332 fNdim=function->GetNdim();
333 if (!function->IsLinear()){
334 Int_t number=function->GetNumber();
335 if (number<299 || number>310){
336 Error(
"TLinearFitter",
"Trying to fit with a nonlinear function");
365 fParams(tlf.fParams),
366 fParCovar(tlf.fParCovar),
367 fTValues(tlf.fTValues),
368 fParSign(tlf.fParSign),
369 fDesign(tlf.fDesign),
370 fDesignTemp(tlf.fDesignTemp),
371 fDesignTemp2(tlf.fDesignTemp2),
372 fDesignTemp3(tlf.fDesignTemp3),
374 fAtbTemp(tlf.fAtbTemp),
375 fAtbTemp2(tlf.fAtbTemp2),
376 fAtbTemp3(tlf.fAtbTemp3),
377 fFunctions( * (
TObjArray *)tlf.fFunctions.Clone()),
380 fY2Temp(tlf.fY2Temp),
383 fInputFunction(tlf.fInputFunction),
385 fNpoints(tlf.fNpoints),
386 fNfunctions(tlf.fNfunctions),
387 fFormulaSize(tlf.fFormulaSize),
389 fNfixed(tlf.fNfixed),
390 fSpecial(tlf.fSpecial),
393 fStoreData(tlf.fStoreData),
394 fChisquare(tlf.fChisquare),
396 fRobust(tlf.fRobust),
397 fFitsample(tlf.fFitsample),
582 Error(
"AddPoint",
"Point can't be added, because the formula hasn't been set");
600 Error(
"AddData",
"Those points are already added");
611 fX.
Use(npoints, xncols,
x);
626 for (
Int_t i=xfirst; i<npoints; i++)
648 for (i=1; i<npar; i++)
650 for (i=0; i<npar; i++)
656 for (i=0; i<npar; i++)
664 if (obj->IsA() == TFormula::Class() ) {
668 else if (obj->IsA() == TF1::Class() ) {
673 Error(
"AddToDesign",
"Basis Function %s is of an invalid type %s",obj->
GetName(),obj->IsA()->
GetName());
679 Error(
"AddToDesign",
"Function %s has no linear parts - maybe missing a ++ in the formula expression",
fInputFunction->
GetName());
832 temp2 = (
fY(i)-temp)*(
fY(i)-temp);
833 temp2 /=
fE(i)*
fE(i);
844 for (i=1; i<npar; i++)
845 val[i] = val[i-1]*
fX(point, 0);
846 for (i=0; i<npar; i++)
853 for (i=0; i<npar; i++)
863 temp2 = (
fY(point)-temp)*(
fY(point)-temp);
864 temp2 /=
fE(point)*
fE(point);
892 Error(
"TLinearFitter::Eval",
"The formula hasn't been set");
933 for (ii=0; ii<i; ii++)
960 Error(
"Eval",
"Matrix inversion failed");
997 for (ii=0; ii<i; ii++){
1018 Error(
"FixParameter",
"no value available to fix the parameter");
1022 Error(
"FixParameter",
"illegal parameter value");
1026 Error(
"FixParameter",
"no free parameters left");
1041 Error(
"FixParameter",
"illegal parameter value");
1045 Error(
"FixParameter",
"no free parameters left");
1063 Error(
"ReleaseParameter",
"illegal parameter value");
1067 Warning(
"ReleaseParameter",
"This parameter is not fixed\n");
1121 for (
Int_t ipoint=0; ipoint<
n; ipoint++){
1128 sum_vector[irow]+=
fParCovar(irow,icol)*grad[icol];
1132 c+=grad[i]*sum_vector[i];
1134 ci[ipoint]=
c*t*chidf;
1138 delete [] sum_vector;
1165 Error(
"GetConfidenceIntervals",
"The case of fitting not with a TFormula is not yet implemented");
1174 Error(
"GetConfidenceIntervals",
"A TGraphErrors should be passed instead of a graph");
1178 Error(
"GetConfidenceIntervals",
"A TGraph2DErrors should be passed instead of a graph");
1183 Error(
"GetConfidenceIntervals",
