18#ifndef TMVA_DNN_ARCHITECTURES_REFERENCE
19#define TMVA_DNN_ARCHITECTURES_REFERENCE
43template<
typename AReal>
115 template<
typename AMatrix_t>
127 template<
typename AMatrix_t>
322 size_t zeroPaddingHeight,
323 size_t zeroPaddingWidth);
326 size_t ,
size_t ,
size_t ,
size_t ,
size_t ) {
327 Fatal(
"Im2ColIndices",
"This function is not implemented for ref architectures");
330 Fatal(
"Im2ColFast",
"This function is not implemented for ref architectures");
336 size_t filterWidth,
size_t numFilters);
352 Fatal(
"ConvLayerForward",
"This function is not implemented for ref architectures");
373 size_t ,
size_t ,
size_t ,
size_t ,
size_t,
374 size_t ,
size_t ,
size_t ,
size_t ,
size_t) {
375 Fatal(
"ConvLayerBackward",
"This function is not implemented for ref architectures");
379#ifdef HAVE_CNN_REFERENCE
382 static void CalculateConvActivationGradients(std::vector<
TMatrixT<AReal>> &activationGradientsBackward,
384 size_t batchSize,
size_t inputHeight,
size_t inputWidth,
size_t depth,
385 size_t height,
size_t width,
size_t filterDepth,
size_t filterHeight,
391 const std::vector<
TMatrixT<AReal>> &activationBackward,
size_t batchSize,
392 size_t inputHeight,
size_t inputWidth,
size_t depth,
size_t height,
393 size_t width,
size_t filterDepth,
size_t filterHeight,
size_t filterWidth,
399 size_t batchSize,
size_t depth,
size_t nLocalViews);
416 size_t imgWidth,
size_t fltHeight,
size_t fltWidth,
size_t strideRows,
size_t strideCols);
526 AReal learningRate,
size_t fBatchSize);
536 AReal corruptionLevel);
567template <
typename AReal>
568template <
typename AMatrix_t>
575template <
typename AReal>
576template <
typename AMatrix_t>
579 for (
size_t i = 0; i <
A.size(); ++i) {
580 CopyDiffArch(
A[i],
B[i]);
include TDocParser_001 C image html pict1_TDocParser_001 png width
void Fatal(const char *location, const char *msgfmt,...)
The reference architecture class.
static void AdamUpdate(TMatrixT< AReal > &A, const TMatrixT< AReal > &M, const TMatrixT< AReal > &V, AReal alpha, AReal eps)
Update functions for ADAM optimizer.
static void AdamUpdateSecondMom(TMatrixT< AReal > &A, const TMatrixT< AReal > &B, AReal beta)
static void SymmetricRelu(TMatrixT< AReal > &B)
static void InitializeIdentity(TMatrixT< AReal > &A)
static void MultiplyTranspose(TMatrixT< Scalar_t > &output, const TMatrixT< Scalar_t > &input, const TMatrixT< Scalar_t > &weights)
Matrix-multiply input with the transpose of \pweights and write the results into output.
static void InitializeGlorotNormal(TMatrixT< AReal > &A)
Truncated normal initialization (Glorot, called also Xavier normal) The values are sample with a norm...
static void AdamUpdateFirstMom(TMatrixT< AReal > &A, const TMatrixT< AReal > &B, AReal beta)
static void Flatten(TMatrixT< AReal > &A, const std::vector< TMatrixT< AReal > > &B, size_t size, size_t nRows, size_t nCols)
Flattens the tensor B, such that each matrix, is stretched in one row, resulting with a matrix A.
static void Relu(TMatrixT< AReal > &B)
static void MaxPoolLayerBackward(TMatrixT< AReal > &activationGradientsBackward, const TMatrixT< AReal > &activationGradients, const TMatrixT< AReal > &indexMatrix, size_t imgHeight, size_t imgWidth, size_t fltHeight, size_t fltWidth, size_t strideRows, size_t strideCol, size_t nLocalViews)
Perform the complete backward propagation step in a Max Pooling Layer.
static void GaussDerivative(TMatrixT< AReal > &B, const TMatrixT< AReal > &A)
static void SoftmaxAE(TMatrixT< AReal > &A)
static void AddL1RegularizationGradients(TMatrixT< AReal > &A, const TMatrixT< AReal > &W, AReal weightDecay)
static void AddRowWise(TMatrixT< Scalar_t > &output, const TMatrixT< Scalar_t > &biases)
Add the vectors biases row-wise to the matrix output.
static void CrossEntropyGradients(TMatrixT< AReal > &dY, const TMatrixT< AReal > &Y, const TMatrixT< AReal > &output, const TMatrixT< AReal > &weights)
static void Im2colFast(TMatrixT< AReal > &, const TMatrixT< AReal > &, const std::vector< int > &)
static void Downsample(TMatrixT< AReal > &A, TMatrixT< AReal > &B, const TMatrixT< AReal > &C, size_t imgHeight, size_t imgWidth, size_t fltHeight, size_t fltWidth, size_t strideRows, size_t strideCols)
Downsample the matrix C to the matrix A, using max operation, such that the winning indices are store...
