144 if (exl)
fEXlow[i] = exl[i];
148 if (eyl)
fEYlow[i] = eyl[i];
167 if(exl) { memcpy(
fEXlow, exl,
n);
168 }
else { memset(
fEXlow, 0,
n); }
171 if(eyl) { memcpy(
fEYlow, eyl,
n);
172 }
else { memset(
fEYlow, 0,
n); }
198 fX[i] = vx(i+ivxlow);
199 fY[i] = vy(i+ivylow);
200 fEXlow[i] = vexl(i+ivexllow);
201 fEYlow[i] = veyl(i+iveyllow);
228 fX[i] = vx(i+ivxlow);
229 fY[i] = vy(i+ivylow);
230 fEXlow[i] = vexl(i+ivexllow);
231 fEYlow[i] = veyl(i+iveyllow);
250 fEYlow[i] =
h->GetBinErrorLow(i+1);
251 fEYhigh[i] =
h->GetBinErrorUp(i+1);;
261 :
TGraph((pass)?pass->GetNbinsX():0)
263 if (!pass || !
total) {
264 Error(
"TGraphAsymmErrors",
"Invalid histogram pointers");
269 std::string sname =
"divide_" + std::string(pass->
GetName()) +
"_by_" +
270 std::string(
total->GetName());
275 pass->TAttLine::Copy(*
this);
276 pass->TAttFill::Copy(*
this);
277 pass->TAttMarker::Copy(*
this);
306 std::ifstream infile(fname.
Data());
307 if (!infile.good()) {
309 Error(
"TGraphAsymmErrors",
"Cannot open file: %s, TGraphAsymmErrors is Zombie", filename);
316 if (strcmp(option,
"") == 0) {
320 while (std::getline(infile,
line,
'\n')) {
321 exl = exh = eyl = eyh = 0;
323 res = sscanf(
line.c_str(), format, &
x, &
y);
324 }
else if (ncol < 5) {
325 res = sscanf(
line.c_str(), format, &
x, &
y, &eyl, &eyh);
327 res = sscanf(
line.c_str(), format, &
x, &
y, &exl, &exh, &eyl, &eyh);
349 Error(
"TGraphAsymmErrors",
"Incorrect input format! Allowed format tags are {\"%%lg\",\"%%*lg\" or \"%%*s\"}");
354 Error(
"TGraphAsymmErrors",
"Incorrect input format! Only %d tag(s) in format whereas at least 2 \"%%lg\" tags are expected!", ntokens);
357 Int_t ntokensToBeSaved = 0 ;
359 for (
Int_t idx = 0; idx < ntokens; idx++) {
361 if (isTokenToBeSaved[idx] == 1) {
365 if (ntokens >= 2 && (ntokensToBeSaved < 2 || ntokensToBeSaved > 4)) {
366 Error(
"TGraphAsymmErrors",
"Incorrect input format! There are %d \"%%lg\" tag(s) in format whereas 2,3 or 4 are expected!", ntokensToBeSaved);
367 delete [] isTokenToBeSaved ;
373 char * token = NULL ;
375 Int_t token_idx = 0 ;
377 for (
Int_t k = 0; k < 6; k++) {
380 Int_t value_idx = 0 ;
384 while (std::getline(infile,
line,
'\n')) {
386 if (
line[
line.size() - 1] ==
char(13)) {
389 token = R__STRTOK_R(
const_cast<char*
>(
line.c_str()), option, &rest) ;
390 while (token != NULL && value_idx < ntokensToBeSaved) {
391 if (isTokenToBeSaved[token_idx]) {
395 isLineToBeSkipped =
kTRUE ;
398 value[value_idx] = token_str.
