1#ifndef ROOT_TEfficiency_cxx
2#define ROOT_TEfficiency_cxx
683 Info(
"TEfficiency",
"given histograms are filled with weights");
688 Error(
"TEfficiency(const TH1&,const TH1&)",
"histograms are not consistent -> results are useless");
689 Warning(
"TEfficiency(const TH1&,const TH1&)",
"using two empty TH1D('h1','h1',10,0,10)");
911 fTotalHistogram =
new TH3D(
"total",
"total",nbinsx,xlow,xup,nbinsy,ylow,yup,nbinsz,zlow,zup);
912 fPassedHistogram =
new TH3D(
"passed",
"passed",nbinsx,xlow,xup,nbinsy,ylow,yup,nbinsz,zlow,zup);
986fBeta_alpha(rEff.fBeta_alpha),
987fBeta_beta(rEff.fBeta_beta),
988fBeta_bin_params(rEff.fBeta_bin_params),
989fConfLevel(rEff.fConfLevel),
1018 rEff.TAttLine::Copy(*
this);
1019 rEff.TAttFill::Copy(*
this);
1020 rEff.TAttMarker::Copy(*
this);
1081 Double_t mode = (passed + 0.5 * kappa * kappa) / (
total + kappa * kappa);
1082 Double_t delta = kappa * std::sqrt(mode * (1 - mode) / (
total + kappa * kappa));
1085 return ((mode + delta) > 1) ? 1.0 : (mode + delta);
1087 return ((mode - delta) < 0) ? 0.0 : (mode - delta);
1104 ::Error(
"FeldmanCousins",
"Error running FC method - return 0 or 1");
1106 return (bUpper) ? upper : lower;
1135 double alpha = 1.-level;
1159 const double alpha = 1. - level;
1160 const bool equal_tailed =
true;
1161 const double alpha_min = equal_tailed ? alpha/2 : alpha;
1162 const double tol = 1
e-9;
1172 if ( passed > 0 && passed < 1) {
1175 p = (p1 - p0) * passed + p0;
1179 while (std::abs(pmax - pmin) > tol) {
1180 p = (pmin + pmax)/2;
1188 double vmin = (bUpper) ? alpha_min : 1.- alpha_min;
1260 return (bUpper) ? upper : lower;
1278 if((
a > 0) && (
b > 0))
1281 gROOT->Error(
"TEfficiency::BayesianCentral",
"Invalid input parameters - return 1");
1286 if((
a > 0) && (
b > 0))
1289 gROOT->Error(
"TEfficiency::BayesianCentral",
"Invalid input parameters - return 0");
1333 if (
a <= 0 ||
b <= 0) {
1334 lower = 0; upper = 1;
1335 gROOT->Error(
"TEfficiency::BayesianShortest",
"Invalid input parameters - return [0,1]");
1354 if (
a==
b &&
a<=1.0) {
1368 bool ret = minim.
Minimize(100, 1.E-10,1.E-10);
1370 gROOT->Error(
"TEfficiency::BayesianShortes",
"Error finding the shortest interval");
1387 if (
a <= 0 ||
b <= 0 ) {
1388 gROOT->Error(
"TEfficiency::BayesianMean",
"Invalid input parameters - return 0");
1410 if (
a <= 0 ||
b <= 0 ) {
1411 gROOT->Error(
"TEfficiency::BayesianMode",
"Invalid input parameters - return 0");
1414 if (
a <= 1 ||
b <= 1) {
1415 if (
a <
b)
return 0;
1416 if (
a >
b)
return 1;
1417 if (
a ==
b)
return 0.5;
1457 const TAxis* ax1 = 0;
1458 const TAxis* ax2 = 0;
1465 ax2 =
total.GetXaxis();
1469 ax2 =
total.GetYaxis();
1473 ax2 =
total.GetZaxis();
1478 gROOT->Info(
"TEfficiency::CheckBinning",
"Histograms are not consistent: they have different number of bins");
1484 gROOT->Info(
"TEfficiency::CheckBinning",
"Histograms are not consistent: they have different bin edges");
1506 gROOT->Error(
"TEfficiency::CheckConsistency",
"passed TEfficiency objects have different dimensions");
1511 gROOT->Error(
"TEfficiency::CheckConsistency",
"passed TEfficiency objects have different binning");
1516 gROOT->Error(
"TEfficiency::CheckConsistency",
"passed TEfficiency objects do not have consistent bin contents");
1539 Int_t nbinsx, nbinsy, nbinsz, nbins;
1546 case 1: nbins = nbinsx + 2;
break;
1547 case 2: nbins = (nbinsx + 2) * (nbinsy + 2);
break;
1548 case 3: nbins = (nbinsx + 2) * (nbinsy + 2) * (nbinsz + 2);
break;
1552 for(
Int_t i = 0; i < nbins; ++i) {
1554 gROOT->Info(
"TEfficiency::CheckEntries",
"Histograms are not consistent: passed bin content > total bin content");
1567 if (pass.