static void EncodeInput(TMatrixT< AReal > &input, TMatrixT< AReal > &compressedInput, TMatrixT< AReal > &Weights)
static void TanhDerivative(TMatrixT< AReal > &B, const TMatrixT< AReal > &A)
static void ReconstructInput(TMatrixT< AReal > &compressedInput, TMatrixT< AReal > &reconstructedInput, TMatrixT< AReal > &fWeights)
static void Dropout(TMatrixT< AReal > &A, AReal dropoutProbability)
Apply dropout with activation probability p to the given matrix A and scale the result by reciprocal ...
static AReal L2Regularization(const TMatrixT< AReal > &W)
static void Im2colIndices(std::vector< int > &, const TMatrixT< AReal > &, size_t, size_t, size_t, size_t, size_t, size_t, size_t, size_t, size_t)
static void IdentityDerivative(TMatrixT< AReal > &B, const TMatrixT< AReal > &A)
static AReal SoftmaxCrossEntropy(const TMatrixT< AReal > &Y, const TMatrixT< AReal > &output, const TMatrixT< AReal > &weights)
Softmax transformation is implicitly applied, thus output should hold the linear activations of the l...
static void ConstAdd(TMatrixT< AReal > &A, AReal beta)
Add the constant beta to all the elements of matrix A and write the result into A.
static void Gauss(TMatrixT< AReal > &B)
static void SetRandomSeed(size_t seed)
static void SigmoidDerivative(TMatrixT< AReal > &B, const TMatrixT< AReal > &A)
static void SoftSignDerivative(TMatrixT< AReal > &B, const TMatrixT< AReal > &A)
static AReal CrossEntropy(const TMatrixT< AReal > &Y, const TMatrixT< AReal > &output, const TMatrixT< AReal > &weights)
Sigmoid transformation is implicitly applied, thus output should hold the linear activations of the l...
static void InitializeZero(TMatrixT< AReal > &A)
static void Tanh(TMatrixT< AReal > &B)
static void SoftSign(TMatrixT< AReal > &B)
static void Softmax(TMatrixT< AReal > &YHat, const TMatrixT< AReal > &)
static void ReciprocalElementWise(TMatrixT< AReal > &A)
Reciprocal each element of the matrix A and write the result into A.
static void Backward(TMatrixT< Scalar_t > &activationGradientsBackward, TMatrixT< Scalar_t > &weightGradients, TMatrixT< Scalar_t > &biasGradients, TMatrixT< Scalar_t > &df, const TMatrixT< Scalar_t > &activationGradients, const TMatrixT< Scalar_t > &weights, const TMatrixT< Scalar_t > &activationBackward)
Perform the complete backward propagation step.
static void SquareElementWise(TMatrixT< AReal > &A)
Square each element of the matrix A and write the result into A.
static void MeanSquaredErrorGradients(TMatrixT< AReal > &dY, const TMatrixT< AReal > &Y, const TMatrixT< AReal > &output, const TMatrixT< AReal > &weights)
static TRandom * fgRandomGen
static void RotateWeights(TMatrixT< AReal > &A, const TMatrixT< AReal > &B, size_t filterDepth, size_t filterHeight, size_t filterWidth, size_t numFilters)
Rotates the matrix B, which is representing a weights, and stores them in the matrix A.
static void Rearrange(std::vector< TMatrixT< AReal > > &out, const std::vector< TMatrixT< AReal > > &in)
Rearrage data accoring to time fill B x T x D out with T x B x D matrix in.
static void Deflatten(std::vector< TMatrixT< AReal > > &A, const TMatrixT< Scalar_t > &B, size_t index, size_t nRows, size_t nCols)
Transforms each row of B to a matrix and stores it in the tensor B.
static void Im2col(TMatrixT< AReal > &A, const TMatrixT< AReal > &B, size_t imgHeight, size_t imgWidth, size_t fltHeight, size_t fltWidth, size_t strideRows, size_t strideCols, size_t zeroPaddingHeight, size_t zeroPaddingWidth)
Transform the matrix B in local view format, suitable for convolution, and store it in matrix A.
static void Hadamard(TMatrixT< AReal > &A, const TMatrixT< AReal > &B)
In-place Hadamard (element-wise) product of matrices A and B with the result being written into A.
static void UpdateParams(TMatrixT< AReal > &x, TMatrixT< AReal > &tildeX, TMatrixT< AReal > &y, TMatrixT< AReal > &z, TMatrixT< AReal > &fVBiases, TMatrixT< AReal > &fHBiases, TMatrixT< AReal > &fWeights, TMatrixT< AReal > &VBiasError, TMatrixT< AReal > &HBiasError, AReal learningRate, size_t fBatchSize)
static void ScaleAdd(TMatrixT< Scalar_t > &A, const TMatrixT< Scalar_t > &B, Scalar_t beta=1.0)
Adds a the elements in matrix B scaled by c to the elements in the matrix A.
