52 MsgLogger fLogger(
"HyperParameterOptimisation");
55 fLogger<<kHEADER<<
"===========================================================" <<
Endl;
56 fLogger<<kINFO<<
"Optimisation for " <<
fMethodName <<
" fold " << j+1 <<
Endl;
59 fLogger<<kINFO<< it.first <<
" " << it.second <<
Endl;
68 fFomType(
"Separation"),
72 fClassifier(new
TMVA::
Factory(
"HyperParameterOptimisation",
"!V:!ROC:Silent:!ModelPersistence:!Color:!DrawProgressBar:AnalysisType=Classification"))
104 TString foldTitle = methodTitle;
HyperParameterOptimisationResult()
MsgLogger & Endl(MsgLogger &ml)
T GetValue(const TString &key)
A TMultiGraph is a collection of TGraph (or derived) objects.
HyperParameterOptimisationResult fResults
static void SetIsTraining(Bool_t)
when this static function is called, it sets the flag whether events with negative event weight shoul...
Base class for all machine learning algorithms.
virtual void Evaluate()
Virtual method to be implemented with your algorithm.
void SetNumFolds(UInt_t folds)
std::shared_ptr< TMultiGraph > fROCCurves
HyperParameterOptimisation(DataLoader *dataloader)
~HyperParameterOptimisation()
This is the main MVA steering class.
std::shared_ptr< DataLoader > fDataLoader
ostringstream derivative to redirect and format output
std::vector< std::map< TString, Double_t > > fFoldParameters
Abstract ClassifierFactory template that handles arbitrary types.
TMultiGraph * GetROCCurves(Bool_t fLegend=kTRUE)
~HyperParameterOptimisationResult()
static void EnableOutput()
std::unique_ptr< Factory > fClassifier