48template<
typename Architecture_t,
typename Layer_t = TLayer<Architecture_t>>
52 using Matrix_t =
typename Architecture_t::Matrix_t;
53 using Scalar_t =
typename Architecture_t::Scalar_t;
70 template<
typename OtherArchitecture_t>
74 TNet(
size_t batchSize,
91 template <
typename SharedLayer>
124 bool includeRegularization =
true);
159template<
typename Architecture_t,
typename Layer_t>
161 : fBatchSize(0), fInputWidth(0), fLayers(), fDummy(0,0),
169template<
typename Architecture_t,
typename Layer_t>
171 : fBatchSize(other.fBatchSize), fInputWidth(other.fInputWidth),
172 fLayers(other.fLayers), fDummy(0,0), fJ(other.fJ), fR(other.fR),
173 fWeightDecay(other.fWeightDecay)
179template<
typename Architecture_t,
typename Layer_t>
180template<
typename OtherArchitecture_t>
183 : fBatchSize(batchSize), fInputWidth(other.GetInputWidth()), fLayers(),
184 fDummy(0,0), fJ(other.GetLossFunction()), fR(other.GetRegularization()),
185 fWeightDecay(other.GetWeightDecay())
188 for (
size_t i = 0; i < other.
GetDepth(); i++) {
190 other.
GetLayer(i).GetActivationFunction(),
191 other.
GetLayer(i).GetDropoutProbability());
198template<
typename Architecture_t,
typename Layer_t>
204 : fBatchSize(batchSize), fInputWidth(inputWidth), fLayers(), fDummy(0,0),
211template<
typename Architecture_t,
typename Layer_t>
217 for (
auto &
l : fLayers) {
224template<
typename Architecture_t,
typename Layer_t>
229 if (fLayers.size() == 0) {
230 fLayers.emplace_back(fBatchSize, fInputWidth,
width,
f, dropoutProbability);
232 size_t prevWidth = fLayers.back().GetWidth();
233 fLayers.emplace_back(fBatchSize, prevWidth,
width,
f, dropoutProbability);
238template<
typename Architecture_t,
typename Layer_t>
245template<
typename Architecture_t,
typename Layer_t>
246 template<
typename SharedLayer_t>
249 fLayers.emplace_back(fBatchSize, layer);
253template<
typename Architecture_t,
typename Layer_t>
256 for (
auto &
l : fLayers) {
262template<
typename Architecture_t,
typename Layer_t>
265 for (
auto &
l : fLayers) {
272template<
typename Architecture_t,
typename Layer_t>
276 fLayers.front().Forward(input, applyDropout);
278 for (
size_t i = 1; i < fLayers.size(); i++) {
279 fLayers[i].Forward(fLayers[i-1].GetOutput(), applyDropout);
284template <
typename Architecture_t,
typename Layer_t>
288 evaluateGradients<Architecture_t>(fLayers.back().GetActivationGradients(), fJ, Y, fLayers.back().GetOutput(),
291 for (
size_t i = fLayers.size()-1; i > 0; i--) {
292 auto & activation_gradient_backward
293 = fLayers[i-1].GetActivationGradients();
294 auto & activations_backward
295 = fLayers[i-1].GetOutput();
296 fLayers[i].Backward(activation_gradient_backward,
297 activations_backward, fR, fWeightDecay);
299 fLayers[0].Backward(fDummy, X, fR, fWeightDecay);
304template <
typename Architecture_t,
typename Layer_t>
306 bool includeRegularization)
const ->
Scalar_t
308 auto loss = evaluate<Architecture_t>(fJ, Y, fLayers.back().GetOutput(), weights);
310 if (includeRegularization) {
311 for (
auto &
l : fLayers) {
312 loss += fWeightDecay * regularization<Architecture_t>(
l.GetWeights(), fR);
319template <
typename Architecture_t,
typename Layer_t>
321 bool applyDropout,
bool includeRegularization) ->
Scalar_t
323 Forward(X, applyDropout);
324 return Loss(Y, weights, includeRegularization);
328template<
typename Architecture_t,
typename Layer_t>
334 evaluate<Architecture_t>(Yhat,
f, fLayers.back().GetOutput());
338template<
typename Architecture_t,
typename Layer_t>
342 evaluate<Architecture_t>(Y_hat,
f, fLayers.back().GetOutput());
346template<
typename Architecture_t,
typename Layer_t>
355 for(
size_t i = 0; i < fLayers.size(); i++) {
356 Layer_t & layer = fLayers[i];
360 flops += nb * nl * (2.0 * nlp - 1);
362 flops += 2 * nb * nl;
366 flops += nlp * nl * (2.0 * nb - 1.0);
367 flops += nl * (nb - 1);
369 flops += nlp * nb * (2.0 * nl - 1.0);
377template<
typename Architecture_t,
typename Layer_t>
379 const std::vector<Double_t> & probabilities)
381 for (
size_t i = 0; i < fLayers.size(); i++) {
382 if (i < probabilities.size()) {
383 fLayers[i].SetDropoutProbability(probabilities[i]);
385 fLayers[i].SetDropoutProbability(1.0);
391template<
typename Architecture_t,
typename Layer_t>
394 std::cout <<
"DEEP NEURAL NETWORK:";
395 std::cout <<
" Loss function = " <<
static_cast<char>(fJ);
396 std::cout <<
", Depth = " << fLayers.size() << std::endl;
399 for (
auto &
l : fLayers) {
400 std::cout <<
"DNN Layer " << i <<
":" << std::endl;
#define R(a, b, c, d, e, f, g, h, i)
include TDocParser_001 C image html pict1_TDocParser_001 png width
Generic neural network class.
