Logo ROOT   6.16/01
Reference Guide
List of all members | Public Types | Public Member Functions | Protected Member Functions | Protected Attributes | List of all members
TMVA::DNN::TAdam< Architecture_t, Layer_t, DeepNet_t > Class Template Reference

template<typename Architecture_t, typename Layer_t = VGeneralLayer<Architecture_t>, typename DeepNet_t = TDeepNet<Architecture_t, Layer_t>>
class TMVA::DNN::TAdam< Architecture_t, Layer_t, DeepNet_t >

Adam Optimizer class.

This class represents the Adam Optimizer.

Definition at line 44 of file Adam.h.

Public Types

using Matrix_t = typename Architecture_t::Matrix_t
 
using Scalar_t = typename Architecture_t::Scalar_t
 
- Public Types inherited from TMVA::DNN::VOptimizer< Architecture_t, VGeneralLayer< Architecture_t >, TDeepNet< Architecture_t, VGeneralLayer< Architecture_t > > >
using Matrix_t = typename Architecture_t::Matrix_t
 
using Scalar_t = typename Architecture_t::Scalar_t
 

Public Member Functions

 TAdam (DeepNet_t &deepNet, Scalar_t learningRate=0.001, Scalar_t beta1=0.9, Scalar_t beta2=0.999, Scalar_t epsilon=1e-8)
 Constructor. More...
 
 ~TAdam ()=default
 Destructor. More...
 
Scalar_t GetBeta1 () const
 Getters. More...
 
Scalar_t GetBeta2 () const
 
Scalar_t GetEpsilon () const
 
std::vector< std::vector< Matrix_t > > & GetFirstMomentBiases ()
 
std::vector< Matrix_t > & GetFirstMomentBiasesAt (size_t i)
 
std::vector< std::vector< Matrix_t > > & GetFirstMomentWeights ()
 
std::vector< Matrix_t > & GetFirstMomentWeightsAt (size_t i)
 
std::vector< std::vector< Matrix_t > > & GetSecondMomentBiases ()
 
std::vector< Matrix_t > & GetSecondMomentBiasesAt (size_t i)
 
std::vector< std::vector< Matrix_t > > & GetSecondMomentWeights ()
 
std::vector< Matrix_t > & GetSecondMomentWeightsAt (size_t i)
 
- Public Member Functions inherited from TMVA::DNN::VOptimizer< Architecture_t, VGeneralLayer< Architecture_t >, TDeepNet< Architecture_t, VGeneralLayer< Architecture_t > > >
 VOptimizer (Scalar_t learningRate, TDeepNet< Architecture_t, VGeneralLayer< Architecture_t > > &deepNet)
 Constructor. More...
 
virtual ~VOptimizer ()=default
 Virtual Destructor. More...
 
size_t GetGlobalStep () const
 
VGeneralLayer< Architecture_t > * GetLayerAt (size_t i)
 
std::vector< VGeneralLayer< Architecture_t > * > & GetLayers ()
 
Scalar_t GetLearningRate () const
 Getters. More...
 
void IncrementGlobalStep ()
 Increments the global step. More...
 
void SetLearningRate (size_t learningRate)
 Setters. More...
 
void Step ()
 Performs one step of optimization. More...
 

Protected Member Functions

void UpdateBiases (size_t layerIndex, std::vector< Matrix_t > &biases, const std::vector< Matrix_t > &biasGradients)
 Update the biases, given the current bias gradients. More...
 
void UpdateWeights (size_t layerIndex, std::vector< Matrix_t > &weights, const std::vector< Matrix_t > &weightGradients)
 Update the weights, given the current weight gradients. More...
 
virtual void UpdateBiases (size_t layerIndex, std::vector< Matrix_t > &biases, const std::vector< Matrix_t > &biasGradients)=0
 Update the biases, given the current bias gradients. More...
 
virtual void UpdateWeights (size_t layerIndex, std::vector< Matrix_t > &weights, const std::vector< Matrix_t > &weightGradients)=0
 Update the weights, given the current weight gradients. More...
 

Protected Attributes

Scalar_t fBeta1
 The Beta1 constant used by the optimizer. More...
 
