|
template<typename Architecture_t > |
void | addRegularizationGradients (typename Architecture_t::Matrix_t &A, const typename Architecture_t::Matrix_t &W, typename Architecture_t::Scalar_t weightDecay, ERegularization R) |
| Add the regularization gradient corresponding to weight matrix W, to the matrix A. More...
|
|
template<typename ItValue , typename Fnc > |
void | applyFunctions (ItValue itValue, ItValue itValueEnd, Fnc fnc) |
| apply the activation functions More...
|
|
template<typename ItValue , typename Fnc , typename InvFnc , typename ItGradient > |
void | applyFunctions (ItValue itValue, ItValue itValueEnd, Fnc fnc, InvFnc invFnc, ItGradient itGradient) |
| apply the activation functions and compute the gradient More...
|
|
template<typename ItValue , typename ItFunction > |
void | applyFunctions (ItValue itValue, ItValue itValueEnd, ItFunction itFunction) |
|
template<typename ItValue , typename ItFunction , typename ItInverseFunction , typename ItGradient > |
void | applyFunctions (ItValue itValue, ItValue itValueEnd, ItFunction itFunction, ItInverseFunction itInverseFunction, ItGradient itGradient) |
|
template<typename ItSource , typename ItWeight , typename ItTarget > |
void | applyWeights (ItSource itSourceBegin, ItSource itSourceEnd, ItWeight itWeight, ItTarget itTargetBegin, ItTarget itTargetEnd) |
|
template<bool HasDropOut, typename ItSource , typename ItWeight , typename ItTarget , typename ItDrop > |
void | applyWeights (ItSource itSourceBegin, ItSource itSourceEnd, ItWeight itWeight, ItTarget itTargetBegin, ItTarget itTargetEnd, ItDrop itDrop) |
| apply weights using drop-out; for no drop out, provide (&bool = true) to itDrop such that *itDrop becomes "true" More...
|
|
template<typename ItSource , typename ItWeight , typename ItPrev > |
void | applyWeightsBackwards (ItSource itCurrBegin, ItSource itCurrEnd, ItWeight itWeight, ItPrev itPrevBegin, ItPrev itPrevEnd) |
|
template<bool HasDropOut, typename ItSource , typename ItWeight , typename ItPrev , typename ItDrop > |
void | applyWeightsBackwards (ItSource itCurrBegin, ItSource itCurrEnd, ItWeight itWeight, ItPrev itPrevBegin, ItPrev itPrevEnd, ItDrop itDrop) |
| apply weights backwards (for backprop); for no drop out, provide (&bool = true) to itDrop such that *itDrop becomes "true" More...
|
|
template<typename LAYERDATA > |
void | backward (LAYERDATA &prevLayerData, LAYERDATA &currLayerData) |
| backward application of the weights (back-propagation of the error) More...
|
|
template<EnumRegularization Regularization> |
double | computeRegularization (double weight, const double &factorWeightDecay) |
| compute the regularization (L1, L2) More...
|
|
template<> |
double | computeRegularization< EnumRegularization::L1 > (double weight, const double &factorWeightDecay) |
|
template<> |
double | computeRegularization< EnumRegularization::L2 > (double weight, const double &factorWeightDecay) |
|
template<typename ItProbability , typename ItTruth , typename ItDelta , typename ItInvActFnc > |
double | crossEntropy (ItProbability itProbabilityBegin, ItProbability itProbabilityEnd, ItTruth itTruthBegin, ItTruth, ItDelta itDelta, ItDelta itDeltaEnd, ItInvActFnc, double patternWeight) |
| cross entropy error function More...
|
|
void | cudaError (cudaError_t code, const char *file, int line, bool abort=true) |
| Function to check cuda return code. More...
|
|
template<typename Architecture > |
auto | debugTensor (const std::vector< typename Architecture::Matrix_t > &A, const std::string name="tensor") -> void |
|
template<typename Architecture_t > |
auto | evaluate (ELossFunction f, const typename Architecture_t::Matrix_t &Y, const typename Architecture_t::Matrix_t &output, const typename Architecture_t::Matrix_t &weights) -> decltype(Architecture_t::CrossEntropy(Y, output, weights)) |
| Compute the value of the objective function f for given activations of the ouput layer and the truth Y. More...
|
|
template<typename Architecture_t > |
void | evaluate (typename Architecture_t::Matrix_t &A, EActivationFunction f) |
| Apply the given activation function to each value in the given matrix A. More...
|
|
template<typename Architecture_t > |
void | evaluate (typename Architecture_t::Matrix_t &A, EOutputFunction f, const typename Architecture_t::Matrix_t &X) |
| Apply the given output function to each value in the given matrix A. More...