"A TGraph2DErrors or a TH23 should be passed instead of a graph");
1197 Error(
"GetConfidenceIntervals",
"A TGraph2DErrors should be passed instead of a TGraph2D");
1201 Error(
"GetConfidenceIntervals",
"A TGraphErrors should be passed instead of a TGraph2D");
1206 Error(
"GetConfidenceIntervals",
"A TGraphErrors or a TH1 should be passed instead of a graph");
1219 for (
Int_t ipoint=0; ipoint<np; ipoint++){
1227 sum_vector[irow]+=
fParCovar(irow, icol)*grad[icol];
1230 c+=grad[i]*sum_vector[i];
1233 gr2->
GetEZ()[ipoint]=
c*t*chidf;
1236 delete [] sum_vector;
1242 if (((
TH1*)obj)->GetDimension()>1){
1243 Error(
"GetConfidenceIntervals",
"Fitted graph and passed histogram have different number of dimensions");
1248 if (((
TH1*)obj)->GetDimension()!=2){
1249 Error(
"GetConfidenceIntervals",
"Fitted graph and passed histogram have different number of dimensions");
1255 Error(
"GetConfidenceIntervals",
"Fitted and passed histograms have different number of dimensions");
1278 for (
Int_t binz=hzfirst; binz<=hzlast; binz++){
1280 for (
Int_t biny=hyfirst; biny<=hylast; biny++) {
1282 for (
Int_t binx=hxfirst; binx<=hxlast; binx++) {
1289 sum_vector[irow]+=
fParCovar(irow, icol)*grad[icol];
1292 c+=grad[i]*sum_vector[i];
1300 delete [] sum_vector;
1303 Error(
"GetConfidenceIntervals",
"This object type is not supported");
1370 Error(
"GetParError",
"illegal value of parameter");
1388 Error(
"GetParError",
"illegal value of parameter");
1402 Error(
"GetParError",
"illegal value of parameter");
1416 Error(
"GetParTValue",
"illegal value of parameter");
1430 Error(
"GetParSignificance",
"illegal value of parameter");
1444 Error(
"GetFitSample",
"there is no fit sample in ordinary least-squares fit");
1457 if (!list)
return -1;
1462 Error(
"Add",
"Attempt to add object of class: %s to a %s",lfit->
ClassName(),this->ClassName());
1503 for (
int i=0; i<size; i++)
1537 Int_t size = 0, special = 0;
1550 fstring = (
char *)strstr(
fFormula,
"hyp");
1554 sscanf(fstring,
"%d", &size);
1563 sstring = sstring.
ReplaceAll(
"++", 2,
"|", 1);
1582 char replacement[14];
1583 for (i=0; i<
fNdim; i++){
1584 snprintf(pattern,
sizeof(pattern),
"x%d", i);
1585 snprintf(replacement,
sizeof(replacement),
"x[%d]", i);
1607 Error(
"TLinearFitter",
"f_linear not allocated");
1610 special=
f->GetNumber();
1614 if ((
fNfunctions==1)&&(special>299)&&(special<310)){
1646 for (i=0; i<size; i++)
1658 Int_t special, size;
1666 if ((special>299)&&(special<310)){
1701 for (
Int_t i=0; i<size; i++)
1705 if (function->InheritsFrom(TF1::Class())){
1708 ((
TF1*)function)->GetParLimits(i,al,bl);
1709 if (al*bl !=0 && al >= bl) {
1740 if (!strcmp(command,
"FitGraph")){
1744 if (!strcmp(command,
"FitGraph2D")){
1748 if (!strcmp(command,
"FitMultiGraph")){
1766 printf(
"Fitting results:\nParameters:\nNO.\t\tVALUE\t\tERROR\n");
1771 printf(
"Fitting results:\nParameters:\nNO.\t\tVALUE\n");
1773 printf(
"%d\t%e\n", i,
fParams(i));
1794 Int_t fitResult = 0;
1805 for (
Int_t i=0; i<
n; i++){
1808 if (
e<0 || fitOption.