GetSumw2N() == 0 &&
total.GetSumw2N() == 0)
return false;
1574 total.GetStats(stattotal);
1576 double tolerance = (
total.IsA() == TH1F::Class() ) ? 1.E-5 : 1.E-12;
1597 Error(
"CreatePaintingGraph",
"Call this function only for dimension == 1");
1604 graph->SetName(
"eff_graph");
1620 Bool_t plot0Bins =
false;
1621 if (option.
Contains(
"e0") ) plot0Bins =
true;
1630 double * px =
graph->GetX();
1631 double * py =
graph->GetY();
1632 double * exl =
graph->GetEXlow();
1633 double * exh =
graph->GetEXhigh();
1634 double * eyl =
graph->GetEYlow();
1635 double * eyh =
graph->GetEYhigh();
1637 for (
Int_t i = 0; i < npoints; ++i) {
1646 if (j >=
graph->GetN() ) {
1648 graph->SetPointError(j,xlow,xup,ylow,yup);
1666 if (oldTitle != newTitle ) {
1667 graph->SetTitle(newTitle);
1673 if (xlabel)
graph->GetXaxis()->SetTitle(xlabel);
1674 if (ylabel)
graph->GetYaxis()->SetTitle(ylabel);
1691 graph->GetHistogram();
1702 Error(
"CreatePaintingistogram",
"Call this function only for dimension == 2");
1753 for(
Int_t i = 0; i < nbinsx + 2; ++i) {
1754 for(
Int_t j = 0; j < nbinsy + 2; ++j) {
1825 Double_t alpha = (1.0 - level) / 2;
1936 for (
int i = 0; i <
n ; ++i) {
1937 if(pass[i] >
total[i]) {
1938 ::Error(
"TEfficiency::Combine",
"total events = %i < passed events %i",
total[i],pass[i]);
1939 ::Info(
"TEfficiency::Combine",
"stop combining");
1943 ntot += w[i] *
total[i];
1944 ktot += w[i] * pass[i];
1949 double norm = sumw/sumw2;
1953 ::Error(
"TEfficiency::Combine",
"total = %f < passed %f",ntot,ktot);
1954 ::Info(
"TEfficiency::Combine",
"stop combining");
1958 double a = ktot + alpha;
1959 double b = ntot - ktot + beta;
1961 double mean =
a/(
a+
b);
1967 if (shortestInterval)
1974 if (option.
Contains(
"mode"))
return mode;
2025 std::vector<TH1*> vTotal; vTotal.reserve(
n);
2026 std::vector<TH1*> vPassed; vPassed.reserve(
n);
2027 std::vector<Double_t> vWeights; vWeights.reserve(
n);
2043 level = atof( opt(pos,opt.
Length() ).
Data() );
2044 if((level <= 0) || (level >= 1))
2052 for(
Int_t k = 0; k <
n; ++k) {
2054 vWeights.push_back(w[k]);
2056 gROOT->Error(
"TEfficiency::Combine",
"invalid custom weight found w = %.2lf",w[k]);
2057 gROOT->Info(
"TEfficiency::Combine",
"stop combining");
2066 while((obj = next())) {
2092 vWeights.push_back(pEff->
fWeight);
2107 if(vTotal.empty()) {
2108 gROOT->Error(
"TEfficiency::Combine",
"no TEfficiency objects in given list");
2109 gROOT->Info(
"TEfficiency::Combine",
"stop combining");
2114 if(bWeights && (
n != (
Int_t)vTotal.size())) {
2115 gROOT->Error(
"TEfficiency::Combine",
"number of weights n=%i differs from number of TEfficiency objects k=%i which should be combined",
n,(
Int_t)vTotal.size());
2116 gROOT->Info(
"TEfficiency::Combine",
"stop combining");
2120 Int_t nbins_max = vTotal.at(0)->GetNbinsX();
2122 for(
UInt_t i=0; i<vTotal.size(); ++i) {
2124 gROOT->Warning(
"TEfficiency::Combine",
"histograms have not the same binning -> results may be useless");
2125 if(vTotal.at(i)->GetNbinsX() < nbins_max) nbins_max = vTotal.at(i)->GetNbinsX();
2130 gROOT->Info(
"TEfficiency::Combine",
"combining %i TEfficiency objects",(
Int_t)vTotal.size());
2132 gROOT->Info(
"TEfficiency::Combine",
"using custom weights");
2134 gROOT->Info(
"TEfficiency::Combine",
"using the following prior probability for the efficiency: P(e) ~ Beta(e,%.3lf,%.3lf)",alpha,beta);
2137 gROOT->Info(
"TEfficiency::Combine",
"using individual priors of each TEfficiency object");
2138 gROOT->Info(
"TEfficiency::Combine",
"confidence level = %.2lf",level);
2142 std::vector<Double_t>
x(nbins_max);
