329 fNdim=
function->GetNdim();
330 if (!function->IsLinear()){
331 Int_t number=
function->GetNumber();
332 if (number<299 || number>310){
333 Error(
"TLinearFitter",
"Trying to fit with a nonlinear function");
579 Error(
"AddPoint",
"Point can't be added, because the formula hasn't been set");
597 Error(
"AddData",
"Those points are already added");
608 fX.
Use(npoints, xncols, x);
623 for (
Int_t i=xfirst; i<npoints; i++)
645 for (i=1; i<npar; i++)
647 for (i=0; i<npar; i++)
653 for (i=0; i<npar; i++)
670 Error(
"AddToDesign",
"Basis Function %s is of an invalid type %s",obj->
GetName(),obj->IsA()->
GetName());
676 Error(
"AddToDesign",
"Function %s has no linear parts - maybe missing a ++ in the formula expression",
fInputFunction->
GetName());
829 temp2 = (
fY(i)-temp)*(
fY(i)-temp);
830 temp2 /=
fE(i)*
fE(i);
841 for (i=1; i<npar; i++)
842 val[i] = val[i-1]*
fX(point, 0);
843 for (i=0; i<npar; i++)
850 for (i=0; i<npar; i++)
860 temp2 = (
fY(point)-temp)*(
fY(point)-temp);
861 temp2 /=
fE(point)*
fE(point);
889 Error(
"TLinearFitter::Eval",
"The formula hasn't been set");
930 for (ii=0; ii<i; ii++)
957 Error(
"Eval",
"Matrix inversion failed");
994 for (ii=0; ii<i; ii++){
1015 Error(
"FixParameter",
"no value available to fix the parameter");
1019 Error(
"FixParameter",
"illegal parameter value");
1023 Error(
"FixParameter",
"no free parameters left");
1038 Error(
"FixParameter",
"illegal parameter value");
1042 Error(
"FixParameter",
"no free parameters left");
1060 Error(
"ReleaseParameter",
"illegal parameter value");
1064 Warning(
"ReleaseParameter",
"This parameter is not fixed\n");
1118 for (
Int_t ipoint=0; ipoint<
n; ipoint++){
1125 sum_vector[irow]+=
fParCovar(irow,icol)*grad[icol];
1129 c+=grad[i]*sum_vector[i];
1131 ci[ipoint]=c*t*chidf;
1135 delete [] sum_vector;
1162 Error(
"GetConfidenceIntervals",
"The case of fitting not with a TFormula is not yet implemented");
1171 Error(
"GetConfidenceIntervals",
"A TGraphErrors should be passed instead of a graph");
1175 Error(
"GetConfidenceIntervals",
"A TGraph2DErrors should be passed instead of a graph");
1180 Error(
"GetConfidenceIntervals",
"A TGraph2DErrors or a TH23 should be passed instead of a graph");
1194 Error(
"GetConfidenceIntervals",
"A TGraph2DErrors should be passed instead of a TGraph2D");
1198 Error(
"GetConfidenceIntervals",
"A TGraphErrors should be passed instead of a TGraph2D");
1203 Error(
"GetConfidenceIntervals",
"A TGraphErrors or a TH1 should be passed instead of a graph");
1216 for (
Int_t ipoint=0; ipoint<np; ipoint++){
1224 sum_vector[irow]+=
fParCovar(irow, icol)*grad[icol];
1227 c+=grad[i]*sum_vector[i];
1230 gr2->
GetEZ()[ipoint]=c*t*chidf;
1233 delete [] sum_vector;
1239 if (((
TH1*)obj)->GetDimension()>1){
1240 Error(
"GetConfidenceIntervals",
"Fitted graph and passed histogram have different number of dimensions");