|
|
template<typename Architecture_t > |
void | evaluateDerivative (typename Architecture_t::Matrix_t &B, EActivationFunction f, const typename Architecture_t::Matrix_t &A) |
| Compute the first partial derivative of the activation function for the values given in matrix A and write the results into B. More...
|
|
template<typename Architecture_t > |
void | evaluateGradients (typename Architecture_t::Matrix_t &dY, ELossFunction f, const typename Architecture_t::Matrix_t &Y, const typename Architecture_t::Matrix_t &output, const typename Architecture_t::Matrix_t &weights) |
| Compute the gradient of the given output function f for given activations output of the output layer and truth Y and write the results into dY. More...
|
|
template<typename LAYERDATA > |
void | forward (const LAYERDATA &prevLayerData, LAYERDATA &currLayerData) |
| apply the weights (and functions) in forward direction of the DNN More...
|
|
double | gaussDouble (double mean, double sigma) |
|
template<typename Architecture_t > |
void | initialize (typename Architecture_t::Matrix_t &A, EInitialization m) |
|
template<typename T > |
bool | isFlagSet (T flag, T value) |
|
ModeOutputValues | operator& (ModeOutputValues lhs, ModeOutputValues rhs) |
|
ModeOutputValues | operator&= (ModeOutputValues &lhs, ModeOutputValues rhs) |
|
ModeOutputValues | operator| (ModeOutputValues lhs, ModeOutputValues rhs) |
|
ModeOutputValues | operator|= (ModeOutputValues &lhs, ModeOutputValues rhs) |
|
int | randomInt (int maxValue) |
|
template<typename Architecture_t > |
auto | regularization (const typename Architecture_t::Matrix_t &A, ERegularization R) -> decltype(Architecture_t::L1Regularization(A)) |
| Evaluate the regularization functional for a given weight matrix. More...
|
|
template<typename ItOutput , typename ItTruth , typename ItDelta , typename ItInvActFnc > |
double | softMaxCrossEntropy (ItOutput itProbabilityBegin, ItOutput itProbabilityEnd, ItTruth itTruthBegin, ItTruth, ItDelta itDelta, ItDelta itDeltaEnd, ItInvActFnc, double patternWeight) |
| soft-max-cross-entropy error function (for mutual exclusive cross-entropy) More...
|
|
double | studenttDouble (double distributionParameter) |
|
template<typename ItOutput , typename ItTruth , typename ItDelta , typename ItInvActFnc > |
double | sumOfSquares (ItOutput itOutputBegin, ItOutput itOutputEnd, ItTruth itTruthBegin, ItTruth itTruthEnd, ItDelta itDelta, ItDelta itDeltaEnd, ItInvActFnc itInvActFnc, double patternWeight) |
|
template<typename ItOutput , typename ItTruth , typename ItDelta , typename InvFnc > |
double | sumOfSquares (ItOutput itOutputBegin, ItOutput itOutputEnd, ItTruth itTruthBegin, ItTruth, ItDelta itDelta, ItDelta itDeltaEnd, InvFnc invFnc, double patternWeight) |
| sum of squares error function More...
|
|
template<typename Container , typename T > |
void | uniformDouble (Container &container, T maxValue) |
|
double | uniformDouble (double minValue, double maxValue) |
|
template<typename T > |
T | uniformFromTo (T from, T to) |
|
template<typename LAYERDATA > |
void | update (const LAYERDATA &prevLayerData, LAYERDATA &currLayerData, double factorWeightDecay, EnumRegularization regularization) |
| update the node values More...
|
|
template<typename ItSource , typename ItDelta , typename ItTargetGradient , typename ItGradient > |
void | update (ItSource itSource, ItSource itSourceEnd, ItDelta itTargetDeltaBegin, ItDelta itTargetDeltaEnd, ItTargetGradient itTargetGradientBegin, ItGradient itGradient) |
| update the gradients More...
|
|
template<EnumRegularization Regularization, typename ItSource , typename ItDelta , typename ItTargetGradient , typename ItGradient , typename ItWeight > |
void | update (ItSource itSource, ItSource itSourceEnd, ItDelta itTargetDeltaBegin, ItDelta itTargetDeltaEnd, ItTargetGradient itTargetGradientBegin, ItGradient itGradient, ItWeight itWeight, double weightDecay) |
| update the gradients, using regularization More...
|
|
template<typename ItWeight > |
double | weightDecay (double error, ItWeight itWeight, ItWeight itWeightEnd, double factorWeightDecay, EnumRegularization eRegularization) |
| compute the weight decay for regularization (L1 or L2) More...
|
|