static void Sigmoid(TMatrixT< AReal > &B)
static void CopyDiffArch(TMatrixT< Scalar_t > &A, const AMatrix_t &B)
static void SymmetricReluDerivative(TMatrixT< AReal > &B, const TMatrixT< AReal > &A)
static void Identity(TMatrixT< AReal > &B)
static void UpdateParamsLogReg(TMatrixT< AReal > &input, TMatrixT< AReal > &output, TMatrixT< AReal > &difference, TMatrixT< AReal > &p, TMatrixT< AReal > &fWeights, TMatrixT< AReal > &fBiases, AReal learningRate, size_t fBatchSize)
static void ConvLayerBackward(std::vector< TMatrixT< AReal > > &, TMatrixT< AReal > &, TMatrixT< AReal > &, std::vector< TMatrixT< AReal > > &, const std::vector< TMatrixT< AReal > > &, const TMatrixT< AReal > &, const std::vector< TMatrixT< AReal > > &, size_t, size_t, size_t, size_t, size_t, size_t, size_t, size_t, size_t, size_t)
Perform the complete backward propagation step in a Convolutional Layer.
static void SoftmaxCrossEntropyGradients(TMatrixT< AReal > &dY, const TMatrixT< AReal > &Y, const TMatrixT< AReal > &output, const TMatrixT< AReal > &weights)
static AReal L1Regularization(const TMatrixT< AReal > &W)
static void AddConvBiases(TMatrixT< AReal > &output, const TMatrixT< AReal > &biases)
Add the biases in the Convolutional Layer.
static void ConvLayerForward(std::vector< TMatrixT< AReal > > &, std::vector< TMatrixT< AReal > > &, const std::vector< TMatrixT< AReal > > &, const TMatrixT< AReal > &, const TMatrixT< AReal > &, const DNN::CNN::TConvParams &, EActivationFunction, std::vector< TMatrixT< AReal > > &)
Forward propagation in the Convolutional layer.
static void AddL2RegularizationGradients(TMatrixT< AReal > &A, const TMatrixT< AReal > &W, AReal weightDecay)
static void Copy(TMatrixT< Scalar_t > &A, const TMatrixT< Scalar_t > &B)
static void CorruptInput(TMatrixT< AReal > &input, TMatrixT< AReal > &corruptedInput, AReal corruptionLevel)
static void InitializeGauss(TMatrixT< AReal > &A)
static AReal MeanSquaredError(const TMatrixT< AReal > &Y, const TMatrixT< AReal > &output, const TMatrixT< AReal > &weights)
static void SqrtElementWise(TMatrixT< AReal > &A)
Square root each element of the matrix A and write the result into A.
static void SumColumns(TMatrixT< AReal > &B, const TMatrixT< AReal > &A)
Sum columns of (m x n) matrixx A and write the results into the first m elements in A.
static void ReluDerivative(TMatrixT< AReal > &B, const TMatrixT< AReal > &A)
static void ForwardLogReg(TMatrixT< AReal > &input, TMatrixT< AReal > &p, TMatrixT< AReal > &fWeights)
static void ConstMult(TMatrixT< AReal > &A, AReal beta)
Multiply the constant beta to all the elements of matrix A and write the result into A.
static void InitializeGlorotUniform(TMatrixT< AReal > &A)
Sample from a uniform distribution in range [ -lim,+lim] where lim = sqrt(6/N_in+N_out).
static void Reshape(TMatrixT< AReal > &A, const TMatrixT< AReal > &B)
Transform the matrix B to a matrix with different dimensions A.
static void AddBiases(TMatrixT< AReal > &A, const TMatrixT< AReal > &biases)
static TRandom & GetRandomGenerator()
static void PrepareInternals(std::vector< TMatrixT< AReal > > &)
Dummy placeholder - preparation is currently only required for the CUDA architecture.
static Matrix_t & RecurrentLayerBackward(TMatrixT< Scalar_t > &state_gradients_backward, TMatrixT< Scalar_t > &input_weight_gradients, TMatrixT< Scalar_t > &state_weight_gradients, TMatrixT< Scalar_t > &bias_gradients, TMatrixT< Scalar_t > &df, const TMatrixT< Scalar_t > &state, const TMatrixT< Scalar_t > &weights_input, const TMatrixT< Scalar_t > &weights_state, const TMatrixT< Scalar_t > &input, TMatrixT< Scalar_t > &input_gradient)
Backpropagation step for a Recurrent Neural Network.
static void InitializeUniform(TMatrixT< AReal > &A)
This is the base class for the ROOT Random number generators.
double beta(double x, double y)
Calculates the beta function.
double weightDecay(double error, ItWeight itWeight, ItWeight itWeightEnd, double factorWeightDecay, EnumRegularization eRegularization)
compute the weight decay for regularization (L1 or L2)
EActivationFunction
Enum that represents layer activation functions.
Abstract ClassifierFactory template that handles arbitrary types.