1245 if (((
TH1*)obj)->GetDimension()!=2){
1246 Error(
"GetConfidenceIntervals",
"Fitted graph and passed histogram have different number of dimensions");
1252 Error(
"GetConfidenceIntervals",
"Fitted and passed histograms have different number of dimensions");
1275 for (
Int_t binz=hzfirst; binz<=hzlast; binz++){
1277 for (
Int_t biny=hyfirst; biny<=hylast; biny++) {
1279 for (
Int_t binx=hxfirst; binx<=hxlast; binx++) {
1286 sum_vector[irow]+=
fParCovar(irow, icol)*grad[icol];
1289 c+=grad[i]*sum_vector[i];
1297 delete [] sum_vector;
1300 Error(
"GetConfidenceIntervals",
"This object type is not supported");
1367 Error(
"GetParError",
"illegal value of parameter");
1385 Error(
"GetParError",
"illegal value of parameter");
1399 Error(
"GetParError",
"illegal value of parameter");
1413 Error(
"GetParTValue",
"illegal value of parameter");
1427 Error(
"GetParSignificance",
"illegal value of parameter");
1441 Error(
"GetFitSample",
"there is no fit sample in ordinary least-squares fit");
1454 if (!list)
return -1;
1500 for (
int i=0; i<size; i++)
1534 Int_t size = 0, special = 0;
1545 fstring = (
char *)strstr(
fFormula,
"hyp");
1549 sscanf(fstring,
"%d", &size);
1558 sstring = sstring.
ReplaceAll(
"++", 2,
"|", 1);
1577 char replacement[6];
1578 for (i=0; i<
fNdim; i++){
1580 snprintf(replacement,6,
"x[%d]", i);
1602 Error(
"TLinearFitter",
"f_linear not allocated");
1605 special=
f->GetNumber();
1609 if ((
fNfunctions==1)&&(special>299)&&(special<310)){
1641 for (i=0; i<size; i++)
1653 Int_t special, size;
1661 if ((special>299)&&(special<310)){
1696 for (
Int_t i=0; i<size; i++)
1703 ((
TF1*)
function)->GetParLimits(i,al,bl);
1704 if (al*bl !=0 && al >= bl) {
1735 if (!strcmp(command,
"FitGraph")){
1739 if (!strcmp(command,
"FitGraph2D")){
1743 if (!strcmp(command,
"FitMultiGraph")){
1761 printf(
"Fitting results:\nParameters:\nNO.\t\tVALUE\t\tERROR\n");
1766 printf(
"Fitting results:\nParameters:\nNO.\t\tVALUE\n");
1768 printf(
"%d\t%e\n", i,
fParams(i));
1789 Int_t fitResult = 0;
1800 for (
Int_t i=0; i<
n; i++){
1801 if (!f1->
IsInside(&x[i]))
continue;
1803 if (e<0 || fitOption.
W1)
1818 for (
Int_t i=0; i<
n; i++){
1819 if (!f1->
IsInside(&x[i]))
continue;
1820 temp=f1->
Eval(x[i]);
1821 temp2=(y[i]-temp)*(y[i]-temp);
1823 if (e<0 || fitOption.
W1)
1862 for (
Int_t bin=0;bin<
n;bin++) {
1870 if (e<0 || fitOption.
W1)
1885 for (
Int_t bin=0; bin<
n; bin++){
1893 temp=f2->
Eval(x[0], x[1]);
1894 temp2=(z-temp)*(z-temp);
1896 if (e<0 || fitOption.
W1)
1932 while ((gr = (
TGraph*) next())) {
1936 for (i=0; i<
n; i++){
1937 if (!f1->
IsInside(&gx[i]))
continue;
1939 if (e<0 || fitOption.
W1)
1956 while((gr = (
TGraph*)next())) {
1960 for (i=0; i<
n; i++){
1961 if (!f1->
IsInside(&gx[i]))
continue;
1962 temp=f1->
Eval(gx[i]);
1963 temp2=(gy[i]-temp)*(gy[i]-temp);
1965 if (e<0 || fitOption.