Scalar_t fBeta2
 The Beta2 constant used by the optimizer. More...
 
Scalar_t fEpsilon
 The Smoothing term used to avoid division by zero. More...
 
std::vector< std::vector< Matrix_t > > fFirstMomentBiases
 The decaying average of the first moment of the past bias gradients associated with the deep net. More...
 
std::vector< std::vector< Matrix_t > > fFirstMomentWeights
 The decaying average of the first moment of the past weight gradients associated with the deep net. More...
 
std::vector< std::vector< Matrix_t > > fSecondMomentBiases
 The decaying average of the second moment of the past bias gradients associated with the deep net. More...
 
std::vector< std::vector< Matrix_t > > fSecondMomentWeights
 The decaying average of the second moment of the past weight gradients associated with the deep net. More...
 
- Protected Attributes inherited from TMVA::DNN::VOptimizer< Architecture_t, VGeneralLayer< Architecture_t >, TDeepNet< Architecture_t, VGeneralLayer< Architecture_t > > >
TDeepNet< Architecture_t, VGeneralLayer< Architecture_t > > & fDeepNet
 The reference to the deep net. More...
 
size_t fGlobalStep
 The current global step count during training. More...
 
Scalar_t fLearningRate
 The learning rate used for training. More...
 

#include <TMVA/DNN/Adam.h>

Inheritance diagram for TMVA::DNN::TAdam< Architecture_t, Layer_t, DeepNet_t >:
[legend]

Member Typedef Documentation

◆ Matrix_t

template<typename Architecture_t , typename Layer_t = VGeneralLayer<Architecture_t>, typename DeepNet_t = TDeepNet<Architecture_t, Layer_t>>
using TMVA::DNN::TAdam< Architecture_t, Layer_t, DeepNet_t >::Matrix_t = typename Architecture_t::Matrix_t

Definition at line 46 of file Adam.h.

◆ Scalar_t

template<typename Architecture_t , typename Layer_t = VGeneralLayer<Architecture_t>, typename DeepNet_t = TDeepNet<Architecture_t, Layer_t>>
using TMVA::DNN::TAdam< Architecture_t, Layer_t, DeepNet_t >::Scalar_t = typename Architecture_t::Scalar_t

Definition at line 47 of file Adam.h.

Constructor & Destructor Documentation

◆ TAdam()

template<typename Architecture_t , typename Layer_t , typename DeepNet_t >
TMVA::DNN::TAdam< Architecture_t, Layer_t, DeepNet_t >::TAdam ( DeepNet_t &  deepNet,
Scalar_t  learningRate = 0.001,
Scalar_t  beta1 = 0.9,
Scalar_t  beta2 = 0.999,
Scalar_t  epsilon = 1e-8 
)

Constructor.

Definition at line 101 of file Adam.h.

◆ ~TAdam()

template<typename Architecture_t , typename Layer_t = VGeneralLayer<Architecture_t>, typename DeepNet_t = TDeepNet<Architecture_t, Layer_t>>
TMVA::DNN::TAdam< Architecture_t, Layer_t, DeepNet_t >::~TAdam ( )
default

Destructor.

Member Function Documentation

◆ GetBeta1()

template<typename Architecture_t , typename Layer_t = VGeneralLayer<Architecture_t>, typename DeepNet_t = TDeepNet<Architecture_t, Layer_t>>
Scalar_t TMVA::DNN::TAdam< Architecture_t, Layer_t, DeepNet_t >::GetBeta1 ( ) const
inline

Getters.

Definition at line 79 of file Adam.h.

◆ GetBeta2()

template<typename Architecture_t , typename Layer_t = VGeneralLayer<Architecture_t>, typename DeepNet_t = TDeepNet<Architecture_t, Layer_t>>
Scalar_t TMVA::DNN::TAdam< Architecture_t, Layer_t, DeepNet_t >::GetBeta2 ( ) const
inline

Definition at line 80 of file Adam.h.

◆ GetEpsilon()

template<typename Architecture_t , typename Layer_t = VGeneralLayer<Architecture_t>, typename DeepNet_t = TDeepNet<Architecture_t, Layer_t>>
Scalar_t TMVA::DNN::TAdam< Architecture_t, Layer_t, DeepNet_t >::GetEpsilon ( ) const
inline

Definition at line 81 of file Adam.h.