Atof() ;
402 token = R__STRTOK_R(NULL, option, &rest);
405 if (!isLineToBeSkipped && value_idx > 1) {
417 isLineToBeSkipped =
kFALSE ;
425 delete [] isTokenToBeSaved ;
463 Double_t x,
y,exl,exh,eyl,eyh,eyl_new,eyh_new,fxy;
481 if (
f->Eval(
x,
y-eyl)<
f->Eval(
x,
y+eyh)) {
585 if(!pass || !
total) {
586 Error(
"Divide",
"one of the passed pointers is zero");
592 Error(
"Divide",
"passed histograms are not one-dimensional");
598 Bool_t bEffective =
false;
604 for (
int i = 0; i < pass->
GetNcells(); ++i) {
618 if (
total->GetSumw2()->fN > 0) {
619 for (
int i = 0; i <
total->GetNcells(); ++i) {
620 tsumw +=
total->GetBinContent(i);
621 tsumw2 +=
total->GetSumw2()->At(i);
625 tsumw =
total->GetSumOfWeights();
650 Bool_t bIsBayesian =
false;
659 Info(
"Divide",
"weight will be considered in the Histogram Ratio");
667 sscanf(strstr(option.
Data(),
"cl="),
"cl=%lf",&level);
668 if((level > 0) && (level < 1))
671 Warning(
"Divide",
"given confidence level %.3lf is invalid",level);
678 Bool_t usePosteriorMode =
false;
679 Bool_t useShortestInterval =
false;
683 sscanf(strstr(option.
Data(),
"b("),
"b(%lf,%lf)", &
a, &
b);
687 Warning(
"Divide",
"given shape parameter for alpha %.2lf is invalid",
a);
691 Warning(
"Divide",
"given shape parameter for beta %.2lf is invalid",
b);
700 usePosteriorMode =
true;
703 if (option.
Contains(
"sh") || (usePosteriorMode && !option.
Contains(
"cen"))) {
704 useShortestInterval =
true;
739 Bool_t bPoissonRatio =
false;
741 bPoissonRatio =
true;
753 Warning(
"Divide",
"Histograms have weights: only Normal or Bayesian error calculation is supported");
754 Info(
"Divide",
"Using now the Normal approximation for weighted histograms");
759 Error(
"Divide",
"passed histograms are not of the same dimension");
764 Error(
"Divide",
"passed histograms are not consistent");
770 Error(
"Divide",
"passed histograms are not consistent");
785 double eff, low, upper;
790 Double_t tw = 0, tw2 = 0, pw = 0, pw2 = 0, wratio = 1;
801 tw =
total->GetBinContent(
b);
802 tw2 = (
total->GetSumw2()->fN > 0) ?
total->GetSumw2()->At(
b) : tw;
812 if (pw == 0 && pw2 == 0)
817 if (tw == 0 && tw2 == 0)
822 if (pw > 0 && tw > 0)
824 wratio = (pw * t) / (p * tw);
825 else if (pw == 0 && tw > 0)
828 wratio = (psumw2 * t) / (psumw * tw);
829 else if (tw == 0 && pw > 0)
832 wratio = (pw * tsumw) / (p * tsumw2);
837 if (!plot0Bins)
continue;
842 }
else if (tw <= 0 && !plot0Bins)
852 t = std::round(
total->GetBinContent(
b));
858 if (t == 0.0 && !plot0Bins)
866 if ((bEffective && !bPoissonRatio) && tw2 <= 0) {
869 low = eff; upper = eff;
873 if (bEffective && !bPoissonRatio) {
875 double norm = tw/tw2;
876 aa = pw * norm + alpha;
877 bb = (tw - pw) * norm + beta;
883 if (usePosteriorMode)
888 if (useShortestInterval) {
899 if (bEffective && !bPoissonRatio) {
908 double variance = ( pw2 * (1. - 2 * eff) + tw2 * eff *eff ) / ( tw * tw) ;
909 double sigma = sqrt(variance);
911 double prob = 0.5 * (1.-conf);
915 if (low < 0) low = 0;
916 if (upper > 1) upper = 1.;
924 low = pBound(t,p,conf,
false);
925 upper = pBound(t,p,conf,
true);
933 low = low/(1. - low);
934 upper = upper/(1.-upper);
956 Warning(
"Divide",
"Number of graph points is different than histogram bins - %d points have been skipped",nbins-npoint);
960 Info(
"Divide",
"made a graph with %d points from %d bins",npoint,nbins);