W1)
1989 Int_t bin,binx,biny,binz;
2010 for (binz=hzfirst;binz<=hzlast;binz++) {
2012 for (biny=hyfirst;biny<=hylast;biny++) {
2014 for (binx=hxfirst;binx<=hxlast;binx++) {
2017 bin = hfit->
GetBin(binx,biny,binz);
2024 if (fitOption.
W1==1 && cu == 0)
continue;
2028 if (eu <= 0)
continue;
2040 for (binz=hzfirst;binz<=hzlast;binz++) {
2042 for (biny=hyfirst;biny<=hylast;biny++) {
2044 for (binx=hxfirst;binx<=hxlast;binx++) {
2047 bin = hfit->
GetBin(binx,biny,binz);
2051 if (fitOption.
W1==1 && cu == 0)
continue;
2055 if (eu <= 0)
continue;
2058 temp2=(cu-temp)*(cu-temp);
2074 void TLinearFitter::Streamer(
TBuffer &R__b)
2109 Int_t i, j, maxind=0, k, k1 = 500;
2114 Error(
"TLinearFitter::EvalRobust",
"The formula hasn't been set");
2120 for (i=0; i<nbest; i++)
2125 if (h>0.000001 && h<1 && fNpoints*h > hdef)
2129 if (h>0)
Warning(
"Fitting:",
"illegal value of H, default is taken, h = %3.2f",
double(hdef)/
fNpoints);
2145 for (k = 0; k < k1; k++) {
2147 chi2 =
CStep(1,
fH, residuals,index, index, -1, -1);
2148 chi2 =
CStep(2,
fH, residuals,index, index, -1, -1);
2150 if (chi2 < bestchi2[maxind]) {
2151 bestchi2[maxind] = chi2;
2153 cstock(i, maxind) =
fParams(i);
2160 for (i=0; i<nbest; i++) {
2164 while (chi2 > kEps) {
2165 chi2 =
CStep(2,
fH, residuals,index, index, -1, -1);
2172 if (chi2 <= currentbest + kEps) {
2173 for (j=0; j<
fH; j++){
2174 bestindex[j]=index[j];
2183 fParams(j) = cstock(j, maxind);
2185 for (j=0; j<
fH; j++){
2195 delete [] bestindex;
2196 delete [] residuals;
2211 RDraw(subdat, indsubdat);
2216 Int_t i_end = indsubdat[0];
2218 for (
Int_t kgroup = 0; kgroup < nsub; kgroup++) {
2221 for (i=0; i<nbest; i++)
2223 for (k=0; k<k2; k++) {
2225 chi2 =
CStep(1, hsub, residuals, index, subdat, i_start, i_end);
2226 chi2 =
CStep(2, hsub, residuals, index, subdat, i_start, i_end);
2228 if (chi2 < bestchi2[maxind]){
2230 cstockbig(i, nbest*kgroup + maxind) =
fParams(i);
2231 bestchi2[maxind] = chi2;
2234 if (kgroup != nsub - 1){
2235 i_start += indsubdat[kgroup];
2236 i_end += indsubdat[kgroup+1];
2240 for (i=0; i<nbest; i++)
2244 for (k=0; k<nbest*5; k++) {
2247 chi2 =
CStep(1, hsub2, residuals, index, subdat, 0, sum);
2248 chi2 =
CStep(2, hsub2, residuals, index, subdat, 0, sum);
2250 if (chi2 < bestchi2[maxind]){
2251 beststock[maxind] = k;
2252 bestchi2[maxind] = chi2;
2257 for (k=0; k<nbest; k++) {
2259 fParams(i) = cstockbig(i, beststock[k]);
2260 chi2 =
CStep(1,
fH, residuals, index, index, -1, -1);
2261 chi2 =
CStep(2,
fH, residuals, index, index, -1, -1);
2267 fParams(i)=cstockbig(i, beststock[maxind]);
2270 while (chi2 > kEps) {
2271 chi2 =
CStep(2,
fH, residuals, index, index, -1, -1);
2272 if (
TMath::Abs(chi2 - bestchi2[maxind]) < kEps)
2275 bestchi2[maxind] = chi2;
2279 for (j=0; j<
fH; j++)
2288 delete [] beststock;
2290 delete [] residuals;
2306 for(i=0; i<ntotal; i++)
2307 index[i] = ntotal+1;
2314 for(j=0; j<=i-1; j++) {
2339 while (!ok && (nindex < h)) {
2344 for(i=0; i<nindex; i++) {
2350 }
while(repeat==
kTRUE);
2352 index[nindex] = num;
2373 for (i=0; i<
n; i++) {
2375 itemp = subdat[start+i];
2384 for (j=1; j<npar; j++)
2385 val[j] = val[j-1]*
fX(itemp, 0);
2386 for (j=0; j<npar; j++)
2392 for (j=0; j<npar; j++)
2417 for (j=1; j<npar; j++)
2418 val[j] = val[j-1]*
fX(i, 0);
2419 for (j=0; j<npar; j++)
2425 for (j=0; j<npar; j++)
2449 if (step==1)
return 0;
2454 for (i=0; i<
h; i++) {
2455 itemp = subdat[start+index[i]];
2464 for (j=1; j<npar; j++)
2465 val[j] = val[j-1]*
fX(itemp, 0);
2466 for (j=0; j<npar; j++)
2472 for (j=0; j<npar; j++)
2485 for (i=0; i<
h; i++) {
2494 for (j=1; j<npar; j++)
2495 val[j] = val[j-1]*
fX(index[i], 0);
2496 for (j=0; j<npar; j++)
2503 for (j=0; j<npar; j++)
2549 Error(
"Linf",
"Matrix inversion failed");
2602 for(
Int_t i=0; i<5; i++)
2621 for (i=0; i<5; i++) {
2622 if (indsubdat[i]!=0)
2626 for (k=1; k<=ngroup; k++) {
2627 for (m=1; m<=indsubdat[k-1]; m++) {
2633 subdat[jndex-1] = nrand + jndex - 2;
2634 for (i=1; i<=jndex-1; i++) {
2635 if(subdat[i-1] > nrand+i-2) {
2636 for(j=jndex; j>=i+1; j--) {
2637 subdat[j-1] = subdat[j-2];
2639 subdat[i-1] = nrand+i-2;
virtual void GetAtbVector(TVectorD &v)
Get the Atb vector - a vector, used for internal computations.
virtual void GetErrors(TVectorD &vpar)
Returns parameter errors.
virtual void StoreData(Bool_t store)
virtual const char * GetName() const
Returns name of object.
void RDraw(Int_t *subdat, Int_t *indsubdat)
Draws ngroup nonoverlapping subdatasets out of a dataset of size n such that the selected case number...
static long int sum(long int i)
TVectorT< Element > & ResizeTo(Int_t lwb, Int_t upb)
Resize the vector to [lwb:upb] .
virtual Int_t WriteClassBuffer(const TClass *cl, void *pointer)=0
virtual TFormula * GetFormula()
void Clear(Option_t *option="")
Clear the value.
virtual TMatrixTBase< Element > & ResizeTo(Int_t nrows, Int_t ncols, Int_t=-1)
Set size of the matrix to nrows x ncols New dynamic elements are created, the overlapping part of the...
Int_t GetFirst() const
Return first bin on the axis i.e.
virtual Double_t GetErrorZ(Int_t bin) const
This function is called by Graph2DFitChisquare.
virtual Double_t GetErrorY(Int_t bin) const
This function is called by GraphFitChisquare.
Long64_t LocMax(Long64_t n, const T *a)
virtual void FixParameter(Int_t ipar)
Fixes paramter #ipar at its current value.
virtual TMatrixTBase< Element > & Zero()
Set matrix elements to zero.