2143 std::vector<Double_t> xlow(nbins_max);
2144 std::vector<Double_t> xhigh(nbins_max);
2145 std::vector<Double_t> eff(nbins_max);
2146 std::vector<Double_t> efflow(nbins_max);
2147 std::vector<Double_t> effhigh(nbins_max);
2151 Int_t num = vTotal.size();
2152 std::vector<Int_t> pass(num);
2153 std::vector<Int_t>
total(num);
2158 for(
Int_t i=1; i <= nbins_max; ++i) {
2160 x[i-1] = vTotal.at(0)->GetBinCenter(i);
2161 xlow[i-1] =
x[i-1] - vTotal.at(0)->GetBinLowEdge(i);
2162 xhigh[i-1] = vTotal.at(0)->GetBinWidth(i) - xlow[i-1];
2164 for(
Int_t j = 0; j < num; ++j) {
2165 pass[j] = (
Int_t)(vPassed.at(j)->GetBinContent(i) + 0.5);
2166 total[j] = (
Int_t)(vTotal.at(j)->GetBinContent(i) + 0.5);
2170 eff[i-1] =
Combine(up,low,num,&pass[0],&
total[0],alpha,beta,level,&vWeights[0],opt.
Data());
2172 if(eff[i-1] == -1) {
2173 gROOT->Error(
"TEfficiency::Combine",
"error occurred during combining");
2174 gROOT->Info(
"TEfficiency::Combine",
"stop combining");
2177 efflow[i-1]= eff[i-1] - low;
2178 effhigh[i-1]= up - eff[i-1];
2225 if (option.
IsNull()) option =
"colz";
2228 if (option.
IsNull()) option =
"ap";
2232 if (!option.
Contains(
"p") ) option +=
"p";
2365 Bool_t bDeleteOld =
true;
2376 auto pFunc =
static_cast<TF1*
>(
f1->IsA()->New());
2382 while((obj = next())) {
2502 if (tw2 <= 0 )
return pw/tw;
2505 double norm = tw/tw2;
2506 aa = pw * norm + alpha;
2507 bb = (tw - pw) * norm + beta;
2511 aa = passed + alpha;
2512 bb =
total - passed + beta;
2555 if (tw2 <= 0)
return 0;
2560 Double_t bb = (tw - pw) * norm + beta;
2576 Warning(
"GetEfficiencyErrorLow",
"frequentist confidence intervals for weights are only supported by the normal approximation");
2577 Info(
"GetEfficiencyErrorLow",
"setting statistic option to kFNormal");
2581 Double_t variance = ( pw2 * (1. - 2 * eff) + tw2 * eff *eff ) / ( tw * tw) ;
2588 return (eff - delta < 0) ? eff : delta;
2635 if (tw2 <= 0)
return 0;
2640 Double_t bb = (tw - pw) * norm + beta;
2656 Warning(
"GetEfficiencyErrorUp",
"frequentist confidence intervals for weights are only supported by the normal approximation");
2657 Info(
"GetEfficiencyErrorUp",
"setting statistic option to kFNormal");
2661 Double_t variance = ( pw2 * (1. - 2 * eff) + tw2 * eff *eff ) / ( tw * tw) ;
2667 return (eff + delta > 1) ? 1.-eff : delta;
2724 while((obj = next())) {
2758 if (
total == 0)
return (bUpper) ? 1 : 0;
2764 return ((average + delta) > 1) ? 1.0 : (average + delta);
2766 return ((average - delta) < 0) ? 0.0 : (average - delta);
2791 Fatal(
"operator+=",
"Adding to a non consistent TEfficiency object which has not a total or a passed histogram ");
2796 Warning(
"operator+=",
"no operation: adding an empty object");
2800 Fatal(
"operator+=",
"Adding a non consistent TEfficiency object which has not a total or a passed histogram ");
2856 rhs.TAttLine::Copy(*
this);
2857 rhs.TAttFill::Copy(*
this);
2858 rhs.TAttMarker::Copy(*
this);
2910 while((obj = next())) {
2913 ((
TF1*)obj)->Paint(
"sameC");
2933 Warning(
"Paint",
"Painting 3D efficiency is not implemented");
2947 static Int_t naxis = 0;
2948 TString sxaxis=
"xAxis",syaxis=
"yAxis",szaxis=
"zAxis";
2971 out <<
indent <<
"Double_t " << sxaxis <<
"["
2974 if (i != 0) out <<
", ";
2977 out <<
"}; " << std::endl;
2980 out <<
indent <<
"Double_t " << syaxis <<
"["
2983 if (i != 0) out <<
", ";
2986 out <<
"}; " << std::endl;
2990 out <<
indent <<
"Double_t " << szaxis <<
"["
2993 if (i != 0) out <<
", ";
2996 out <<
"}; " << std::endl;
3001 static Int_t eff_count = 0;
3004 eff_name += eff_count;
3006 const char*
name = eff_name.
