30#ifndef ROOT_TMVA_MethodDNN
31#define ROOT_TMVA_MethodDNN
82 using LayoutVector_t = std::vector<std::pair<int, DNN::EActivationFunction>>;
178 std::stringstream matrixStringStream(
"");
179 matrixStringStream.precision( 16 );
181 for (
size_t i = 0; i < (size_t) X.
GetNrows(); i++)
183 for (
size_t j = 0; j < (size_t) X.
GetNcols(); j++)
185 matrixStringStream << std::scientific << X(i,j) <<
" ";
188 std::string
s = matrixStringStream.str();
207 std::stringstream matrixStringStream(matrixString);
209 for (
size_t i = 0; i < rows; i++)
211 for (
size_t j = 0; j < cols; j++)
213 matrixStringStream >> X(i,j);
#define ClassDef(name, id)
Generic neural network class.
The reference architecture class.
TMatrixT< AReal > Matrix_t
Class that contains all the data information.
Virtual base Class for all MVA method.
virtual void ReadWeightsFromStream(std::istream &)=0
Deep Neural Network Implementation.
virtual Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
typename Architecture_t::Scalar_t Scalar_t
virtual const std::vector< Float_t > & GetMulticlassValues()
UInt_t GetNumValidationSamples()
void ReadWeightsFromXML(void *wghtnode)
std::vector< std::map< TString, TString > > KeyValueVector_t
typename Architecture_t::Matrix_t Matrix_t
TString fTrainingStrategyString
KeyValueVector_t fSettings
void ReadWeightsFromStream(std::istream &i)
LayoutVector_t ParseLayoutString(TString layerSpec)
static void WriteMatrixXML(void *parent, const char *name, const TMatrixT< Double_t > &X)
MethodDNN(DataSetInfo &theData, const TString &theWeightFile)
void MakeClassSpecific(std::ostream &, const TString &) const
MethodDNN(const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption)
TString fWeightInitializationString
std::vector< std::pair< int, DNN::EActivationFunction > > LayoutVector_t
DNN::EInitialization fWeightInitialization
friend struct TestMethodDNNValidationSize
std::vector< TTrainingSettings > fTrainingSettings
TString fArchitectureString
virtual Double_t GetMvaValue(Double_t *err=0, Double_t *errUpper=0)
const Ranking * CreateRanking()
KeyValueVector_t ParseKeyValueString(TString parseString, TString blockDelim, TString tokenDelim)
DNN::EOutputFunction fOutputFunction
void AddWeightsXMLTo(void *parent) const
void GetHelpMessage() const
static void ReadMatrixXML(void *xml, const char *name, TMatrixT< Double_t > &X)
virtual const std::vector< Float_t > & GetRegressionValues()
Ranking for variables in method (implementation)
Bool_t AddRawLine(XMLNodePointer_t parent, const char *line)
Add just line into xml file Line should has correct xml syntax that later it can be decoded by xml pa...
XMLAttrPointer_t NewAttr(XMLNodePointer_t xmlnode, XMLNsPointer_t, const char *name, const char *value)
creates new attribute for xmlnode, namespaces are not supported for attributes
XMLNodePointer_t NewChild(XMLNodePointer_t parent, XMLNsPointer_t ns, const char *name, const char *content=0)
create new child element for parent node
const char * GetNodeContent(XMLNodePointer_t xmlnode)
get contents (if any) of xmlnode
static constexpr double s
EOutputFunction
Enum that represents output functions.
ERegularization
Enum representing the regularization type applied for a given layer.
Abstract ClassifierFactory template that handles arbitrary types.
DNN::ERegularization regularization
std::vector< Double_t > dropoutProbabilities