332 if (number<299 || number>310){
333 Error(
"TLinearFitter",
"Trying to fit with a nonlinear function");
362 fParams(tlf.fParams),
363 fParCovar(tlf.fParCovar),
364 fTValues(tlf.fTValues),
365 fParSign(tlf.fParSign),
366 fDesign(tlf.fDesign),
367 fDesignTemp(tlf.fDesignTemp),
368 fDesignTemp2(tlf.fDesignTemp2),
369 fDesignTemp3(tlf.fDesignTemp3),
371 fAtbTemp(tlf.fAtbTemp),
372 fAtbTemp2(tlf.fAtbTemp2),
373 fAtbTemp3(tlf.fAtbTemp3),
374 fFunctions( * (
TObjArray *)tlf.fFunctions.Clone()),
377 fY2Temp(tlf.fY2Temp),
380 fInputFunction(tlf.fInputFunction),
382 fNpoints(tlf.fNpoints),
383 fNfunctions(tlf.fNfunctions),
384 fFormulaSize(tlf.fFormulaSize),
386 fNfixed(tlf.fNfixed),
387 fSpecial(tlf.fSpecial),
390 fStoreData(tlf.fStoreData),
391 fChisquare(tlf.fChisquare),
393 fRobust(tlf.fRobust),
394 fFitsample(tlf.fFitsample),
579 Error(
"AddPoint",
"Point can't be added, because the formula hasn't been set");
597 Error(
"AddData",
"Those points are already added");
608 fX.
Use(npoints, xncols,
x);
623 for (
Int_t i=xfirst; i<npoints; i++)
645 for (i=1; i<npar; i++)
647 for (i=0; i<npar; i++)
653 for (i=0; i<npar; i++)
670 Error(
"AddToDesign",
"Basis Function %s is of an invalid type %s",obj->
GetName(),obj->IsA()->
GetName());
676 Error(
"AddToDesign",
"Function %s has no linear parts - maybe missing a ++ in the formula expression",
fInputFunction->
GetName());
829 temp2 = (
fY(i)-temp)*(
fY(i)-temp);
830 temp2 /=
fE(i)*
fE(i);
841 for (i=1; i<npar; i++)
842 val[i] = val[i-1]*
fX(point, 0);
843 for (i=0; i<npar; i++)
850 for (i=0; i<npar; i++)
860 temp2 = (
fY(point)-temp)*(
fY(point)-temp);
861 temp2 /=
fE(point)*
fE(point);
889 Error(
"TLinearFitter::Eval",
"The formula hasn't been set");
930 for (ii=0; ii<i; ii++)
957 Error(
"Eval",
"Matrix inversion failed");
994 for (ii=0; ii<i; ii++){
1015 Error(
"FixParameter",
"no value available to fix the parameter");
1019 Error(
"FixParameter",
"illegal parameter value");
1023 Error(
"FixParameter",
"no free parameters left");
1038 Error(
"FixParameter",
"illegal parameter value");
1042 Error(
"FixParameter",
"no free parameters left");
1060 Error(
"ReleaseParameter",
"illegal parameter value");
1064 Warning(
"ReleaseParameter",
"This parameter is not fixed\n");
1118 for (
Int_t ipoint=0; ipoint<
n; ipoint++){
1125 sum_vector[irow]+=
fParCovar(irow,icol)*grad[icol];
1129 c+=grad[i]*sum_vector[i];
1131 ci[ipoint]=
c*t*chidf;
1135 delete [] sum_vector;
1162 Error(
"GetConfidenceIntervals",
"The case of fitting not with a TFormula is not yet implemented");
1171 Error(
"GetConfidenceIntervals",
"A TGraphErrors should be passed instead of a graph");
1175 Error(
"GetConfidenceIntervals",
"A TGraph2DErrors should be passed instead of a graph");
1180 Error(
"GetConfidenceIntervals",
"A TGraph2DErrors or a TH23 should be passed instead of a graph");
1194 Error(
"GetConfidenceIntervals",
"A TGraph2DErrors should be passed instead of a TGraph2D");
1198 Error(
"GetConfidenceIntervals",