Collectable string class.
virtual void Clear(Option_t *option="")
Remove all objects from the array.
virtual void Delete(Option_t *option="")
Remove all objects from the array AND delete all heap based objects.
The Linear Fitter - For fitting functions that are LINEAR IN PARAMETERS.
virtual const Element * GetMatrixArray() const
Random number generator class based on the maximally quidistributed combined Tausworthe generator by ...
TString & ReplaceAll(const TString &s1, const TString &s2)
virtual void AddTempMatrices()
Double_t StudentQuantile(Double_t p, Double_t ndf, Bool_t lower_tail=kTRUE)
Computes quantiles of the Student's t-distribution 1st argument is the probability, at which the quantile is computed 2nd argument - the number of degrees of freedom of the Student distribution When the 3rd argument lower_tail is kTRUE (default)- the algorithm returns such x0, that P(x < x0)=p upper tail (lower_tail is kFALSE)- the algorithm returns such x0, that P(x > x0)=p the algorithm was taken from G.W.Hill, "Algorithm 396, Student's t-quantiles" "Communications of the ACM", 13(10), October 1970.
virtual Int_t GetXfirst() const
TObjArray fFunctions
map of basis functions and formula
virtual void GetConfidenceIntervals(Int_t n, Int_t ndim, const Double_t *x, Double_t *ci, Double_t cl=0.95)
Computes point-by-point confidence intervals for the fitted function Parameters: n - number of points...
virtual void SetOwner(Bool_t enable=kTRUE)
Set whether this collection is the owner (enable==true) of its content.
virtual Double_t GetBinContent(Int_t bin) const
Return content of bin number bin.
A TMultiGraph is a collection of TGraph (or derived) objects.
void ToUpper()
Change string to upper case.
Buffer base class used for serializing objects.
virtual void ClearPoints()
To be used when different sets of points are fitted with the same formula.
virtual Double_t * GetEY() const
virtual Int_t ExecuteCommand(const char *command, Double_t *args, Int_t nargs)
To use in TGraph::Fit and TH1::Fit().
Int_t Graph2DLinearFitter(Double_t h)
Minimisation function for a TGraph2D.
Short_t Min(Short_t a, Short_t b)
static std::map< TString, TFormula * > fgFormulaMap
R__EXTERN TVirtualMutex * gROOTMutex
virtual void GetDesignMatrix(TMatrixD &matr)
Returns the internal design matrix.
virtual const Element * GetMatrixArray() const
Int_t Partition(Int_t nmini, Int_t *indsubdat)
divides the elements into approximately equal subgroups number of elements in each subgroup is stored...
virtual Double_t * GetCovarianceMatrix() const
Returns covariance matrix.
virtual const char * GetParName(Int_t ipar) const
Returns name of parameter #ipar.
virtual void Clear(Option_t *="")
TFormula * fInputFunction
virtual Bool_t IsInside(const Double_t *x) const
Return kTRUE is the point is inside the function range.
virtual TMatrixTBase< Element > & ResizeTo(Int_t nrows, Int_t ncols, Int_t=-1)
Set size of the matrix to nrows x ncols New dynamic elements are created, the overlapping part of the...
virtual TObject * Clone(const char *newname="") const
Make a clone of an collection using the Streamer facility.
Double_t StudentI(Double_t T, Double_t ndf)
Calculates the cumulative distribution function of Student's t-distribution second parameter stands f...
virtual Int_t GetDimension() const
TVectorT< Element > & Use(Int_t lwb, Int_t upb, Element *data)
Use the array data to fill the vector lwb..upb].
virtual const char * ClassName() const
Returns name of class to which the object belongs.
int GetDimension(const TH1 *h1)
virtual void PrintResults(Int_t level, Double_t amin=0) const
Level = 3 (to be consistent with minuit) prints parameters and parameter errors.
This is the base class for the ROOT Random number generators.
TVirtualFitter & operator=(const TVirtualFitter &tvf)
assignment operator
virtual void GetFitSample(TBits &bits)
For robust lts fitting, returns the sample, on which the best fit was based.
Double_t CStep(Int_t step, Int_t h, Double_t *residuals, Int_t *index, Int_t *subdat, Int_t start, Int_t end)
The CStep procedure, as described in the article.
virtual Double_t GetBinCenter(Int_t bin) const
Return center of bin.
virtual void Clear(Option_t *option="")
Clears everything. Used in TH1::Fit and TGraph::Fit().
Bool_t Invert(TMatrixDSym &inv)
For a symmetric matrix A(m,m), its inverse A_inv(m,m) is returned .
virtual Int_t GetNdim() const
Bool_t TestBitNumber(UInt_t bitnumber) const
void Clear(Option_t *="")
virtual Double_t * GetEZ() const
virtual void SetBinError(Int_t bin, Double_t error)
See convention for numbering bins in TH1::GetBin.
virtual Int_t GetYlast() const
TMatrixTRow< Double_t > TMatrixDRow
virtual void Chisquare()
Calculates the chisquare.
void CreateSubset(Int_t ntotal, Int_t h, Int_t *index)
Creates a p-subset to start ntotal - total number of points from which the subset is chosen...
Element * GetMatrixArray()
virtual Double_t GetParTValue(Int_t ipar)
Returns the t-value for parameter #ipar.
virtual Foption_t GetFitOption() const
void AddToDesign(Double_t *x, Double_t y, Double_t e)
Add a point to the AtA matrix and to the Atb vector.
virtual Int_t GetZfirst() const
virtual void SetChisquare(Double_t chi2)
Cholesky Decomposition class.
Int_t HistLinearFitter()
Minimization function for H1s using a Chisquare method.
Int_t GetLast() const
Return last bin on the axis i.e.
virtual Int_t GetYfirst() const
virtual Double_t GetParameter(Int_t ipar) const
virtual Bool_t Solve(TVectorD &b)
Solve equations Ax=b assuming A has been factored by Cholesky.
Class to manage histogram axis.
virtual Double_t GetParSignificance(Int_t ipar)
Returns the significance of parameter #ipar.
Int_t MultiGraphLinearFitter(Double_t h)
Minimisation function for a TMultiGraph.
virtual Bool_t InheritsFrom(const char *classname) const
Returns kTRUE if object inherits from class "classname".
virtual void SetBinContent(Int_t bin, Double_t content)
Set bin content see convention for numbering bins in TH1::GetBin In case the bin number is greater th...
virtual Int_t EvalRobust(Double_t h=-1)
Finds the parameters of the fitted function in case data contains outliers.
Collection abstract base class.
virtual Double_t GetChisquare()
Get the Chisquare.
static void update(gsl_integration_workspace *workspace, double a1, double b1, double area1, double error1, double a2, double b2, double area2, double error2)
TVectorT< Element > & Zero()
Set vector elements to zero.
Int_t GetEntriesFast() const
Int_t GraphLinearFitter(Double_t h)
Used in TGraph::Fit().
virtual void ReleaseParameter(Int_t ipar)
Releases parameter #ipar.
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
TLinearFitter()
default c-tor, input data is stored If you don't want to store the input data, run the function Store...
static TVirtualFitter * GetFitter()
static: return the current Fitter
TMatrixD fX
temporary variable used for num.stability
Int_t GetNoElements() const
A 2-Dim function with parameters.
virtual Int_t GetBin(Int_t binx, Int_t biny=0, Int_t binz=0) const
Return Global bin number corresponding to binx,y,z.
virtual void SetBasisFunctions(TObjArray *functions)
set the basis functions in case the fitting function is not set directly The TLinearFitter will manag...
virtual Int_t Eval()
Perform the fit and evaluate the parameters Returns 0 if the fit is ok, 1 if there are errors...