961 Info(
"Divide",
"used confidence level: %.2lf\n",conf);
963 Info(
"Divide",
"used prior probability ~ beta(%.2lf,%.2lf)",alpha,beta);
1033 memmove(&arrays[0][obegin], &
fEXlow[ibegin],
n);
1034 memmove(&arrays[1][obegin], &
fEXhigh[ibegin],
n);
1035 memmove(&arrays[2][obegin], &
fEYlow[ibegin],
n);
1036 memmove(&arrays[3][obegin], &
fEYhigh[ibegin],
n);
1073 if (
g->GetN() == 0)
return kFALSE;
1079 if (exl == 0 || exh == 0 || eyl == 0 || eyh == 0) {
1080 if (
g->IsA() != TGraph::Class() )
1081 Warning(
"DoMerge",
"Merging a %s is not compatible with a TGraphAsymmErrors - errors will be ignored",
g->IsA()->GetName());
1084 for (
Int_t i = 0 ; i <
g->GetN(); i++) {
1117 if (i < 0 || i >=
fNpoints)
return -1;
1122 return TMath::Sqrt(0.5*(elow*elow + ehigh*ehigh));
1131 if (i < 0 || i >=
fNpoints)
return -1;
1136 return TMath::Sqrt(0.5*(elow*elow + ehigh*ehigh));
1195 "Cannot merge - an object which doesn't inherit from TGraph found in the list");
1199 int n1 = n0+
g->GetN();
1207 for (
Int_t i = 0 ; i <
g->GetN(); i++) {
1209 if (exlow)
fEXlow[n0+i] = exlow[i];
1210 if (exhigh)
fEXhigh[n0+i] = exhigh[i];
1211 if (eylow)
fEYlow[n0+i] = eylow[i];
1212 if (eyhigh)
fEYhigh[n0+i] = eyhigh[i];
1224 printf(
"x[%d]=%g, y[%d]=%g, exl[%d]=%g, exh[%d]=%g, eyl[%d]=%g, eyh[%d]=%g\n"
1225 ,i,
fX[i],i,
fY[i],i,
fEXlow[i],i,
fEXhigh[i],i,
fEYlow[i],i,
fEYhigh[i]);
1236 out <<
" " << std::endl;
1237 static Int_t frameNumber = 3000;
1247 out <<
" Double_t " << fXName <<
"[" <<
fNpoints <<
"] = {" << std::endl;
1248 for (i = 0; i <
fNpoints-1; i++) out <<
" " <<
fX[i] <<
"," << std::endl;
1249 out <<
" " <<
fX[
fNpoints-1] <<
"};" << std::endl;
1250 out <<
" Double_t " << fYName <<
"[" <<
fNpoints <<
"] = {" << std::endl;
1251 for (i = 0; i <
fNpoints-1; i++) out <<
" " <<
fY[i] <<
"," << std::endl;
1252 out <<
" " <<
fY[
fNpoints-1] <<
"};" << std::endl;
1253 out <<
" Double_t " << fElXName <<
"[" <<
fNpoints <<
"] = {" << std::endl;
1254 for (i = 0; i <
fNpoints-1; i++) out <<
" " <<
fEXlow[i] <<
"," << std::endl;
1256 out <<
" Double_t " << fElYName <<
"[" <<
fNpoints <<
"] = {" << std::endl;
1257 for (i = 0; i <
fNpoints-1; i++) out <<
" " <<
fEYlow[i] <<
"," << std::endl;
1259 out <<
" Double_t " << fEhXName <<
"[" <<
fNpoints <<
"] = {" << std::endl;
1260 for (i = 0; i <
fNpoints-1; i++) out <<
" " <<
fEXhigh[i] <<
"," << std::endl;
1262 out <<
" Double_t " << fEhYName <<
"[" <<
fNpoints <<
"] = {" << std::endl;
1263 for (i = 0; i <
fNpoints-1; i++) out <<
" " <<
fEYhigh[i] <<
"," << std::endl;
1266 if (
gROOT->ClassSaved(TGraphAsymmErrors::Class())) out<<
" ";
1267 else out <<
" TGraphAsymmErrors *";
1268 out <<
"grae = new TGraphAsymmErrors("<<
fNpoints <<
","
1269 << fXName <<
"," << fYName <<
","
1270 << fElXName <<
"," << fEhXName <<
","
1271 << fElYName <<
"," << fEhYName <<
");"
1274 out <<
" grae->SetName(" << quote <<
GetName() << quote <<
");" << std::endl;
1275 out <<
" grae->SetTitle(" << quote <<
GetTitle() << quote <<
");" << std::endl;
1283 hname += frameNumber;
1287 out<<
" "<<std::endl;
1293 while ((obj = next())) {
1296 out <<
" grae->GetListOfFunctions()->Add(ptstats);" << std::endl;
1297 out <<
" ptstats->SetParent(grae->GetListOfFunctions());" << std::endl;
1302 out <<
" " << objname <<
"->SetParent(grae);\n";
1304 out <<
" grae->GetListOfFunctions()->Add("