◆ GetFirstMomentBiases()

template<typename Architecture_t , typename Layer_t = VGeneralLayer<Architecture_t>, typename DeepNet_t = TDeepNet<Architecture_t, Layer_t>>
std::vector< std::vector< Matrix_t > > & TMVA::DNN::TAdam< Architecture_t, Layer_t, DeepNet_t >::GetFirstMomentBiases ( )
inline

Definition at line 86 of file Adam.h.

◆ GetFirstMomentBiasesAt()

template<typename Architecture_t , typename Layer_t = VGeneralLayer<Architecture_t>, typename DeepNet_t = TDeepNet<Architecture_t, Layer_t>>
std::vector< Matrix_t > & TMVA::DNN::TAdam< Architecture_t, Layer_t, DeepNet_t >::GetFirstMomentBiasesAt ( size_t  i)
inline

Definition at line 87 of file Adam.h.

◆ GetFirstMomentWeights()

template<typename Architecture_t , typename Layer_t = VGeneralLayer<Architecture_t>, typename DeepNet_t = TDeepNet<Architecture_t, Layer_t>>
std::vector< std::vector< Matrix_t > > & TMVA::DNN::TAdam< Architecture_t, Layer_t, DeepNet_t >::GetFirstMomentWeights ( )
inline

Definition at line 83 of file Adam.h.

◆ GetFirstMomentWeightsAt()

template<typename Architecture_t , typename Layer_t = VGeneralLayer<Architecture_t>, typename DeepNet_t = TDeepNet<Architecture_t, Layer_t>>
std::vector< Matrix_t > & TMVA::DNN::TAdam< Architecture_t, Layer_t, DeepNet_t >::GetFirstMomentWeightsAt ( size_t  i)
inline

Definition at line 84 of file Adam.h.

◆ GetSecondMomentBiases()

template<typename Architecture_t , typename Layer_t = VGeneralLayer<Architecture_t>, typename DeepNet_t = TDeepNet<Architecture_t, Layer_t>>
std::vector< std::vector< Matrix_t > > & TMVA::DNN::TAdam< Architecture_t, Layer_t, DeepNet_t >::GetSecondMomentBiases ( )
inline

Definition at line 92 of file Adam.h.

◆ GetSecondMomentBiasesAt()

template<typename Architecture_t , typename Layer_t = VGeneralLayer<Architecture_t>, typename DeepNet_t = TDeepNet<Architecture_t, Layer_t>>
std::vector< Matrix_t > & TMVA::DNN::TAdam< Architecture_t, Layer_t, DeepNet_t >::GetSecondMomentBiasesAt ( size_t  i)
inline

Definition at line 93 of file Adam.h.

◆ GetSecondMomentWeights()

template<typename Architecture_t , typename Layer_t = VGeneralLayer<Architecture_t>, typename DeepNet_t = TDeepNet<Architecture_t, Layer_t>>
std::vector< std::vector< Matrix_t > > & TMVA::DNN::TAdam< Architecture_t, Layer_t, DeepNet_t >::GetSecondMomentWeights ( )
inline

Definition at line 89 of file Adam.h.

◆ GetSecondMomentWeightsAt()

template<typename Architecture_t , typename Layer_t = VGeneralLayer<Architecture_t>, typename DeepNet_t = TDeepNet<Architecture_t, Layer_t>>
std::vector< Matrix_t > & TMVA::DNN::TAdam< Architecture_t, Layer_t, DeepNet_t >::GetSecondMomentWeightsAt ( size_t  i)
inline

Definition at line 90 of file Adam.h.

◆ UpdateBiases()

template<typename Architecture_t , typename Layer_t , typename DeepNet_t >
auto TMVA::DNN::TAdam< Architecture_t, Layer_t, DeepNet_t >::UpdateBiases ( size_t  layerIndex,
std::vector< Matrix_t > &  biases,
const std::vector< Matrix_t > &  biasGradients 
)
protectedvirtual

Update the biases, given the current bias gradients.