W1)
1823 for (
Int_t i=0; i<
n; i++){
1826 temp2=(
y[i]-temp)*(
y[i]-temp);
1828 if (
e<0 || fitOption.
W1)
1867 for (
Int_t bin=0;bin<
n;bin++) {
1874 e=
gr->GetErrorZ(bin);
1875 if (
e<0 || fitOption.
W1)
1890 for (
Int_t bin=0; bin<
n; bin++){
1898 temp=f2->
Eval(
x[0],
x[1]);
1899 temp2=(z-temp)*(z-temp);
1900 e=
gr->GetErrorZ(bin);
1901 if (
e<0 || fitOption.
W1)
1941 for (i=0; i<
n; i++){
1944 if (
e<0 || fitOption.
W1)
1965 for (i=0; i<
n; i++){
1968 temp2=(gy[i]-temp)*(gy[i]-temp);
1970 if (
e<0 || fitOption.
W1)
1994 Int_t bin,binx,biny,binz;
2015 for (binz=hzfirst;binz<=hzlast;binz++) {
2017 for (biny=hyfirst;biny<=hylast;biny++) {
2019 for (binx=hxfirst;binx<=hxlast;binx++) {
2022 bin = hfit->
GetBin(binx,biny,binz);
2029 if (fitOption.
W1==1 && cu == 0)
continue;
2033 if (eu <= 0)
continue;
2045 for (binz=hzfirst;binz<=hzlast;binz++) {
2047 for (biny=hyfirst;biny<=hylast;biny++) {
2049 for (binx=hxfirst;binx<=hxlast;binx++) {
2052 bin = hfit->
GetBin(binx,biny,binz);
2056 if (fitOption.
W1==1 && cu == 0)
continue;
2060 if (eu <= 0)
continue;
2063 temp2=(cu-temp)*(cu-temp);
2079void TLinearFitter::Streamer(
TBuffer &R__b)
2114 Int_t i, j, maxind=0, k, k1 = 500;
2119 Error(
"TLinearFitter::EvalRobust",
"The formula hasn't been set");
2125 for (i=0; i<nbest; i++)
2130 if (
h>0.000001 && h<1 && fNpoints*h > hdef)
2134 if (
h>0)
Warning(
"Fitting:",
"illegal value of H, default is taken, h = %3.2f",
double(hdef)/
fNpoints);
2150 for (k = 0; k < k1; k++) {
2152 chi2 =
CStep(1,
fH, residuals,index, index, -1, -1);
2153 chi2 =
CStep(2,
fH, residuals,index, index, -1, -1);
2155 if (chi2 < bestchi2[maxind]) {
2156 bestchi2[maxind] = chi2;
2158 cstock(i, maxind) =
fParams(i);
2165 for (i=0; i<nbest; i++) {
2169 while (chi2 > kEps) {
2170 chi2 =
CStep(2,
fH, residuals,index, index, -1, -1);
2177 if (chi2 <= currentbest + kEps) {
2178 for (j=0; j<
fH; j++){
2179 bestindex[j]=index[j];
2188 fParams(j) = cstock(j, maxind);
2190 for (j=0; j<
fH; j++){
2200 delete [] bestindex;
2201 delete [] residuals;
2216 RDraw(subdat, indsubdat);
2221 Int_t i_end = indsubdat[0];
2223 for (
Int_t kgroup = 0; kgroup < nsub; kgroup++) {
2226 for (i=0; i<nbest; i++)
2228 for (k=0; k<k2; k++) {
2230 chi2 =
CStep(1, hsub, residuals, index, subdat, i_start, i_end);
2231 chi2 =
CStep(2, hsub, residuals, index, subdat, i_start, i_end);
2233 if (chi2 < bestchi2[maxind]){
2235 cstockbig(i, nbest*kgroup + maxind) =
fParams(i);
2236 bestchi2[maxind] = chi2;
2239 if (kgroup != nsub - 1){
2240 i_start += indsubdat[kgroup];
2241 i_end += indsubdat[kgroup+1];
2245 for (i=0; i<nbest; i++)
2249 for (k=0; k<nbest*5; k++) {
2252 chi2 =
CStep(1, hsub2, residuals, index, subdat, 0,