Data();
3009 const char quote =
'"';
3010 out <<
indent << std::endl;
3012 <<
"(" << quote <<
GetName() << quote <<
"," << quote
3040 out <<
");" << std::endl;
3041 out <<
indent << std::endl;
3055 out <<
indent <<
name <<
"->SetUseWeightedEvents();" << std::endl;
3072 for(
Int_t i = 0; i < nbins; ++i) {
3073 out <<
indent <<
name <<
"->SetTotalEvents(" << i <<
"," <<
3075 out <<
indent <<
name <<
"->SetPassedEvents(" << i <<
"," <<
3082 while((obj = next())) {
3085 out <<
indent <<
name <<
"->GetListOfFunctions()->Add("
3086 << obj->
GetName() <<
");" << std::endl;
3099 out<<
indent <<
name<<
"->Draw(" << quote << opt << quote <<
");"
3118 Warning(
"SetBetaAlpha(Double_t)",
"invalid shape parameter %.2lf",alpha);
3136 Warning(
"SetBetaBeta(Double_t)",
"invalid shape parameter %.2lf",beta);
3176 Error(
"SetBins",
"Using wrong SetBins function for a %d-d histogram",
GetDimension());
3180 Warning(
"SetBins",
"Histogram entries will be lost after SetBins");
3196 Error(
"SetBins",
"Using wrong SetBins function for a %d-d histogram",
GetDimension());
3200 Warning(
"SetBins",
"Histogram entries will be lost after SetBins");
3216 Error(
"SetBins",
"Using wrong SetBins function for a %d-d histogram",
GetDimension());
3220 Warning(
"SetBins",
"Histogram entries will be lost after SetBins");
3236 Error(
"SetBins",
"Using wrong SetBins function for a %d-d histogram",
GetDimension());
3240 Warning(
"SetBins",
"Histogram entries will be lost after SetBins");
3257 Error(
"SetBins",
"Using wrong SetBins function for a %d-d histogram",
GetDimension());
3261 Warning(
"SetBins",
"Histogram entries will be lost after SetBins");
3278 Error(
"SetBins",
"Using wrong SetBins function for a %d-d histogram",
GetDimension());
3282 Warning(
"SetBins",
"Histogram entries will be lost after SetBins");
3297 if((level > 0) && (level < 1))
3300 Warning(
"SetConfidenceLevel(Double_t)",
"invalid confidence level %.2lf",level);
3352 if(events <= fTotalHistogram->GetBinContent(bin)) {
3357 Error(
"SetPassedEvents(Int_t,Int_t)",
"total number of events (%.1lf) in bin %i is less than given number of passed events %i",
fTotalHistogram->
GetBinContent(bin),bin,events);
3518 title_passed.
Insert(pos,
" (passed)");
3519 title_total.
Insert(pos,
" (total)");
3522 title_passed.
Append(
" (passed)");
3523 title_total.
Append(
" (total)");
3551 Error(
"SetTotalEvents(Int_t,Int_t)",
"passed number of events (%.1lf) in bin %i is bigger than given number of total events %i",
fPassedHistogram->
GetBinContent(bin),bin,events);
3612 gROOT->Info(
"TEfficiency::SetUseWeightedEvents",
"Handle weighted events for computing efficiency");
3632 Warning(
"SetWeight",
"invalid weight %.2lf",weight);
3660 if (
total == 0)
return (bUpper) ? 1 : 0;
3664 Double_t mode = (passed + 0.5 * kappa * kappa) / (
total + kappa * kappa);
3666 * (1 - average) + kappa * kappa / 4);
3668 return ((mode + delta) > 1) ? 1.0 : (mode + delta);
3670 return ((mode - delta) < 0) ? 0.0 : (mode - delta);
static void indent(ostringstream &buf, int indent_level)
const TEfficiency operator+(const TEfficiency &lhs, const TEfficiency &rhs)
Addition operator.
const Double_t kDefBetaAlpha
const Double_t kDefWeight
const Double_t kDefBetaBeta
const TEfficiency::EStatOption kDefStatOpt
const Double_t kDefConfLevel
static unsigned int total
static struct mg_connection * fc(struct mg_context *ctx)
User class for performing function minimization.
virtual bool Minimize(int maxIter, double absTol=1.E-8, double relTol=1.E-10)
Find minimum position iterating until convergence specified by the absolute and relative tolerance or...
virtual double XMinimum() const
Return current estimate of the position of the minimum.
void SetFunction(const ROOT::Math::IGenFunction &f, double xlow, double xup)
Sets function to be minimized.
void SetNpx(int npx)
Set the number of point used to bracket root using a grid.
virtual double FValMinimum() const
Return function value at current estimate of the minimum.