"A TGraphErrors should be passed instead of a TGraph2D");
1203 Error(
"GetConfidenceIntervals",
"A TGraphErrors or a TH1 should be passed instead of a graph");
1216 for (
Int_t ipoint=0; ipoint<np; ipoint++){
1224 sum_vector[irow]+=
fParCovar(irow, icol)*grad[icol];
1227 c+=grad[i]*sum_vector[i];
1230 gr2->
GetEZ()[ipoint]=
c*t*chidf;
1233 delete [] sum_vector;
1240 Error(
"GetConfidenceIntervals",
"Fitted graph and passed histogram have different number of dimensions");
1246 Error(
"GetConfidenceIntervals",
"Fitted graph and passed histogram have different number of dimensions");
1252 Error(
"GetConfidenceIntervals",
"Fitted and passed histograms have different number of dimensions");
1275 for (
Int_t binz=hzfirst; binz<=hzlast; binz++){
1277 for (
Int_t biny=hyfirst; biny<=hylast; biny++) {
1279 for (
Int_t binx=hxfirst; binx<=hxlast; binx++) {
1286 sum_vector[irow]+=
fParCovar(irow, icol)*grad[icol];
1289 c+=grad[i]*sum_vector[i];
1297 delete [] sum_vector;
1300 Error(
"GetConfidenceIntervals",
"This object type is not supported");
1367 Error(
"GetParError",
"illegal value of parameter");
1385 Error(
"GetParError",
"illegal value of parameter");
1399 Error(
"GetParError",
"illegal value of parameter");
1413 Error(
"GetParTValue",
"illegal value of parameter");
1427 Error(
"GetParSignificance",
"illegal value of parameter");
1441 Error(
"GetFitSample",
"there is no fit sample in ordinary least-squares fit");
1454 if (!list)
return -1;
1459 Error(
"Add",
"Attempt to add object of class: %s to a %s",lfit->
ClassName(),this->ClassName());
1500 for (
int i=0; i<size; i++)
1534 Int_t size = 0, special = 0;
1545 fstring = (
char *)strstr(
fFormula,
"hyp");
1549 sscanf(fstring,
"%d", &size);
1558 sstring = sstring.
ReplaceAll(
"++", 2,
"|", 1);
1577 char replacement[14];
1578 for (i=0; i<
fNdim; i++){
1579 snprintf(pattern,
sizeof(pattern),
"x%d", i);
1580 snprintf(replacement,
sizeof(replacement),
"x[%d]", i);
1602 Error(
"TLinearFitter",
"f_linear not allocated");
1605 special=
f->GetNumber();
1609 if ((
fNfunctions==1)&&(special>299)&&(special<310)){
1620 fDesign.ResizeTo(size, size);
1621 fAtb.ResizeTo(size);
1622 fDesignTemp.ResizeTo(size, size);
1623 fDesignTemp2.ResizeTo(size, size);
1624 fDesignTemp3.ResizeTo(size, size);
1625 fAtbTemp.ResizeTo(size);
1626 fAtbTemp2.ResizeTo(size);
1627 fAtbTemp3.ResizeTo(size);
1629 delete [] fFixedParams;
1630 fFixedParams=
new Bool_t[size];
1634 fDesignTemp2.Zero();
1635 fDesignTemp3.Zero();
1641 for (i=0; i<size; i++)
1653 Int_t special, size;
1661 if ((special>299)&&(special<310)){
1696 for (
Int_t i=0; i<size; i++)
1704 if (al*bl !=0 && al >= bl) {
1735 if (!strcmp(command,
"FitGraph")){
1739 if (!strcmp(command,
"FitGraph2D")){
1743 if (!strcmp(command,
"FitMultiGraph")){
1761 printf(
"Fitting results:\nParameters:\nNO.\t\tVALUE\t\tERROR\n");
1766 printf(
"Fitting results:\nParameters:\nNO.\t\tVALUE\n");
1768 printf(
"%d\t%e\n", i,
fParams(i));
1789 Int_t fitResult = 0;
1800 for (
Int_t i=0; i<
n; i++){
1803 if (
e<0 || fitOption.