sum);
2253 chi2 =
CStep(2, hsub2, residuals, index, subdat, 0,
sum);
2255 if (chi2 < bestchi2[maxind]){
2256 beststock[maxind] = k;
2257 bestchi2[maxind] = chi2;
2262 for (k=0; k<nbest; k++) {
2264 fParams(i) = cstockbig(i, beststock[k]);
2265 chi2 =
CStep(1,
fH, residuals, index, index, -1, -1);
2266 chi2 =
CStep(2,
fH, residuals, index, index, -1, -1);
2272 fParams(i)=cstockbig(i, beststock[maxind]);
2275 while (chi2 > kEps) {
2276 chi2 =
CStep(2,
fH, residuals, index, index, -1, -1);
2277 if (
TMath::Abs(chi2 - bestchi2[maxind]) < kEps)
2280 bestchi2[maxind] = chi2;
2284 for (j=0; j<
fH; j++)
2293 delete [] beststock;
2295 delete [] residuals;
2311 for(i=0; i<ntotal; i++)
2312 index[i] = ntotal+1;
2317 num=
Int_t(
r.Uniform(0, 1)*(ntotal-1));
2319 for(j=0; j<=i-1; j++) {
2344 while (!ok && (nindex <
h)) {
2347 num=
Int_t(
r.Uniform(0,1)*(ntotal-1));
2349 for(i=0; i<nindex; i++) {
2355 }
while(repeat==
kTRUE);
2357 index[nindex] = num;
2378 for (i=0; i<
n; i++) {
2380 itemp = subdat[start+i];
2389 for (j=1; j<npar; j++)
2390 val[j] = val[j-1]*
fX(itemp, 0);
2391 for (j=0; j<npar; j++)
2397 for (j=0; j<npar; j++)
2408 residuals[i] = (
fY(itemp) - func)*(
fY(itemp) - func)/(
fE(i)*
fE(i));
2422 for (j=1; j<npar; j++)
2423 val[j] = val[j-1]*
fX(i, 0);
2424 for (j=0; j<npar; j++)
2430 for (j=0; j<npar; j++)
2440 residuals[i] = (
fY(i) - func)*(
fY(i) - func)/(
fE(i)*
fE(i));
2454 if (step==1)
return 0;
2459 for (i=0; i<
h; i++) {
2460 itemp = subdat[start+index[i]];
2469 for (j=1; j<npar; j++)
2470 val[j] = val[j-1]*
fX(itemp, 0);
2471 for (j=0; j<npar; j++)
2477 for (j=0; j<npar; j++)
2487 sum+=(
fY(itemp)-func)*(
fY(itemp)-func)/(
fE(itemp)*
fE(itemp));
2490 for (i=0; i<
h; i++) {
2499 for (j=1; j<npar; j++)
2500 val[j] = val[j-1]*
fX(index[i], 0);
2501 for (j=0; j<npar; j++)
2508 for (j=0; j<npar; j++)
2520 sum+=(
fY(index[i])-func)*(
fY(index[i])-func)/(
fE(index[i])*
fE(index[i]));
2554 Error(
"Linf",
"Matrix inversion failed");
2607 for(
Int_t i=0; i<5; i++)
2626 for (i=0; i<5; i++) {
2627 if (indsubdat[i]!=0)
2631 for (k=1; k<=ngroup; k++) {
2632 for (
m=1;
m<=indsubdat[k-1];
m++) {
2638 subdat[jndex-1] = nrand + jndex - 2;
2639 for (i=1; i<=jndex-1; i++) {
2640 if(subdat[i-1] > nrand+i-2) {
2641 for(j=jndex; j>=i+1; j--) {
2642 subdat[j-1] = subdat[j-2];
2644 subdat[i-1] = nrand+i-2;
static void update(gsl_integration_workspace *workspace, double a1, double b1, double area1, double error1, double a2, double b2, double area2, double error2)
TMatrixTRow< Double_t > TMatrixDRow
R__EXTERN TVirtualMutex * gROOTMutex
#define R__LOCKGUARD(mutex)
Class to manage histogram axis.
virtual Double_t GetBinCenter(Int_t bin) const
Return center of bin.