1305 << objname <<
");" << std::endl;
1309 const char *
l = strstr(option,
"multigraph");
1311 out<<
" multigraph->Add(grae,"<<quote<<
l+10<<quote<<
");"<<std::endl;
1313 out<<
" grae->Draw("<<quote<<option<<quote<<
");"<<std::endl;
1361 if (dpx*dpx+dpy*dpy < 25) {ipoint = i;
break;}
1363 if (ipoint == -2)
return;
1449void TGraphAsymmErrors::Streamer(
TBuffer &
b)
1451 if (
b.IsReading()) {
1453 Version_t R__v =
b.ReadVersion(&R__s, &R__c);
1455 b.ReadClassBuffer(TGraphAsymmErrors::Class(),
this, R__v, R__s, R__c);
1459 TGraph::Streamer(
b);
1489 b.CheckByteCount(R__s, R__c, TGraphAsymmErrors::IsA());
1493 b.WriteClassBuffer(TGraphAsymmErrors::Class(),
this);
size_t size(const MatrixT &matrix)
retrieve the size of a square matrix
static unsigned int total
char * Form(const char *fmt,...)
R__EXTERN TStyle * gStyle
R__EXTERN TSystem * gSystem
Double_t At(Int_t i) const
virtual void SaveFillAttributes(std::ostream &out, const char *name, Int_t coldef=1, Int_t stydef=1001)
Save fill attributes as C++ statement(s) on output stream out.
virtual void SaveLineAttributes(std::ostream &out, const char *name, Int_t coldef=1, Int_t stydef=1, Int_t widdef=1)
Save line attributes as C++ statement(s) on output stream out.
virtual void SaveMarkerAttributes(std::ostream &out, const char *name, Int_t coldef=1, Int_t stydef=1, Int_t sizdef=1)
Save line attributes as C++ statement(s) on output stream out.
Buffer base class used for serializing objects.
Collection abstract base class.
static Double_t BetaMode(Double_t alpha, Double_t beta)
Compute the mode of the beta distribution.
static Bool_t BetaShortestInterval(Double_t level, Double_t alpha, Double_t beta, Double_t &lower, Double_t &upper)
Calculates the boundaries for a shortest confidence interval for a Beta distribution.
static Double_t BetaMean(Double_t alpha, Double_t beta)
Compute the mean (average) of the beta distribution.
static Double_t AgrestiCoull(Double_t total, Double_t passed, Double_t level, Bool_t bUpper)
Calculates the boundaries for the frequentist Agresti-Coull interval.
static Double_t FeldmanCousins(Double_t total, Double_t passed, Double_t level, Bool_t bUpper)
Calculates the boundaries for the frequentist Feldman-Cousins interval.
static Bool_t CheckBinning(const TH1 &pass, const TH1 &total)
Checks binning for each axis.
static Double_t BetaCentralInterval(Double_t level, Double_t alpha, Double_t beta, Bool_t bUpper)
Calculates the boundaries for a central confidence interval for a Beta distribution.
static Double_t MidPInterval(Double_t total, Double_t passed, Double_t level, Bool_t bUpper)
Calculates the boundaries using the mid-P binomial interval (Lancaster method) from B.
static Double_t Normal(Double_t total, Double_t passed, Double_t level, Bool_t bUpper)
Returns the confidence limits for the efficiency supposing that the efficiency follows a normal distr...
static Double_t Wilson(Double_t total, Double_t passed, Double_t level, Bool_t bUpper)
Calculates the boundaries for the frequentist Wilson interval.
static Bool_t CheckConsistency(const TH1 &pass, const TH1 &total, Option_t *opt="")
Checks the consistence of the given histograms.
static Double_t ClopperPearson(Double_t total, Double_t passed, Double_t level, Bool_t bUpper)
Calculates the boundaries for the frequentist Clopper-Pearson interval.