W1)
1818 for (
Int_t i=0; i<
n; i++){
1821 temp2=(
y[i]-temp)*(
y[i]-temp);
1823 if (
e<0 || fitOption.
W1)
1862 for (
Int_t bin=0;bin<
n;bin++) {
1869 e=
gr->GetErrorZ(bin);
1870 if (
e<0 || fitOption.
W1)
1885 for (
Int_t bin=0; bin<
n; bin++){
1893 temp=f2->
Eval(
x[0],
x[1]);
1894 temp2=(z-temp)*(z-temp);
1895 e=
gr->GetErrorZ(bin);
1896 if (
e<0 || fitOption.
W1)
1931 TIter next(
mg->GetListOfGraphs());
1936 for (i=0; i<
n; i++){
1939 if (
e<0 || fitOption.
W1)
1960 for (i=0; i<
n; i++){
1963 temp2=(gy[i]-temp)*(gy[i]-temp);
1965 if (
e<0 || fitOption.
W1)
1989 Int_t bin,binx,biny,binz;
2010 for (binz=hzfirst;binz<=hzlast;binz++) {
2012 for (biny=hyfirst;biny<=hylast;biny++) {
2014 for (binx=hxfirst;binx<=hxlast;binx++) {
2017 bin = hfit->
GetBin(binx,biny,binz);
2024 if (fitOption.
W1==1 && cu == 0)
continue;
2028 if (
eu <= 0)
continue;
2040 for (binz=hzfirst;binz<=hzlast;binz++) {
2042 for (biny=hyfirst;biny<=hylast;biny++) {
2044 for (binx=hxfirst;binx<=hxlast;binx++) {
2047 bin = hfit->
GetBin(binx,biny,binz);
2051 if (fitOption.
W1==1 && cu == 0)
continue;
2055 if (
eu <= 0)
continue;
2058 temp2=(cu-temp)*(cu-temp);
2074void TLinearFitter::Streamer(
TBuffer &R__b)
2109 Int_t i, j, maxind=0, k, k1 = 500;
2114 Error(
"TLinearFitter::EvalRobust",
"The formula hasn't been set");
2120 for (i=0; i<nbest; i++)
2125 if (
h>0.000001 && h<1 && fNpoints*h > hdef)
2129 if (
h>0)
Warning(
"Fitting:",
"illegal value of H, default is taken, h = %3.2f",
double(hdef)/
fNpoints);
2145 for (k = 0; k < k1; k++) {
2147 chi2 =
CStep(1,
fH, residuals,index, index, -1, -1);
2148 chi2 =
CStep(2,
fH, residuals,index, index, -1, -1);
2150 if (chi2 < bestchi2[maxind]) {
2151 bestchi2[maxind] = chi2;
2153 cstock(i, maxind) =
fParams(i);
2160 for (i=0; i<nbest; i++) {
2164 while (chi2 > kEps) {
2165 chi2 =
CStep(2,
fH, residuals,index, index, -1, -1);
2172 if (chi2 <= currentbest + kEps) {
2173 for (j=0; j<
fH; j++){
2174 bestindex[j]=index[j];
2183 fParams(j) = cstock(j, maxind);
2185 for (j=0; j<
fH; j++){
2195 delete [] bestindex;
2196 delete [] residuals;
2211 RDraw(subdat, indsubdat);
2216 Int_t i_end = indsubdat[0];
2218 for (
Int_t kgroup = 0; kgroup < nsub; kgroup++) {
2221 for (i=0; i<nbest; i++)
2223 for (k=0; k<k2; k++) {
2225 chi2 =
CStep(1, hsub, residuals, index, subdat, i_start, i_end);
2226 chi2 =
CStep(2, hsub, residuals, index, subdat, i_start, i_end);
2228 if (chi2 < bestchi2[maxind]){
2230 cstockbig(i, nbest*kgroup + maxind) =
fParams(i);
2231 bestchi2[maxind] = chi2;
2234 if (kgroup != nsub - 1){
2235 i_start += indsubdat[kgroup];
2236 i_end += indsubdat[kgroup+1];
2240 for (i=0; i<nbest; i++)
2244 for (k=0; k<nbest*5; k++) {
2247 chi2 =
CStep(1, hsub2, residuals, index, subdat, 0,