Int_t GetLast() const
Return last bin on the axis i.e.
Int_t GetFirst() const
Return first bin on the axis i.e.
void Clear(Option_t *option="")
Clear the value.
Bool_t TestBitNumber(UInt_t bitnumber) const
void SetBitNumber(UInt_t bitnumber, Bool_t value=kTRUE)
Buffer base class used for serializing objects.
virtual Int_t ReadClassBuffer(const TClass *cl, void *pointer, const TClass *onfile_class=0)=0
virtual Int_t WriteClassBuffer(const TClass *cl, void *pointer)=0
Collection abstract base class.
virtual void SetOwner(Bool_t enable=kTRUE)
Set whether this collection is the owner (enable==true) of its content.
virtual TObject * Clone(const char *newname="") const
Make a clone of an collection using the Streamer facility.
Cholesky Decomposition class.
virtual Bool_t Solve(TVectorD &b)
Solve equations Ax=b assuming A has been factored by Cholesky.
Bool_t Invert(TMatrixDSym &inv)
For a symmetric matrix A(m,m), its inverse A_inv(m,m) is returned .
virtual void SetChisquare(Double_t chi2)
virtual Double_t EvalPar(const Double_t *x, const Double_t *params=0)
Evaluate function with given coordinates and parameters.
virtual TFormula * GetFormula()
virtual Double_t Eval(Double_t x, Double_t y=0, Double_t z=0, Double_t t=0) const
Evaluate this function.
virtual Bool_t IsInside(const Double_t *x) const
return kTRUE if the point is inside the function range
virtual Int_t GetNdim() const
A 2-Dim function with parameters.
virtual Bool_t IsInside(const Double_t *x) const
Return kTRUE is the point is inside the function range.
Graphics object made of three arrays X, Y and Z with the same number of points each.
virtual Double_t * GetEZ() const
virtual void SetPoint(Int_t point, Double_t x, Double_t y, Double_t z)
Sets point number n.
Double_t GetErrorY(Int_t bin) const
This function is called by GraphFitChisquare.
A TGraph is an object made of two arrays X and Y with npoints each.
virtual void SetPoint(Int_t i, Double_t x, Double_t y)
Set x and y values for point number i.
virtual Double_t GetErrorY(Int_t bin) const
This function is called by GraphFitChisquare.
TH1 is the base class of all histogram classes in ROOT.
virtual Double_t GetBinError(Int_t bin) const
Return value of error associated to bin number bin.
virtual Int_t GetDimension() const
TAxis * GetXaxis()
Get the behaviour adopted by the object about the statoverflows. See EStatOverflows for more informat...
virtual Int_t GetBin(Int_t binx, Int_t biny=0, Int_t binz=0) const
Return Global bin number corresponding to binx,y,z.
virtual void SetBinError(Int_t bin, Double_t error)
Set the bin Error Note that this resets the bin eror option to be of Normal Type and for the non-empt...
virtual void SetBinContent(Int_t bin, Double_t content)
Set bin content see convention for numbering bins in TH1::GetBin In case the bin number is greater th...
virtual Double_t GetBinContent(Int_t bin) const
Return content of bin number bin.
The Linear Fitter - For fitting functions that are LINEAR IN PARAMETERS.
virtual Double_t * GetCovarianceMatrix() const
Returns covariance matrix.
virtual void AddTempMatrices()
virtual Int_t ExecuteCommand(const char *command, Double_t *args, Int_t nargs)
To use in TGraph::Fit and TH1::Fit().
virtual Double_t GetParError(Int_t ipar) const
Returns the error of parameter #ipar.
TMatrixDSym fDesignTemp2
temporary matrix, used for num.stability
Int_t GraphLinearFitter(Double_t h)
Used in TGraph::Fit().
virtual Double_t GetChisquare()
Get the Chisquare.
Int_t Partition(Int_t nmini, Int_t *indsubdat)
divides the elements into approximately equal subgroups number of elements in each subgroup is stored...
virtual void GetErrors(TVectorD &vpar)
Returns parameter errors.
virtual ~TLinearFitter()
Linear fitter cleanup.