TGraph with asymmetric error bars.
virtual void Print(Option_t *chopt="") const
Print graph and errors values.
virtual Double_t ** Allocate(Int_t size)
Allocate internal data structures for size points.
Double_t * GetEXhigh() const
virtual void SetPointEYlow(Int_t i, Double_t eyl)
Set EYlow for point i.
Double_t * GetEYlow() const
virtual void ComputeRange(Double_t &xmin, Double_t &ymin, Double_t &xmax, Double_t &ymax) const
Compute Range.
Double_t * fEXhigh
[fNpoints] array of X high errors
virtual ~TGraphAsymmErrors()
TGraphAsymmErrors default destructor.
virtual void Divide(const TH1 *pass, const TH1 *total, Option_t *opt="cp")
Fill this TGraphAsymmErrors by dividing two 1-dimensional histograms pass/total.
Bool_t CtorAllocate()
Should be called from ctors after fNpoints has been set.
virtual void SetPointError(Double_t exl, Double_t exh, Double_t eyl, Double_t eyh)
Set ex and ey values for point pointed by the mouse.
Double_t GetErrorYhigh(Int_t i) const
Get high error on Y.
virtual void CopyAndRelease(Double_t **newarrays, Int_t ibegin, Int_t iend, Int_t obegin)
Copy and release.
Double_t * fEYhigh
[fNpoints] array of Y high errors
virtual void SavePrimitive(std::ostream &out, Option_t *option="")
Save primitive as a C++ statement(s) on output stream out.
virtual void SetPointEXlow(Int_t i, Double_t exl)
Set EXlow for point i.
Double_t GetErrorYlow(Int_t i) const
Get low error on Y.
virtual void SetPointEYhigh(Int_t i, Double_t eyh)
Set EYhigh for point i.
virtual void FillZero(Int_t begin, Int_t end, Bool_t from_ctor=kTRUE)
Set zero values for point arrays in the range [begin, end]
virtual void BayesDivide(const TH1 *pass, const TH1 *total, Option_t *opt="")
This function is only kept for backward compatibility.
Double_t * GetEXlow() const
Double_t GetErrorXlow(Int_t i) const
Get low error on X.
Double_t * fEYlow
[fNpoints] array of Y low errors
Double_t GetErrorXhigh(Int_t i) const
Get high error on X.
virtual void Apply(TF1 *f)
Apply a function to all data points .
virtual Int_t Merge(TCollection *list)
Adds all graphs with asymmetric errors from the collection to this graph.
Double_t * fEXlow
[fNpoints] array of X low errors
Double_t GetErrorY(Int_t bin) const
It returns the error along Y at point i.
virtual Bool_t DoMerge(const TGraph *g)
Protected function to perform the merge operation of a graph with asymmetric errors.
Double_t * GetEYhigh() const
virtual void SetPointEXhigh(Int_t i, Double_t exh)
Set EXhigh for point i.
virtual Bool_t CopyPoints(Double_t **arrays, Int_t ibegin, Int_t iend, Int_t obegin)
Copy errors from fE*** to arrays[***] or to f*** Copy points.
virtual void Scale(Double_t c1=1., Option_t *option="y")
Multiply the values and errors of a TGraphAsymmErrors by a constant c1.
virtual void SwapPoints(Int_t pos1, Int_t pos2)
Swap points.
TGraphAsymmErrors()
TGraphAsymmErrors default constructor.
TGraphAsymmErrors & operator=(const TGraphAsymmErrors &gr)
TGraphAsymmErrors assignment operator.
Double_t GetErrorX(Int_t bin) const
It returns the error along X at point i.
static Int_t CalculateScanfFields(const char *fmt)
Calculate scan fields.
A TGraph is an object made of two arrays X and Y with npoints each.
Int_t fNpoints
Number of points <= fMaxSize.
virtual void SetPoint(Int_t i, Double_t x, Double_t y)
Set x and y values for point number i.