void SetWeightDecay(Scalar_t weightDecay)
void Initialize(EInitialization m)
Initialize the weights in the net with the initialization method.
Scalar_t Loss(const Matrix_t &Y, const Matrix_t &weights, bool includeRegularization=true) const
Evaluate the loss function of the net using the activations that are currently stored in the output l...
void SetRegularization(ERegularization R)
size_t fInputWidth
Number of features in a single input event.
LayerIterator_t LayersEnd()
Iterator to the last layer of the net.
size_t GetOutputWidth() const
const Layer_t & GetLayer(size_t i) const
typename Architecture_t::Matrix_t Matrix_t
size_t fBatchSize
Batch size for training and evaluation of the Network.
ELossFunction fJ
The loss function of the network.
void Forward(Matrix_t &X, bool applyDropout=false)
Forward a given input through the neural net.
ERegularization GetRegularization() const
void Prediction(Matrix_t &Y_hat, Matrix_t &X, EOutputFunction f)
Compute the neural network predictionion obtained from forwarding the batch X through the neural netw...
void SetBatchSize(size_t batchSize)
void InitializeGradients()
Initialize the gradients in the net to zero.
Scalar_t fWeightDecay
The weight decay factor.
ERegularization fR
The regularization used for the network.
LayerIterator_t LayersBegin()
Iterator to the first layer of the net.
TNet< Architecture_t, TSharedLayer< Architecture_t > > CreateClone(size_t batchSize)
Create a clone that uses the same weight and biases matrices but potentially a difference batch size.
void Backward(const Matrix_t &X, const Matrix_t &Y, const Matrix_t &weights)
Compute the weight gradients in the net from the given training samples X and training labels Y.
ELossFunction GetLossFunction() const
Matrix_t fDummy
Empty matrix for last step in back propagation.
size_t GetBatchSize() const
void SetDropoutProbabilities(const std::vector< Double_t > &probabilities)
void SetLossFunction(ELossFunction J)
void Clear()
Remove all layers from the network.
void AddLayer(SharedLayer &layer)
Add a layer which shares its weights with another TNet instance.
void AddLayer(size_t width, EActivationFunction f, Scalar_t dropoutProbability=1.0)
Add a layer of the given size to the neural net.
void SetInputWidth(size_t inputWidth)
size_t GetInputWidth() const
typename std::vector< Layer_t >::iterator LayerIterator_t
typename Architecture_t::Scalar_t Scalar_t
Scalar_t GetWeightDecay() const
std::vector< Layer_t > fLayers
Layers in the network.
Layer_t & GetLayer(size_t i)
EOutputFunction
Enum that represents output functions.
double weightDecay(double error, ItWeight itWeight, ItWeight itWeightEnd, double factorWeightDecay, EnumRegularization eRegularization)
compute the weight decay for regularization (L1 or L2)
ERegularization
Enum representing the regularization type applied for a given layer.
EActivationFunction
Enum that represents layer activation functions.
ELossFunction
Enum that represents objective functions for the net, i.e.
Abstract ClassifierFactory template that handles arbitrary types.