Double_t CStep(Int_t step, Int_t h, Double_t *residuals, Int_t *index, Int_t *subdat, Int_t start, Int_t end)
The CStep procedure, as described in the article.
virtual Int_t Merge(TCollection *list)
Merge objects in list.
virtual const char * GetParName(Int_t ipar) const
Returns name of parameter #ipar.
virtual void Clear(Option_t *option="")
Clears everything. Used in TH1::Fit and TGraph::Fit().
virtual void PrintResults(Int_t level, Double_t amin=0) const
Level = 3 (to be consistent with minuit) prints parameters and parameter errors.
void ComputeTValues()
Computes parameters' t-values and significance.
TLinearFitter()
default c-tor, input data is stored If you don't want to store the input data, run the function Store...
Int_t MultiGraphLinearFitter(Double_t h)
Minimisation function for a TMultiGraph.
virtual Double_t GetParSignificance(Int_t ipar)
Returns the significance of parameter #ipar.
virtual Int_t Eval()
Perform the fit and evaluate the parameters Returns 0 if the fit is ok, 1 if there are errors.
TVectorD fAtbTemp2
temporary vector, used for num.stability
Int_t HistLinearFitter()
Minimization function for H1s using a Chisquare method.
virtual Double_t GetParameter(Int_t ipar) const
Int_t Graph2DLinearFitter(Double_t h)
Minimisation function for a TGraph2D.
virtual void ClearPoints()
To be used when different sets of points are fitted with the same formula.
virtual void ReleaseParameter(Int_t ipar)
Releases parameter #ipar.
TObjArray fFunctions
map of basis functions and formula
virtual void GetFitSample(TBits &bits)
For robust lts fitting, returns the sample, on which the best fit was based.
virtual void Add(TLinearFitter *tlf)
Add another linear fitter to this linear fitter.
virtual void GetDesignMatrix(TMatrixD &matr)
Returns the internal design matrix.
virtual void GetParameters(TVectorD &vpar)
Returns parameter values.
void RDraw(Int_t *subdat, Int_t *indsubdat)
Draws ngroup nonoverlapping subdatasets out of a dataset of size n such that the selected case number...
static std::map< TString, TFormula * > fgFormulaMap
virtual void SetDim(Int_t n)
set the number of dimensions
TFormula * fInputFunction
TMatrixD fX
temporary variable used for num.stability
virtual Bool_t UpdateMatrix()
Update the design matrix after the formula has been changed.
virtual void GetAtbVector(TVectorD &v)
Get the Atb vector - a vector, used for internal computations.
virtual void Chisquare()
Calculates the chisquare.
virtual void SetBasisFunctions(TObjArray *functions)
set the basis functions in case the fitting function is not set directly The TLinearFitter will manag...
virtual void FixParameter(Int_t ipar)
Fixes paramter #ipar at its current value.
virtual Int_t EvalRobust(Double_t h=-1)
Finds the parameters of the fitted function in case data contains outliers.
void AddToDesign(Double_t *x, Double_t y, Double_t e)
Add a point to the AtA matrix and to the Atb vector.
TLinearFitter & operator=(const TLinearFitter &tlf)
Assignment operator.
void CreateSubset(Int_t ntotal, Int_t h, Int_t *index)
Creates a p-subset to start ntotal - total number of points from which the subset is chosen.
virtual void SetFormula(const char *formula)
Additive parts should be separated by "++".
virtual void GetConfidenceIntervals(Int_t n, Int_t ndim, const Double_t *x, Double_t *ci, Double_t cl=0.95)
Computes point-by-point confidence intervals for the fitted function Parameters: n - number of points...
virtual void AddPoint(Double_t *x, Double_t y, Double_t e=1)
Adds 1 point to the fitter.
virtual void AssignData(Int_t npoints, Int_t xncols, Double_t *x, Double_t *y, Double_t *e=0)
This function is to use when you already have all the data in arrays and don't want to copy them into...
