * | RegGuiGetKeyList (const TString &pattern) |
|
void | regression_averagedevs (TString dataset, TString fin, Int_t Nevt=-1, Bool_t useTMVAStyle=kTRUE) |
|
void | rulevis (TString fin="TMVA.root", TMVAGlob::TypeOfPlot type=TMVAGlob::kNorm, bool useTMVAStyle=kTRUE) |
|
void | rulevisCorr (TDirectory *rfdir, TDirectory *vardir, TDirectory *corrdir, TMVAGlob::TypeOfPlot type) |
|
void | rulevisCorr (TString fin="TMVA.root", TMVAGlob::TypeOfPlot type=TMVAGlob::kNorm, bool useTMVAStyle=kTRUE) |
|
void | rulevisHists (TDirectory *rfdir, TDirectory *vardir, TDirectory *corrdir, TMVAGlob::TypeOfPlot type) |
|
void | rulevisHists (TString fin="TMVA.root", TMVAGlob::TypeOfPlot type=TMVAGlob::kNorm, bool useTMVAStyle=kTRUE) |
|
void | TMVAGui (const char *fName="TMVA.root", TString dataset="") |
|
void | TMVAMultiClassGui (const char *fName="TMVAMulticlass.root", TString dataset="") |
|
void | TMVARegGui (const char *fName="TMVAReg.root", TString dataset="") |
|
void | training_history (TString dataset, TString fin="TMVA.root", Bool_t useTMVAStyle=kTRUE) |
|
void | variables (TString dataset, TString fin="TMVA.root", TString dirName="InputVariables_Id", TString title="TMVA Input Variables", Bool_t isRegression=kFALSE, Bool_t useTMVAStyle=kTRUE) |
|
void | variablesMultiClass (TString dataset, TString fin="TMVA.root", TString dirName="InputVariables_Id", TString title="TMVA Input Variables", Bool_t isRegression=kFALSE, Bool_t useTMVAStyle=kTRUE) |
|
create variable transformations