Template class to wrap any C++ callable object which takes one argument i.e.
Double_t At(Int_t i) const
const Double_t * GetArray() const
Fill Area Attributes class.
void Copy(TAttFill &attfill) const
Copy this fill attributes to a new TAttFill.
virtual void SaveFillAttributes(std::ostream &out, const char *name, Int_t coldef=1, Int_t stydef=1001)
Save fill attributes as C++ statement(s) on output stream out.
void Copy(TAttLine &attline) const
Copy this line attributes to a new TAttLine.
virtual void SaveLineAttributes(std::ostream &out, const char *name, Int_t coldef=1, Int_t stydef=1, Int_t widdef=1)
Save line attributes as C++ statement(s) on output stream out.
virtual void SaveMarkerAttributes(std::ostream &out, const char *name, Int_t coldef=1, Int_t stydef=1, Int_t sizdef=1)
Save line attributes as C++ statement(s) on output stream out.
void Copy(TAttMarker &attmarker) const
Copy this marker attributes to a new TAttMarker.
Class to manage histogram axis.
virtual void SetBinLabel(Int_t bin, const char *label)
Set label for bin.
Bool_t IsVariableBinSize() const
virtual Double_t GetBinCenter(Int_t bin) const
Return center of bin.
const TArrayD * GetXbins() const
const char * GetBinLabel(Int_t bin) const
Return label for bin.
virtual Double_t GetBinLowEdge(Int_t bin) const
Return low edge of bin.
virtual Int_t FindFixBin(Double_t x) const
Find bin number corresponding to abscissa x.
const char * GetTitle() const
Returns title of object.
THashList * GetLabels() const
Binomial fitter for the division of two histograms.
TFitResultPtr Fit(TF1 *f1, Option_t *option="")
Carry out the fit of the given function to the given histograms.
Collection abstract base class.
virtual Bool_t IsEmpty() const
TDirectory::TContext keeps track and restore the current directory.
Describe directory structure in memory.
virtual void Append(TObject *obj, Bool_t replace=kFALSE)
Append object to this directory.
virtual TObject * Remove(TObject *)
Remove an object from the in-memory list.
Class to handle efficiency histograms.
static Bool_t FeldmanCousinsInterval(Double_t total, Double_t passed, Double_t level, Double_t &lower, Double_t &upper)
Calculates the interval boundaries using the frequentist methods of Feldman-Cousins.
static Double_t BetaMode(Double_t alpha, Double_t beta)
Compute the mode of the beta distribution.
Bool_t SetPassedEvents(Int_t bin, Int_t events)
Sets the number of passed events in the given global bin.
TH2 * CreateHistogram(Option_t *opt="") const
Create the histogram used to be painted (for dim=2 TEfficiency) The return object is managed by the c...
static Bool_t BetaShortestInterval(Double_t level, Double_t alpha, Double_t beta, Double_t &lower, Double_t &upper)
Calculates the boundaries for a shortest confidence interval for a Beta distribution.
static Bool_t CheckWeights(const TH1 &pass, const TH1 &total)
Check if both histogram are weighted.
static Double_t BetaMean(Double_t alpha, Double_t beta)
Compute the mean (average) of the beta distribution.
TEfficiency()
Default constructor.
Double_t GetBetaAlpha(Int_t bin=-1) const
void FillWeighted(Bool_t bPassed, Double_t weight, Double_t x, Double_t y=0, Double_t z=0)
This function is used for filling the two histograms with a weight.
~TEfficiency()
default destructor
TList * GetListOfFunctions()
static Double_t Bayesian(Double_t total, Double_t passed, Double_t level, Double_t alpha, Double_t beta, Bool_t bUpper, Bool_t bShortest=false)
Calculates the boundaries for a Bayesian confidence interval (shortest or central interval depending ...
static Double_t AgrestiCoull(Double_t total, Double_t passed, Double_t level, Bool_t bUpper)
Calculates the boundaries for the frequentist Agresti-Coull interval.
Long64_t Merge(TCollection *list)
Merges the TEfficiency objects in the given list to the given TEfficiency object using the operator+=...
std::vector< std::pair< Double_t, Double_t > > fBeta_bin_params
Parameter for prior beta distribution different bin by bin (default vector is empty)
static Double_t FeldmanCousins(Double_t total, Double_t passed, Double_t level, Bool_t bUpper)
Calculates the boundaries for the frequentist Feldman-Cousins interval.
