|
| Net () |
| c'tor More...
|
|
| Net (const Net &other) |
| d'tor More...
|
|
void | addLayer (Layer &&layer) |
|
void | addLayer (Layer &layer) |
| add a layer (layout) More...
|
|
template<typename Settings > |
void | backPropagate (std::vector< std::vector< LayerData > > &layerPatternData, const Settings &settings, size_t trainFromLayer, size_t totalNumWeights) const |
|
void | clear () |
|
template<typename Weights > |
std::vector< double > | compute (const std::vector< double > &input, const Weights &weights) const |
| compute the net with the given input and the given weights More...
|
|
template<typename ItWeight > |
std::tuple< double, double > | computeError (const Settings &settings, std::vector< LayerData > &lastLayerData, Batch &batch, ItWeight itWeightBegin, ItWeight itWeightEnd) const |
|
void | dE () |
|
template<typename WeightsType , typename DropProbabilities > |
void | dropOutWeightFactor (WeightsType &weights, const DropProbabilities &drops, bool inverse=false) |
| set the drop out configuration More...
|
|
double | E () |
|
template<typename Container , typename ItWeight > |
double | errorFunction (LayerData &layerData, Container truth, ItWeight itWeight, ItWeight itWeightEnd, double patternWeight, double factorWeightDecay, EnumRegularization eRegularization) const |
| computes the error of the DNN More...
|
|
template<typename OutputContainer > |
void | fetchOutput (const LayerData &lastLayerData, OutputContainer &outputContainer) const |
|
template<typename OutputContainer > |
void | fetchOutput (const std::vector< LayerData > &layerPatternData, OutputContainer &outputContainer) const |
|
template<typename LayerContainer , typename PassThrough , typename ItWeight , typename ItGradient , typename OutContainer > |
double | forward_backward (LayerContainer &layers, PassThrough &settingsAndBatch, ItWeight itWeightBegin, ItWeight itWeightEnd, ItGradient itGradientBegin, ItGradient itGradientEnd, size_t trainFromLayer, OutContainer &outputContainer, bool fetchOutput) const |
| main NN computation function More...
|
|
template<typename LayerContainer , typename LayerPatternContainer > |
void | forwardBatch (const LayerContainer &_layers, LayerPatternContainer &layerPatternData, std::vector< double > &valuesMean, std::vector< double > &valuesStdDev, size_t trainFromLayer) const |
|
template<typename LayerContainer > |
void | forwardPattern (const LayerContainer &_layers, std::vector< LayerData > &layerData) const |
|
template<typename OutIterator > |
void | initializeWeights (WeightInitializationStrategy eInitStrategy, OutIterator itWeight) |
| initialize the weights with the given strategy More...
|
|
size_t | inputSize () const |
| input size of the DNN More...
|
|
std::vector< Layer > & | layers () |
| returns the layers (structure) More...
|
|
const std::vector< Layer > & | layers () const |
| returns the layers (structure) More...
|
|
size_t | numNodes (size_t trainingStartLayer=0) const |
| returns the number of nodes in this net More...
|
|
size_t | numWeights (size_t trainingStartLayer=0) const |
| returns the number of weights in this net More...
|
|
template<typename Weights , typename PassThrough > |
double | operator() (PassThrough &settingsAndBatch, const Weights &weights) const |
| execute computation of the DNN for one mini-batch (used by the minimizer); no computation of gradients More...
|
|
template<typename Weights , typename PassThrough , typename OutContainer > |
double | operator() (PassThrough &settingsAndBatch, const Weights &weights, ModeOutput eFetch, OutContainer &outputContainer) const |
| execute computation of the DNN for one mini-batch; helper function More...
|
|
template<typename Weights , typename Gradients , typename PassThrough > |
double | operator() (PassThrough &settingsAndBatch, Weights &weights, Gradients &gradients) const |
| execute computation of the DNN for one mini-batch (used by the minimizer); returns gradients as well More...
|
|
template<typename Weights , typename Gradients , typename PassThrough , typename OutContainer > |
double | operator() (PassThrough &settingsAndBatch, Weights &weights, Gradients &gradients, ModeOutput eFetch, OutContainer &outputContainer) const |
|
size_t | outputSize () const |
| output size of the DNN More...
|
|
template<typename LayerContainer , typename DropContainer , typename ItWeight , typename ItGradient > |
std::vector< std::vector< LayerData > > | prepareLayerData (LayerContainer &layers, Batch &batch, const DropContainer &dropContainer, ItWeight itWeightBegin, ItWeight itWeightEnd, ItGradient itGradientBegin, ItGradient itGradientEnd, size_t &totalNumWeights) const |
|
template<typename Minimizer > |
void | preTrain (std::vector< double > &weights, std::vector< Pattern > &trainPattern, const std::vector< Pattern > &testPattern, Minimizer &minimizer, Settings &settings) |
| pre-training for future use More...
|
|
void | removeLayer () |
| remove one layer More...
|
|
void | setErrorFunction (ModeErrorFunction eErrorFunction) |
| which error function is to be used More...
|
|
void | setInputSize (size_t sizeInput) |
| set the input size of the DNN More...
|
|
void | SetIpythonInteractive (IPythonInteractive *fI, bool *fE, UInt_t *M, UInt_t *C) |
|
void | setOutputSize (size_t sizeOutput) |
| set the output size of the DNN More...
|
|
template<typename Minimizer > |
double | train (std::vector< double > &weights, std::vector< Pattern > &trainPattern, const std::vector< Pattern > &testPattern, Minimizer &minimizer, Settings &settings) |
| start the training More...
|
|
template<typename Iterator , typename Minimizer > |
double | trainCycle (Minimizer &minimizer, std::vector< double > &weights, Iterator itPatternBegin, Iterator itPatternEnd, Settings &settings, DropContainer &dropContainer) |
| executes one training cycle More...
|
|