Int_t fMaxSize
!Current dimension of arrays fX and fY
TH1F * fHistogram
Pointer to histogram used for drawing axis.
virtual void SetName(const char *name="")
Set graph name.
virtual void SetTitle(const char *title="")
Change (i.e.
Double_t * fY
[fNpoints] array of Y points
Bool_t CtorAllocate()
In constructors set fNpoints than call this method.
virtual void ComputeRange(Double_t &xmin, Double_t &ymin, Double_t &xmax, Double_t &ymax) const
Compute the x/y range of the points in this graph.
Double_t ** AllocateArrays(Int_t Narrays, Int_t arraySize)
Allocate arrays.
virtual void Scale(Double_t c1=1., Option_t *option="y")
Multiply the values of a TGraph by a constant c1.
TList * fFunctions
Pointer to list of functions (fits and user)
static void SwapValues(Double_t *arr, Int_t pos1, Int_t pos2)
Swap values.
virtual Bool_t DoMerge(const TGraph *g)
protected function to perform the merge operation of a graph
virtual void SwapPoints(Int_t pos1, Int_t pos2)
Swap points.
virtual void FillZero(Int_t begin, Int_t end, Bool_t from_ctor=kTRUE)
Set zero values for point arrays in the range [begin, end) Should be redefined in descendant classes.
Double_t * fX
[fNpoints] array of X points
virtual void Set(Int_t n)
Set number of points in the graph Existing coordinates are preserved New coordinates above fNpoints a...
virtual Int_t GetPoint(Int_t i, Double_t &x, Double_t &y) const
Get x and y values for point number i.
virtual Bool_t CopyPoints(Double_t **newarrays, Int_t ibegin, Int_t iend, Int_t obegin)
Copy points from fX and fY to arrays[0] and arrays[1] or to fX and fY if arrays == 0 and ibegin !...
TGraph & operator=(const TGraph &)
Equal operator for this graph.
TH1 is the base class of all histogram classes in ROOT.
virtual void SavePrimitive(std::ostream &out, Option_t *option="")
Save primitive as a C++ statement(s) on output stream out.
virtual Double_t GetBinCenter(Int_t bin) const
Return bin center for 1D histogram.
virtual Int_t GetDimension() const
virtual Int_t GetNcells() const
virtual Int_t GetNbinsX() const
virtual Double_t GetBinLowEdge(Int_t bin) const
Return bin lower edge for 1D histogram.
virtual void SetName(const char *name)
Change the name of this histogram.
virtual Double_t GetBinContent(Int_t bin) const
Return content of bin number bin.
virtual TArrayD * GetSumw2()
virtual Double_t GetBinWidth(Int_t bin) const
Return bin width for 1D histogram.
virtual Double_t GetSumOfWeights() const
Return the sum of weights excluding under/overflows.
virtual const char * GetTitle() const
Returns title of object.
virtual const char * GetName() const
Returns name of object.
Mother of all ROOT objects.
virtual const char * GetName() const
Returns name of object.
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.
virtual void SavePrimitive(std::ostream &out, Option_t *option="")
Save a primitive as a C++ statement(s) on output stream "out".
virtual Bool_t InheritsFrom(const char *classname) const
Returns kTRUE if object inherits from class "classname".
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
virtual void Info(const char *method, const char *msgfmt,...) const
Issue info message.
void ToLower()
Change string to lower-case.
Int_t Atoi() const
Return integer value of string.
Double_t Atof() const
Return floating-point value contained in string.
Bool_t IsFloat() const
Returns kTRUE if string contains a floating point or integer number.
const char * Data() const
Bool_t IsDigit() const
Returns true if all characters in string are digits (0-9) or white spaces, i.e.
TString & ReplaceAll(const TString &s1, const TString &s2)
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString.
void Form(const char *fmt,...)
Formats a string using a printf style format descriptor.
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
Float_t GetErrorX() const
virtual Bool_t ExpandPathName(TString &path)
Expand a pathname getting rid of special shell characters like ~.
double normal_quantile_c(double z, double sigma)
Inverse ( ) of the cumulative distribution function of the upper tail of the normal (Gaussian) distri...
Int_t Finite(Double_t x)
Check if it is finite with a mask in order to be consistent in presence of fast math.
Double_t Sqrt(Double_t x)
Short_t Min(Short_t a, Short_t b)