EStatOption fStatisticOption
Defines how the confidence intervals are determined.
void SetStatisticOption(EStatOption option)
Sets the statistic option which affects the calculation of the confidence interval.
void SetWeight(Double_t weight)
Sets the global weight for this TEfficiency object.
TH1 * fTotalHistogram
Histogram for total number of events.
Int_t GetDimension() const
returns the dimension of the current TEfficiency object
TEfficiency & operator+=(const TEfficiency &rhs)
Adds the histograms of another TEfficiency object to current histograms.
Bool_t SetBins(Int_t nx, Double_t xmin, Double_t xmax)
Set the bins for the underlined passed and total histograms If the class have been already filled the...
void Build(const char *name, const char *title)
Building standard data structure of a TEfficiency object.
TH1 * GetCopyPassedHisto() const
Returns a cloned version of fPassedHistogram.
Double_t GetEfficiencyErrorUp(Int_t bin) const
Returns the upper error on the efficiency in the given global bin.
void Draw(Option_t *opt="")
Draws the current TEfficiency object.
virtual Int_t DistancetoPrimitive(Int_t px, Int_t py)
Compute distance from point px,py to a graph.
Double_t fBeta_alpha
Global parameter for prior beta distribution (default = 1)
Bool_t UsesBayesianStat() const
void SetBetaBeta(Double_t beta)
Sets the shape parameter β.
Double_t GetConfidenceLevel() const
static Bool_t CheckBinning(const TH1 &pass, const TH1 &total)
Checks binning for each axis.
static Double_t BetaCentralInterval(Double_t level, Double_t alpha, Double_t beta, Bool_t bUpper)
Calculates the boundaries for a central confidence interval for a Beta distribution.
Int_t GetGlobalBin(Int_t binx, Int_t biny=0, Int_t binz=0) const
Returns the global bin number which can be used as argument for the following functions:
TH1 * fPassedHistogram
Histogram for events which passed certain criteria.
static Double_t MidPInterval(Double_t total, Double_t passed, Double_t level, Bool_t bUpper)
Calculates the boundaries using the mid-P binomial interval (Lancaster method) from B.
void SetBetaAlpha(Double_t alpha)
Sets the shape parameter α.
@ kIsBayesian
Bayesian statistics are used.
@ kUseWeights
Use weights.
@ kPosteriorMode
Use posterior mean for best estimate (Bayesian statistics)
@ kUseBinPrior
Use a different prior for each bin.
@ kShortestInterval
Use shortest interval.
static Bool_t CheckEntries(const TH1 &pass, const TH1 &total, Option_t *opt="")
Checks whether bin contents are compatible with binomial statistics.
static Double_t Normal(Double_t total, Double_t passed, Double_t level, Bool_t bUpper)
Returns the confidence limits for the efficiency supposing that the efficiency follows a normal distr...
Double_t fWeight
Weight for all events (default = 1)
Bool_t SetPassedHistogram(const TH1 &rPassed, Option_t *opt)
Sets the histogram containing the passed events.
Bool_t SetTotalEvents(Int_t bin, Int_t events)
Sets the number of total events in the given global bin.
Double_t GetBetaBeta(Int_t bin=-1) const
Double_t(* fBoundary)(Double_t, Double_t, Double_t, Bool_t)
! Pointer to a method calculating the boundaries of confidence intervals
void FillGraph(TGraphAsymmErrors *graph, Option_t *opt) const
Fill the graph to be painted with information from TEfficiency Internal method called by TEfficiency:...
void SetName(const char *name)
Sets the name.
void FillHistogram(TH2 *h2) const
Fill the 2d histogram to be painted with information from TEfficiency 2D Internal method called by TE...
Int_t FindFixBin(Double_t x, Double_t y=0, Double_t z=0) const
Returns the global bin number containing the given values.
TDirectory * fDirectory
! Pointer to directory holding this TEfficiency object
static Double_t Combine(Double_t &up, Double_t &low, Int_t n, const Int_t *pass, const Int_t *total, Double_t alpha, Double_t beta, Double_t level=0.683, const Double_t *w=0, Option_t *opt="")
void SetUseWeightedEvents(Bool_t on=kTRUE)
static Double_t Wilson(Double_t total, Double_t passed, Double_t level, Bool_t bUpper)
Calculates the boundaries for the frequentist Wilson interval.
TEfficiency & operator=(const TEfficiency &rhs)
Assignment operator.
Double_t fConfLevel
Confidence level (default = 0.683, 1 sigma)
Double_t fBeta_beta
Global parameter for prior beta distribution (default = 1)
void SavePrimitive(std::ostream &out, Option_t *opt="")
Have histograms fixed bins along each axis?
Double_t GetEfficiency(Int_t bin) const
Returns the efficiency in the given global bin.