sum);
2248 chi2 =
CStep(2, hsub2, residuals, index, subdat, 0,
sum);
2250 if (chi2 < bestchi2[maxind]){
2251 beststock[maxind] = k;
2252 bestchi2[maxind] = chi2;
2257 for (k=0; k<nbest; k++) {
2259 fParams(i) = cstockbig(i, beststock[k]);
2260 chi2 =
CStep(1,
fH, residuals, index, index, -1, -1);
2261 chi2 =
CStep(2,
fH, residuals, index, index, -1, -1);
2267 fParams(i)=cstockbig(i, beststock[maxind]);
2270 while (chi2 > kEps) {
2271 chi2 =
CStep(2,
fH, residuals, index, index, -1, -1);
2272 if (
TMath::Abs(chi2 - bestchi2[maxind]) < kEps)
2275 bestchi2[maxind] = chi2;
2279 for (j=0; j<
fH; j++)
2288 delete [] beststock;
2290 delete [] residuals;
2306 for(i=0; i<ntotal; i++)
2307 index[i] = ntotal+1;
2312 num=
Int_t(
r.Uniform(0, 1)*(ntotal-1));
2314 for(j=0; j<=i-1; j++) {
2339 while (!ok && (nindex <
h)) {
2342 num=
Int_t(
r.Uniform(0,1)*(ntotal-1));
2344 for(i=0; i<nindex; i++) {
2350 }
while(repeat==
kTRUE);
2352 index[nindex] = num;
2373 for (i=0; i<
n; i++) {
2375 itemp = subdat[start+i];
2384 for (j=1; j<npar; j++)
2385 val[j] = val[j-1]*
fX(itemp, 0);
2386 for (j=0; j<npar; j++)
2392 for (j=0; j<npar; j++)
2403 residuals[i] = (
fY(itemp) - func)*(
fY(itemp) - func)/(
fE(i)*
fE(i));
2417 for (j=1; j<npar; j++)
2418 val[j] = val[j-1]*
fX(i, 0);
2419 for (j=0; j<npar; j++)
2425 for (j=0; j<npar; j++)
2435 residuals[i] = (
fY(i) - func)*(
fY(i) - func)/(
fE(i)*
fE(i));
2449 if (step==1)
return 0;
2454 for (i=0; i<
h; i++) {
2455 itemp = subdat[start+index[i]];
2464 for (j=1; j<npar; j++)
2465 val[j] = val[j-1]*
fX(itemp, 0);
2466 for (j=0; j<npar; j++)
2472 for (j=0; j<npar; j++)
2482 sum+=(
fY(itemp)-func)*(
fY(itemp)-func)/(
fE(itemp)*
fE(itemp));
2485 for (i=0; i<
h; i++) {
2494 for (j=1; j<npar; j++)
2495 val[j] = val[j-1]*
fX(index[i], 0);
2496 for (j=0; j<npar; j++)
2503 for (j=0; j<npar; j++)
2515 sum+=(
fY(index[i])-func)*(
fY(index[i])-func)/(
fE(index[i])*
fE(index[i]));
2549 Error(
"Linf",
"Matrix inversion failed");
2602 for(
Int_t i=0; i<5; i++)
2621 for (i=0; i<5; i++) {
2622 if (indsubdat[i]!=0)
2626 for (k=1; k<=ngroup; k++) {
2627 for (
m=1;
m<=indsubdat[k-1];
m++) {
2633 subdat[jndex-1] = nrand + jndex - 2;
2634 for (i=1; i<=jndex-1; i++) {
2635 if(subdat[i-1] > nrand+i-2) {
2636 for(j=jndex; j>=i+1; j--) {
2637 subdat[j-1] = subdat[j-2];
2639 subdat[i-1] = nrand+i-2;
static void update(gsl_integration_workspace *workspace, double a1, double b1, double area1, double error1, double a2, double b2, double area2, double error2)
TMatrixTRow< Double_t > TMatrixDRow
R__EXTERN TVirtualMutex * gROOTMutex
#define R__LOCKGUARD(mutex)
Class to manage histogram axis.
virtual Double_t GetBinCenter(Int_t bin) const
Return center of bin.