virtual Double_t GetParTValue(Int_t ipar)
Returns the t-value for parameter #ipar.
virtual void StoreData(Bool_t store)
virtual TMatrixTBase< Element > & Zero()
Set matrix elements to zero.
virtual const Element * GetMatrixArray() const
virtual TMatrixTBase< Element > & ResizeTo(Int_t nrows, Int_t ncols, Int_t=-1)
Set size of the matrix to nrows x ncols New dynamic elements are created, the overlapping part of the...
virtual void Clear(Option_t *="")
TMatrixT< Element > & Use(Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb, Element *data)
Use the array data to fill the matrix ([row_lwb..row_upb] x [col_lwb..col_upb])
virtual TMatrixTBase< Element > & ResizeTo(Int_t nrows, Int_t ncols, Int_t=-1)
Set size of the matrix to nrows x ncols New dynamic elements are created, the overlapping part of the...
virtual const Element * GetMatrixArray() const
virtual void Clear(Option_t *="")
A TMultiGraph is a collection of TGraph (or derived) objects.
TList * GetListOfGraphs() const
virtual const char * GetName() const
Returns name of object.
Int_t GetEntriesFast() const
virtual void Expand(Int_t newSize)
Expand or shrink the array to newSize elements.
Int_t GetEntries() const
Return the number of objects in array (i.e.
virtual void Clear(Option_t *option="")
Remove all objects from the array.
TObject * UncheckedAt(Int_t i) const
virtual void Delete(Option_t *option="")
Remove all objects from the array AND delete all heap based objects.
Collectable string class.
Mother of all ROOT objects.
virtual const char * GetName() const
Returns name of object.
virtual const char * ClassName() const
Returns name of class to which the object belongs.
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.
virtual Bool_t InheritsFrom(const char *classname) const
Returns kTRUE if object inherits from class "classname".
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
Random number generator class based on the maximally quidistributed combined Tausworthe generator by ...
This is the base class for the ROOT Random number generators.
const char * Data() const
TString & ReplaceAll(const TString &s1, const TString &s2)
void ToUpper()
Change string to upper case.
TObjArray * Tokenize(const TString &delim) const
This function is used to isolate sequential tokens in a TString.
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
TVectorT< Element > & Zero()
Set vector elements to zero.
void Clear(Option_t *="")
TVectorT< Element > & ResizeTo(Int_t lwb, Int_t upb)
Resize the vector to [lwb:upb] .
TVectorT< Element > & Use(Int_t lwb, Int_t upb, Element *data)
Use the array data to fill the vector lwb..upb].
Int_t NonZeros() const
Compute the number of elements != 0.0.
Int_t GetNoElements() const
Element * GetMatrixArray()
Abstract Base Class for Fitting.
virtual Int_t GetXlast() const
virtual Int_t GetYfirst() const
virtual TObject * GetObjectFit() const
virtual Foption_t GetFitOption() const
virtual Int_t GetZfirst() const
virtual Int_t GetZlast() const
virtual Int_t GetXfirst() const
virtual Int_t GetYlast() const
TVirtualFitter & operator=(const TVirtualFitter &tvf)
assignment operator
static TVirtualFitter * GetFitter()
static: return the current Fitter
virtual TObject * GetUserFunc() const
Element KOrdStat(Size n, const Element *a, Size k, Size *work=0)
Returns k_th order statistic of the array a of size n (k_th smallest element out of n elements).
Long64_t LocMin(Long64_t n, const T *a)
Return index of array with the minimum element.
T MinElement(Long64_t n, const T *a)
Return minimum of array a of length n.
Long64_t LocMax(Long64_t n, const T *a)
Return index of array with the maximum element.
Double_t Sqrt(Double_t x)
Short_t Min(Short_t a, Short_t b)
Double_t StudentI(Double_t T, Double_t ndf)
Calculates the cumulative distribution function of Student's t-distribution second parameter stands f...
Double_t StudentQuantile(Double_t p, Double_t ndf, Bool_t lower_tail=kTRUE)
Computes quantiles of the Student's t-distribution 1st argument is the probability,...
static uint64_t sum(uint64_t i)