Bool_t SetTotalHistogram(const TH1 &rTotal, Option_t *opt)
Sets the histogram containing all events.
void Fill(Bool_t bPassed, Double_t x, Double_t y=0, Double_t z=0)
This function is used for filling the two histograms.
void SetDirectory(TDirectory *dir)
Sets the directory holding this TEfficiency object.
TGraphAsymmErrors * fPaintGraph
! Temporary graph for painting
TGraphAsymmErrors * CreateGraph(Option_t *opt="") const
Create the graph used be painted (for dim=1 TEfficiency) The return object is managed by the caller.
EStatOption GetStatisticOption() const
TList * fFunctions
->Pointer to list of functions
void Paint(Option_t *opt)
Paints this TEfficiency object.
void SetBetaBinParameters(Int_t bin, Double_t alpha, Double_t beta)
Sets different shape parameter α and β for the prior distribution for each bin.
static Bool_t CheckConsistency(const TH1 &pass, const TH1 &total, Option_t *opt="")
Checks the consistence of the given histograms.
Double_t GetWeight() const
TH1 * GetCopyTotalHisto() const
Returns a cloned version of fTotalHistogram.
virtual void ExecuteEvent(Int_t event, Int_t px, Int_t py)
Execute action corresponding to one event.
static Double_t ClopperPearson(Double_t total, Double_t passed, Double_t level, Bool_t bUpper)
Calculates the boundaries for the frequentist Clopper-Pearson interval.
void SetConfidenceLevel(Double_t level)
Sets the confidence level (0 < level < 1) The default value is 1-sigma :~ 0.683.
Double_t GetEfficiencyErrorLow(Int_t bin) const
Returns the lower error on the efficiency in the given global bin.
EStatOption
Enumeration type for different statistic options for calculating confidence intervals kF* ....
@ kBJeffrey
Jeffrey interval (Prior ~ Beta(0.5,0.5)
@ kFWilson
Wilson interval.
@ kFAC
Agresti-Coull interval.
@ kMidP
Mid-P Lancaster interval.
@ kBUniform
Prior ~ Uniform = Beta(1,1)
@ kFFC
Feldman-Cousins interval.
@ kBBayesian
User specified Prior ~ Beta(fBeta_alpha,fBeta_beta)
@ kFNormal
Normal approximation.
@ kFCP
Clopper-Pearson interval (recommended by PDG)
void SetTitle(const char *title)
Sets the title.
TFitResultPtr Fit(TF1 *f1, Option_t *opt="")
Fits the efficiency using the TBinomialEfficiencyFitter class.
TH2 * fPaintHisto
! Temporary histogram for painting
virtual void Copy(TObject &f1) const
Copy this F1 to a new F1.
Provides an indirection to the TFitResult class and with a semantics identical to a TFitResult pointe...
TGraph with asymmetric error bars.
virtual void Paint(Option_t *chopt="")
Draw this graph with its current attributes.
virtual void PaintStats(TF1 *fit)
Draw the stats.
virtual Int_t DistancetoPrimitive(Int_t px, Int_t py)
Compute distance from point px,py to a graph.
virtual void ExecuteEvent(Int_t event, Int_t px, Int_t py)
Execute action corresponding to one event.
1-D histogram with a double per channel (see TH1 documentation)}
1-D histogram with a float per channel (see TH1 documentation)}
TH1 is the base class of all histogram classes in ROOT.
virtual void SetDirectory(TDirectory *dir)
By default, when a histogram is created, it is added to the list of histogram objects in the current ...
virtual void SetTitle(const char *title)
See GetStatOverflows for more information.
virtual void SetNormFactor(Double_t factor=1)
virtual Double_t GetBinCenter(Int_t bin) const
Return bin center for 1D histogram.
virtual void GetStats(Double_t *stats) const
fill the array stats from the contents of this histogram The array stats must be correctly dimensione...
virtual Int_t GetNbinsY() const
virtual Int_t GetNbinsZ() const
virtual Int_t GetDimension() const
@ kIsAverage
Bin contents are average (used by Add)
virtual void Reset(Option_t *option="")
Reset this histogram: contents, errors, etc.
TAxis * GetXaxis()
Get the behaviour adopted by the object about the statoverflows. See EStatOverflows for more informat...
virtual Int_t GetNcells() const
TObject * Clone(const char *newname=0) const
Make a complete copy of the underlying object.
virtual Int_t GetBin(Int_t binx, Int_t biny=0, Int_t binz=0) const
Return Global bin number corresponding to binx,y,z.
virtual Int_t GetNbinsX() const
virtual Bool_t Add(TF1 *h1, Double_t c1=1, Option_t *option="")
Performs the operation: this = this + c1*f1 if errors are defined (see TH1::Sumw2),...
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
virtual void SetBinContent(Int_t bin, Double_t content)
Set bin content see convention for numbering bins in TH1::GetBin In case the bin number is greater th...
virtual Double_t GetBinLowEdge(Int_t bin) const
Return bin lower edge for 1D histogram.
virtual Double_t GetEntries() const
Return the current number of entries.
@ kNstat
Size of statistics data (up to TProfile3D)
virtual void SetName(const char *name)
Change the name of this histogram.
virtual Double_t GetBinContent(Int_t bin) const
Return content of bin number bin.
virtual TArrayD * GetSumw2()
virtual void ExecuteEvent(Int_t event, Int_t px, Int_t py)
Execute action corresponding to one event.
virtual Double_t GetBinWidth(Int_t bin) const
Return bin width for 1D histogram.
virtual void Paint(Option_t *option="")
Control routine to paint any kind of histograms.
virtual Int_t GetSumw2N() const
virtual void SetBins(Int_t nx, Double_t xmin, Double_t xmax)
Redefine x axis parameters.
virtual void Sumw2(Bool_t flag=kTRUE)
Create structure to store sum of squares of weights.
virtual Int_t DistancetoPrimitive(Int_t px, Int_t py)
Compute distance from point px,py to a line.
virtual void SetStats(Bool_t stats=kTRUE)
Set statistics option on/off.
2-D histogram with a double per channel (see TH1 documentation)}
2-D histogram with a float per channel (see TH1 documentation)}
Service class for 2-D histogram classes.
virtual void SetBinContent(Int_t bin, Double_t content)
Set bin content.
3-D histogram with a double per channel (see TH1 documentation)}
The 3-D histogram classes derived from the 1-D histogram classes.
virtual void Add(TObject *obj)
virtual TObject * Remove(TObject *obj)
Remove object from the list.
virtual void Delete(Option_t *option="")
Remove all objects from the list AND delete all heap based objects.
virtual TObject * First() const
Return the first object in the list. Returns 0 when list is empty.
The TNamed class is the base class for all named ROOT classes.
virtual void SetTitle(const char *title="")
Set the title of the TNamed.
virtual void SetName(const char *name)
Set the name of the TNamed.
virtual const char * GetTitle() const
Returns title of object.
virtual const char * GetName() const
Returns name of object.
Mother of all ROOT objects.
virtual const char * GetName() const
Returns name of object.
R__ALWAYS_INLINE Bool_t TestBit(UInt_t f) const
virtual const char * ClassName() const
Returns name of class to which the object belongs.
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.
virtual void AppendPad(Option_t *option="")
Append graphics object to current pad.
virtual void SavePrimitive(std::ostream &out, Option_t *option="")
Save a primitive as a C++ statement(s) on output stream "out".
void SetBit(UInt_t f, Bool_t set)
Set or unset the user status bits as specified in f.
virtual Bool_t InheritsFrom(const char *classname) const
Returns kTRUE if object inherits from class "classname".
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
virtual void Fatal(const char *method, const char *msgfmt,...) const
Issue fatal error message.
@ kInvalidObject
if object ctor succeeded but object should not be used
virtual void Info(const char *method, const char *msgfmt,...) const
Issue info message.
void ToLower()
Change string to lower-case.
TString & Insert(Ssiz_t pos, const char *s)
Ssiz_t First(char c) const
Find first occurrence of a character c.
const char * Data() const
TString & ReplaceAll(const TString &s1, const TString &s2)
TString & Append(const char *cs)
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
Ssiz_t Index(const char *pat, Ssiz_t i=0, ECaseCompare cmp=kExact) const
double beta_pdf(double x, double a, double b)
Probability density function of the beta distribution.
double beta_cdf(double x, double a, double b)
Cumulative distribution function of the beta distribution Upper tail of the integral of the beta_pdf.
double beta_cdf_c(double x, double a, double b)
Complement of the cumulative distribution function of the beta distribution.
double normal_quantile(double z, double sigma)
Inverse ( ) of the cumulative distribution function of the lower tail of the normal (Gaussian) distri...
double normal_quantile_c(double z, double sigma)
Inverse ( ) of the cumulative distribution function of the upper tail of the normal (Gaussian) distri...
double beta_quantile_c(double x, double a, double b)
Inverse ( ) of the cumulative distribution function of the lower tail of the beta distribution (beta_...
double beta_quantile(double x, double a, double b)
Inverse ( ) of the cumulative distribution function of the upper tail of the beta distribution (beta_...
R__ALWAYS_INLINE bool HasBeenDeleted(const TObject *obj)
Check if the TObject's memory has been deleted.
Bool_t AreEqualRel(Double_t af, Double_t bf, Double_t relPrec)
Beta_interval_length(Double_t level, Double_t alpha, Double_t beta)
Double_t operator()(double lower) const