TMatrixDSym fDesignTemp2
temporary matrix, used for num.stability
#define R__LOCKGUARD2(mutex)
Int_t NonZeros() const
Compute the number of elements != 0.0.
virtual Int_t GetZlast() const
virtual Int_t ReadClassBuffer(const TClass *cl, void *pointer, const TClass *onfile_class=0)=0
virtual Double_t Eval(Double_t x, Double_t y=0, Double_t z=0, Double_t t=0) const
Evaluate this function.
TObjArray * Tokenize(const TString &delim) const
This function is used to isolate sequential tokens in a TString.
TObject * UncheckedAt(Int_t i) const
virtual void Add(TLinearFitter *tlf)
Add another linear fitter to this linear fitter.
virtual ~TLinearFitter()
Linear fitter cleanup.
virtual void SetPoint(Int_t point, Double_t x, Double_t y, Double_t z)
Sets point number n.
virtual void Clear(Option_t *="")
TLinearFitter & operator=(const TLinearFitter &tlf)
Assignment operator.
virtual void GetParameters(TVectorD &vpar)
Returns parameter values.
virtual Double_t GetParError(Int_t ipar) const
Returns the error of parameter #ipar.
double func(double *x, double *p)
virtual void Expand(Int_t newSize)
Expand or shrink the array to newSize elements.
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
you should not use this method at all Int_t Int_t Double_t Double_t Double_t e
virtual void AssignData(Int_t npoints, Int_t xncols, Double_t *x, Double_t *y, Double_t *e=0)
This function is to use when you already have all the data in arrays and don't want to copy them into...
virtual void SetFormula(const char *formula)
Additive parts should be separated by "++".
virtual Double_t Uniform(Double_t x1=1)
Returns a uniform deviate on the interval (0, x1).
virtual void SetDim(Int_t n)
set the number of dimensions
void ComputeTValues()
Computes parameters' t-values and significance.
virtual TObject * Clone(const char *newname="") const
Make a clone of an object using the Streamer facility.
Abstract Base Class for Fitting.
TMatrixT< Element > & Use(Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb, Element *data)
Use the array data to fill the matrix ([row_lwb..row_upb] x [col_lwb..col_upb])
Mother of all ROOT objects.
you should not use this method at all Int_t Int_t z
virtual Bool_t IsInside(const Double_t *x) const
return kTRUE if the point is inside the function range
virtual void SetPoint(Int_t i, Double_t x, Double_t y)
Set x and y values for point number i.
TList * GetListOfGraphs() const
Element KOrdStat(Size n, const Element *a, Size k, Size *work=0)
double f2(const double *x)
A Graph is a graphics object made of two arrays X and Y with npoints each.
Int_t GetEntries() const
Return the number of objects in array (i.e.
virtual Int_t GetXlast() const
virtual Bool_t UpdateMatrix()
Update the design matrix after the formula has been changed.
Double_t Sqrt(Double_t x)
Graphics object made of three arrays X, Y and Z with the same number of points each.
virtual const char * GetName() const
Returns name of object.
Long64_t LocMin(Long64_t n, const T *a)
virtual Double_t EvalPar(const Double_t *x, const Double_t *params=0)
Evaluate function with given coordinates and parameters.
virtual TObject * GetUserFunc() const
virtual TObject * GetObjectFit() const
TVectorD fAtbTemp2
temporary vector, used for num.stability
virtual Int_t Merge(TCollection *list)
Merge objects in list.
void SetBitNumber(UInt_t bitnumber, Bool_t value=kTRUE)
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.
virtual Double_t GetBinError(Int_t bin) const
Return value of error associated to bin number bin.
T MinElement(Long64_t n, const T *a)
const char * Data() const
virtual void AddPoint(Double_t *x, Double_t y, Double_t e=1)
Adds 1 point to the fitter.