Int_t GetLast() const
Return last bin on the axis i.e.
Int_t GetFirst() const
Return first bin on the axis i.e.
void Clear(Option_t *option="")
Clear the value.
Bool_t TestBitNumber(UInt_t bitnumber) const
void SetBitNumber(UInt_t bitnumber, Bool_t value=kTRUE)
Buffer base class used for serializing objects.
virtual Int_t ReadClassBuffer(const TClass *cl, void *pointer, const TClass *onfile_class=0)=0
virtual Int_t WriteClassBuffer(const TClass *cl, void *pointer)=0
Collection abstract base class.
virtual void SetOwner(Bool_t enable=kTRUE)
Set whether this collection is the owner (enable==true) of its content.
virtual TObject * Clone(const char *newname="") const
Make a clone of an collection using the Streamer facility.
Cholesky Decomposition class.
virtual Bool_t Solve(TVectorD &b)
Solve equations Ax=b assuming A has been factored by Cholesky.
Bool_t Invert(TMatrixDSym &inv)
For a symmetric matrix A(m,m), its inverse A_inv(m,m) is returned .
virtual void SetChisquare(Double_t chi2)
virtual Double_t EvalPar(const Double_t *x, const Double_t *params=0)
Evaluate function with given coordinates and parameters.
virtual TFormula * GetFormula()
virtual Double_t Eval(Double_t x, Double_t y=0, Double_t z=0, Double_t t=0) const
Evaluate this function.
virtual Bool_t IsInside(const Double_t *x) const
return kTRUE if the point is inside the function range
virtual Int_t GetNdim() const
A 2-Dim function with parameters.
virtual Bool_t IsInside(const Double_t *x) const
Return kTRUE is the point is inside the function range.
Graphics object made of three arrays X, Y and Z with the same number of points each.
virtual Double_t * GetEZ() const
virtual void SetPoint(Int_t point, Double_t x, Double_t y, Double_t z)
Sets point number n.
Double_t GetErrorY(Int_t bin) const
This function is called by GraphFitChisquare.
A Graph is a graphics object made of two arrays X and Y with npoints each.
virtual void SetPoint(Int_t i, Double_t x, Double_t y)
Set x and y values for point number i.
virtual Double_t GetErrorY(Int_t bin) const
This function is called by GraphFitChisquare.
virtual Double_t GetBinError(Int_t bin) const
Return value of error associated to bin number bin.
virtual Int_t GetDimension() const
TAxis * GetXaxis()
Get the behaviour adopted by the object about the statoverflows. See EStatOverflows for more informat...
virtual Int_t GetBin(Int_t binx, Int_t biny=0, Int_t binz=0) const
Return Global bin number corresponding to binx,y,z.
virtual void SetBinError(Int_t bin, Double_t error)
Set the bin Error Note that this resets the bin eror option to be of Normal Type and for the non-empt...
virtual void SetBinContent(Int_t bin, Double_t content)
Set bin content see convention for numbering bins in TH1::GetBin In case the bin number is greater th...
virtual Double_t GetBinContent(Int_t bin) const
Return content of bin number bin.
The Linear Fitter - For fitting functions that are LINEAR IN PARAMETERS.
virtual Double_t * GetCovarianceMatrix() const
Returns covariance matrix.
virtual void AddTempMatrices()
virtual Int_t ExecuteCommand(const char *command, Double_t *args, Int_t nargs)
To use in TGraph::Fit and TH1::Fit().
virtual Double_t GetParError(Int_t ipar) const
Returns the error of parameter #ipar.
TMatrixDSym fDesignTemp2
temporary matrix, used for num.stability
Int_t GraphLinearFitter(Double_t h)
Used in TGraph::Fit().
virtual Double_t GetChisquare()
Get the Chisquare.
Int_t Partition(Int_t nmini, Int_t *indsubdat)
divides the elements into approximately equal subgroups number of elements in each subgroup is stored...
virtual void GetErrors(TVectorD &vpar)
Returns parameter errors.
virtual ~TLinearFitter()
Linear fitter cleanup.
Double_t CStep(Int_t step, Int_t h, Double_t *residuals, Int_t *index, Int_t *subdat, Int_t start, Int_t end)
The CStep procedure, as described in the article.
virtual Int_t Merge(TCollection *list)
Merge objects in list.
virtual const char * GetParName(Int_t ipar) const
Returns name of parameter #ipar.
virtual void Clear(Option_t *option="")
Clears everything. Used in TH1::Fit and TGraph::Fit().
virtual void PrintResults(Int_t level, Double_t amin=0) const
Level = 3 (to be consistent with minuit) prints parameters and parameter errors.
void ComputeTValues()
Computes parameters' t-values and significance.
TLinearFitter()
default c-tor, input data is stored If you don't want to store the input data, run the function Store...
Int_t MultiGraphLinearFitter(Double_t h)
Minimisation function for a TMultiGraph.
virtual Double_t GetParSignificance(Int_t ipar)
Returns the significance of parameter #ipar.
virtual Int_t Eval()
Perform the fit and evaluate the parameters Returns 0 if the fit is ok, 1 if there are errors.
TVectorD fAtbTemp2
temporary vector, used for num.stability
Int_t HistLinearFitter()
Minimization function for H1s using a Chisquare method.
virtual Double_t GetParameter(Int_t ipar) const
Int_t Graph2DLinearFitter(Double_t h)
Minimisation function for a TGraph2D.
virtual void ClearPoints()
To be used when different sets of points are fitted with the same formula.
virtual void ReleaseParameter(Int_t ipar)
Releases parameter #ipar.
TObjArray fFunctions
map of basis functions and formula
virtual void GetFitSample(TBits &bits)
For robust lts fitting, returns the sample, on which the best fit was based.
virtual void Add(TLinearFitter *tlf)
Add another linear fitter to this linear fitter.
virtual void GetDesignMatrix(TMatrixD &matr)
Returns the internal design matrix.
virtual void GetParameters(TVectorD &vpar)
Returns parameter values.
void RDraw(Int_t *subdat, Int_t *indsubdat)
Draws ngroup nonoverlapping subdatasets out of a dataset of size n such that the selected case number...
static std::map< TString, TFormula * > fgFormulaMap
virtual void SetDim(Int_t n)
set the number of dimensions
TFormula * fInputFunction
TMatrixD fX
temporary variable used for num.stability
virtual Bool_t UpdateMatrix()
Update the design matrix after the formula has been changed.
virtual void GetAtbVector(TVectorD &v)
Get the Atb vector - a vector, used for internal computations.
virtual void Chisquare()
Calculates the chisquare.
virtual void SetBasisFunctions(TObjArray *functions)
set the basis functions in case the fitting function is not set directly The TLinearFitter will manag...
virtual void FixParameter(Int_t ipar)
Fixes paramter #ipar at its current value.
virtual Int_t EvalRobust(Double_t h=-1)
Finds the parameters of the fitted function in case data contains outliers.
void AddToDesign(Double_t *x, Double_t y, Double_t e)
Add a point to the AtA matrix and to the Atb vector.
TLinearFitter & operator=(const TLinearFitter &tlf)
Assignment operator.
void CreateSubset(Int_t ntotal, Int_t h, Int_t *index)
Creates a p-subset to start ntotal - total number of points from which the subset is chosen.
virtual void SetFormula(const char *formula)
Additive parts should be separated by "++".
virtual void GetConfidenceIntervals(Int_t n, Int_t ndim, const Double_t *x, Double_t *ci, Double_t cl=0.95)
Computes point-by-point confidence intervals for the fitted function Parameters: n - number of points...
virtual void AddPoint(Double_t *x, Double_t y, Double_t e=1)
Adds 1 point to the fitter.
virtual void AssignData(Int_t npoints, Int_t xncols, Double_t *x, Double_t *y, Double_t *e=0)
This function is to use when you already have all the data in arrays and don't want to copy them into...
virtual Double_t GetParTValue(Int_t ipar)
Returns the t-value for parameter #ipar.
virtual void StoreData(Bool_t store)
virtual TMatrixTBase< Element > & Zero()
Set matrix elements to zero.
virtual const Element * GetMatrixArray() const
virtual TMatrixTBase< Element > & ResizeTo(Int_t nrows, Int_t ncols, Int_t=-1)
Set size of the matrix to nrows x ncols New dynamic elements are created, the overlapping part of the...
virtual void Clear(Option_t *="")
TMatrixT< Element > & Use(Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb, Element *data)
Use the array data to fill the matrix ([row_lwb..row_upb] x [col_lwb..col_upb])
virtual TMatrixTBase< Element > & ResizeTo(Int_t nrows, Int_t ncols, Int_t=-1)
Set size of the matrix to nrows x ncols New dynamic elements are created, the overlapping part of the...
virtual const Element * GetMatrixArray() const
virtual void Clear(Option_t *="")
A TMultiGraph is a collection of TGraph (or derived) objects.
virtual const char * GetName() const
Returns name of object.
Int_t GetEntriesFast() const
virtual void Expand(Int_t newSize)
Expand or shrink the array to newSize elements.
Int_t GetEntries() const
Return the number of objects in array (i.e.
virtual void Clear(Option_t *option="")
Remove all objects from the array.
TObject * UncheckedAt(Int_t i) const
virtual void Delete(Option_t *option="")
Remove all objects from the array AND delete all heap based objects.
Collectable string class.
Mother of all ROOT objects.
virtual const char * GetName() const
Returns name of object.
virtual const char * ClassName() const
Returns name of class to which the object belongs.
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.
virtual Bool_t InheritsFrom(const char *classname) const
Returns kTRUE if object inherits from class "classname".
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
Random number generator class based on the maximally quidistributed combined Tausworthe generator by ...
This is the base class for the ROOT Random number generators.
const char * Data() const
TString & ReplaceAll(const TString &s1, const TString &s2)
void ToUpper()
Change string to upper case.
TObjArray * Tokenize(const TString &delim) const
This function is used to isolate sequential tokens in a TString.
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
TVectorT< Element > & Zero()
Set vector elements to zero.
void Clear(Option_t *="")
TVectorT< Element > & ResizeTo(Int_t lwb, Int_t upb)
Resize the vector to [lwb:upb] .
TVectorT< Element > & Use(Int_t lwb, Int_t upb, Element *data)
Use the array data to fill the vector lwb..upb].
Int_t NonZeros() const
Compute the number of elements != 0.0.
Int_t GetNoElements() const
Element * GetMatrixArray()
Abstract Base Class for Fitting.
virtual Int_t GetXlast() const
virtual Int_t GetYfirst() const
virtual TObject * GetObjectFit() const
virtual Foption_t GetFitOption() const
virtual Int_t GetZfirst() const
virtual Int_t GetZlast() const
virtual Int_t GetXfirst() const
virtual Int_t GetYlast() const
TVirtualFitter & operator=(const TVirtualFitter &tvf)
assignment operator
static TVirtualFitter * GetFitter()
static: return the current Fitter
virtual TObject * GetUserFunc() const
int GetDimension(const TH1 *h1)
void function(const Char_t *name_, T fun, const Char_t *docstring=0)
static constexpr double mg
Element KOrdStat(Size n, const Element *a, Size k, Size *work=0)
Returns k_th order statistic of the array a of size n (k_th smallest element out of n elements).
Long64_t LocMin(Long64_t n, const T *a)
Return index of array with the minimum element.
T MinElement(Long64_t n, const T *a)
Return minimum of array a of length n.
Long64_t LocMax(Long64_t n, const T *a)
Return index of array with the maximum element.
Double_t Sqrt(Double_t x)
Short_t Min(Short_t a, Short_t b)
Double_t StudentI(Double_t T, Double_t ndf)
Calculates the cumulative distribution function of Student's t-distribution second parameter stands f...
Double_t StudentQuantile(Double_t p, Double_t ndf, Bool_t lower_tail=kTRUE)
Computes quantiles of the Student's t-distribution 1st argument is the probability,...
static long int sum(long int i)