Implements TMVA::DNN::VOptimizer< Architecture_t, VGeneralLayer< Architecture_t >, TDeepNet< Architecture_t, VGeneralLayer< Architecture_t > > >.

Definition at line 168 of file Adam.h.

◆ UpdateWeights()

template<typename Architecture_t , typename Layer_t , typename DeepNet_t >
auto TMVA::DNN::TAdam< Architecture_t, Layer_t, DeepNet_t >::UpdateWeights ( size_t  layerIndex,
std::vector< Matrix_t > &  weights,
const std::vector< Matrix_t > &  weightGradients 
)
protectedvirtual

Update the weights, given the current weight gradients.

Implements TMVA::DNN::VOptimizer< Architecture_t, VGeneralLayer< Architecture_t >, TDeepNet< Architecture_t, VGeneralLayer< Architecture_t > > >.

Definition at line 144 of file Adam.h.

Member Data Documentation

◆ fBeta1

template<typename Architecture_t , typename Layer_t = VGeneralLayer<Architecture_t>, typename DeepNet_t = TDeepNet<Architecture_t, Layer_t>>
Scalar_t TMVA::DNN::TAdam< Architecture_t, Layer_t, DeepNet_t >::fBeta1
protected

The Beta1 constant used by the optimizer.

Definition at line 50 of file Adam.h.

◆ fBeta2

template<typename Architecture_t , typename Layer_t = VGeneralLayer<Architecture_t>, typename DeepNet_t = TDeepNet<Architecture_t, Layer_t>>
Scalar_t TMVA::DNN::TAdam< Architecture_t, Layer_t, DeepNet_t >::fBeta2
protected

The Beta2 constant used by the optimizer.

Definition at line 51 of file Adam.h.

◆ fEpsilon

template<typename Architecture_t , typename Layer_t = VGeneralLayer<Architecture_t>, typename DeepNet_t = TDeepNet<Architecture_t, Layer_t>>
Scalar_t TMVA::DNN::TAdam< Architecture_t, Layer_t, DeepNet_t >::fEpsilon
protected

The Smoothing term used to avoid division by zero.

Definition at line 52 of file Adam.h.

◆ fFirstMomentBiases

template<typename Architecture_t , typename Layer_t = VGeneralLayer<Architecture_t>, typename DeepNet_t = TDeepNet<Architecture_t, Layer_t>>
std::vector<std::vector<Matrix_t> > TMVA::DNN::TAdam< Architecture_t, Layer_t, DeepNet_t >::fFirstMomentBiases
protected

The decaying average of the first moment of the past bias gradients associated with the deep net.

Definition at line 56 of file Adam.h.

◆ fFirstMomentWeights

template<typename Architecture_t , typename Layer_t = VGeneralLayer<Architecture_t>, typename DeepNet_t = TDeepNet<Architecture_t, Layer_t>>
std::vector<std::vector<Matrix_t> > TMVA::DNN::TAdam< Architecture_t, Layer_t, DeepNet_t >::fFirstMomentWeights
protected

The decaying average of the first moment of the past weight gradients associated with the deep net.

Definition at line 54 of file Adam.h.

◆ fSecondMomentBiases

template<typename Architecture_t , typename Layer_t = VGeneralLayer<Architecture_t>, typename DeepNet_t = TDeepNet<Architecture_t, Layer_t>>
std::vector<std::vector<Matrix_t> > TMVA::DNN::TAdam< Architecture_t, Layer_t, DeepNet_t >::fSecondMomentBiases
protected

The decaying average of the second moment of the past bias gradients associated with the deep net.

Definition at line 61 of file Adam.h.

◆ fSecondMomentWeights

template<typename Architecture_t , typename Layer_t = VGeneralLayer<Architecture_t>, typename DeepNet_t = TDeepNet<Architecture_t, Layer_t>>
std::vector<std::vector<Matrix_t> > TMVA::DNN::TAdam< Architecture_t, Layer_t, DeepNet_t >::fSecondMomentWeights
protected

The decaying average of the second moment of the past weight gradients associated with the deep net.

Definition at line 59 of file Adam.h.

Libraries for TMVA::DNN::TAdam< Architecture_t, Layer_t, DeepNet_t >:
[legend]

The documentation for this class was generated from the following file: