Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
QuantFuncMathCore.h File Reference
This graph shows which files directly or indirectly include this file:

Namespaces

namespace  ROOT
 tbb::task_arena is an alias of tbb::interface7::task_arena, which doesn't allow to forward declare tbb::task_arena without forward declaring tbb::interface7
 
namespace  ROOT::Math
 

Functions

Quantile Functions from MathCore

The implementation is provided in MathCore and for the majority of the function comes from Cephes.

double ROOT::Math::beta_quantile (double x, double a, double b)
 Inverse ( \(D^{-1}(z)\)) of the cumulative distribution function of the upper tail of the beta distribution (beta_cdf_c).
 
double ROOT::Math::beta_quantile_c (double x, double a, double b)
 Inverse ( \(D^{-1}(z)\)) of the cumulative distribution function of the lower tail of the beta distribution (beta_cdf).
 
double ROOT::Math::breitwigner_quantile (double z, double gamma)
 Inverse ( \(D^{-1}(z)\)) of the cumulative distribution function of the lower tail of the Breit_Wigner distribution (breitwigner_cdf) which is similar to the Cauchy distribution.
 
double ROOT::Math::breitwigner_quantile_c (double z, double gamma)
 Inverse ( \(D^{-1}(z)\)) of the cumulative distribution function of the upper tail of the Breit-Wigner distribution (breitwigner_cdf_c) which is similar to the Cauchy distribution.
 
double ROOT::Math::cauchy_quantile (double z, double b)
 Inverse ( \(D^{-1}(z)\)) of the cumulative distribution function of the lower tail of the Cauchy distribution (cauchy_cdf) which is also called Breit-Wigner or Lorentzian distribution.
 
double ROOT::Math::cauchy_quantile_c (double z, double b)
 Inverse ( \(D^{-1}(z)\)) of the cumulative distribution function of the upper tail of the Cauchy distribution (cauchy_cdf_c) which is also called Lorentzian distribution.
 
double ROOT::Math::chisquared_quantile (double z, double r)
 Inverse ( \(D^{-1}(z)\)) of the cumulative distribution function of the lower tail of the \(\chi^2\) distribution with \(r\) degrees of freedom (chisquared_cdf).
 
double ROOT::Math::chisquared_quantile_c (double z, double r)
 Inverse ( \(D^{-1}(z)\)) of the cumulative distribution function of the upper tail of the \(\chi^2\) distribution with \(r\) degrees of freedom (chisquared_cdf_c).
 
double ROOT::Math::exponential_quantile (double z, double lambda)
 Inverse ( \(D^{-1}(z)\)) of the cumulative distribution function of the lower tail of the exponential distribution (exponential_cdf).
 
double ROOT::Math::exponential_quantile_c (double z, double lambda)
 Inverse ( \(D^{-1}(z)\)) of the cumulative distribution function of the upper tail of the exponential distribution (exponential_cdf_c).
 
double ROOT::Math::fdistribution_quantile (double z, double n, double m)
 Inverse ( \(D^{-1}(z)\)) of the cumulative distribution function of the lower tail of the f distribution (fdistribution_cdf).
 
double ROOT::Math::fdistribution_quantile_c (double z, double n, double m)
 Inverse ( \(D^{-1}(z)\)) of the cumulative distribution function of the upper tail of the f distribution (fdistribution_cdf_c).
 
double ROOT::Math::gamma_quantile (double z, double alpha, double theta)
 Inverse ( \(D^{-1}(z)\)) of the cumulative distribution function of the lower tail of the gamma distribution (gamma_cdf).
 
double ROOT::Math::gamma_quantile_c (double z, double alpha, double theta)
 Inverse ( \(D^{-1}(z)\)) of the cumulative distribution function of the upper tail of the gamma distribution (gamma_cdf_c).
 
double ROOT::Math::gaussian_quantile (double z, double sigma)
 Inverse ( \(D^{-1}(z)\)) of the cumulative distribution function of the lower tail of the normal (Gaussian) distribution (gaussian_cdf).
 
double ROOT::Math::gaussian_quantile_c (double z, double sigma)
 Inverse ( \(D^{-1}(z)\)) of the cumulative distribution function of the upper tail of the normal (Gaussian) distribution (gaussian_cdf_c).
 
double ROOT::Math::landau_quantile (double z, double xi=1)
 Inverse ( \(D^{-1}(z)\)) of the cumulative distribution function of the lower tail of the Landau distribution (landau_cdf).
 
double ROOT::Math::landau_quantile_c (double z, double xi=1)
 Inverse ( \(D^{-1}(z)\)) of the cumulative distribution function of the upper tail of the landau distribution (landau_cdf_c).
 
double ROOT::Math::lognormal_quantile (double x, double m, double s)
 Inverse ( \(D^{-1}(z)\)) of the cumulative distribution function of the lower tail of the lognormal distribution (lognormal_cdf).
 
double ROOT::Math::lognormal_quantile_c (double x, double m, double s)
 Inverse ( \(D^{-1}(z)\)) of the cumulative distribution function of the upper tail of the lognormal distribution (lognormal_cdf_c).
 
double ROOT::Math::normal_quantile (double z, double sigma)
 Inverse ( \(D^{-1}(z)\)) of the cumulative distribution function of the lower tail of the normal (Gaussian) distribution (normal_cdf).
 
double ROOT::Math::normal_quantile_c (double z, double sigma)
 Inverse ( \(D^{-1}(z)\)) of the cumulative distribution function of the upper tail of the normal (Gaussian) distribution (normal_cdf_c).
 
double ROOT::Math::uniform_quantile (double z, double a, double b)
 Inverse ( \(D^{-1}(z)\)) of the cumulative distribution function of the lower tail of the uniform (flat) distribution (uniform_cdf).
 
double ROOT::Math::uniform_quantile_c (double z, double a, double b)
 Inverse ( \(D^{-1}(z)\)) of the cumulative distribution function of the upper tail of the uniform (flat) distribution (uniform_cdf_c).