Logo ROOT   6.10/09
Reference Guide
DataLoader.h
Go to the documentation of this file.
1 // @(#)root/tmva $Id$
2 // Author: Andreas Hoecker, Peter Speckmayer, Joerg Stelzer, Helge Voss, Kai Voss, Eckhard von Toerne, Jan Therhaag, Omar Zapata, Lorenzo Moneta, Sergei Gleyzer
3 //NOTE: Based on TMVA::Factory
4 
5 /**********************************************************************************
6  * Project: TMVA - a Root-integrated toolkit for multivariate data analysis *
7  * Package: TMVA *
8  * Class : DataLoader *
9  * Web : http://tmva.sourceforge.net *
10  * *
11  * Description: *
12  * This is a class to load datasets into every booked method *
13  * *
14  * Authors (alphabetical): *
15  * Lorenzo Moneta <Lorenzo.Moneta@cern.ch> - CERN, Switzerland *
16  * Omar Zapata <andresete.chaos@gmail.com> - ITM/UdeA, Colombia *
17  * Sergei Gleyzer<sergei.gleyzer@cern.ch> - CERN, Switzerland *
18  * *
19  * Copyright (c) 2005-2011: *
20  * CERN, Switzerland *
21  * ITM/UdeA, Colombia *
22  * *
23  * Redistribution and use in source and binary forms, with or without *
24  * modification, are permitted according to the terms listed in LICENSE *
25  * (http://tmva.sourceforge.net/LICENSE) *
26  **********************************************************************************/
27 
28 #ifndef ROOT_TMVA_DataLoader
29 #define ROOT_TMVA_DataLoader
30 
31 
32 #include <string>
33 #include <vector>
34 #include <map>
35 #include "TCut.h"
36 
37 #include "TMVA/Factory.h"
38 #include "TMVA/Types.h"
39 #include "TMVA/DataSet.h"
40 
41 class TFile;
42 class TTree;
43 class TDirectory;
44 class TH2;
45 
46 namespace TMVA {
47 
48  class IMethod;
49  class Envelope;
50  class MethodBase;
51  class DataInputHandler;
52  class DataSetInfo;
53  class DataSetManager;
54  class VariableTransformBase;
55  class VarTransformHandler;
56 
57  class DataLoader : public Configurable {
58  friend class Factory;
59  friend class Envelope;
60  public:
61 
62  DataLoader( TString thedlName="default");
63 
64  // default destructor
65  virtual ~DataLoader();
66 
67 
68  // add events to training and testing trees
69  void AddSignalTrainingEvent ( const std::vector<Double_t>& event, Double_t weight = 1.0 );
70  void AddBackgroundTrainingEvent( const std::vector<Double_t>& event, Double_t weight = 1.0 );
71  void AddSignalTestEvent ( const std::vector<Double_t>& event, Double_t weight = 1.0 );
72  void AddBackgroundTestEvent ( const std::vector<Double_t>& event, Double_t weight = 1.0 );
73  void AddTrainingEvent( const TString& className, const std::vector<Double_t>& event, Double_t weight );
74  void AddTestEvent ( const TString& className, const std::vector<Double_t>& event, Double_t weight );
75  void AddEvent ( const TString& className, Types::ETreeType tt, const std::vector<Double_t>& event, Double_t weight );
78 
80  DataSetInfo& AddDataSet( const TString& );
82  DataLoader* VarTransform(TString trafoDefinition);
83 
84  // special case: signal/background
85 
86  // Data input related
87  void SetInputTrees( const TString& signalFileName, const TString& backgroundFileName,
88  Double_t signalWeight=1.0, Double_t backgroundWeight=1.0 );
89  void SetInputTrees( TTree* inputTree, const TCut& SigCut, const TCut& BgCut );
90  // Set input trees at once
92  Double_t signalWeight=1.0, Double_t backgroundWeight=1.0) ;
93 
94  void AddSignalTree( TTree* signal, Double_t weight=1.0, Types::ETreeType treetype = Types::kMaxTreeType );
95  void AddSignalTree( TString datFileS, Double_t weight=1.0, Types::ETreeType treetype = Types::kMaxTreeType );
96  void AddSignalTree( TTree* signal, Double_t weight, const TString& treetype );
97 
98  // ... depreciated, kept for backwards compatibility
99  void SetSignalTree( TTree* signal, Double_t weight=1.0);
100 
102  void AddBackgroundTree( TString datFileB, Double_t weight=1.0, Types::ETreeType treetype = Types::kMaxTreeType );
103  void AddBackgroundTree( TTree* background, Double_t weight, const TString & treetype );
104 
105  // ... depreciated, kept for backwards compatibility
106  void SetBackgroundTree( TTree* background, Double_t weight=1.0 );
107 
108  void SetSignalWeightExpression( const TString& variable );
109  void SetBackgroundWeightExpression( const TString& variable );
110 
111  // special case: regression
112  void AddRegressionTree( TTree* tree, Double_t weight = 1.0,
113  Types::ETreeType treetype = Types::kMaxTreeType ) {
114  AddTree( tree, "Regression", weight, "", treetype );
115  }
116 
117  // general
118 
119  // Data input related
120  void SetTree( TTree* tree, const TString& className, Double_t weight ); // depreciated
121  void AddTree( TTree* tree, const TString& className, Double_t weight=1.0,
122  const TCut& cut = "",
124  void AddTree( TTree* tree, const TString& className, Double_t weight, const TCut& cut, const TString& treeType );
125 
126  // set input variable
127  void SetInputVariables ( std::vector<TString>* theVariables ); // depreciated
128  void AddVariable ( const TString& expression, const TString& title, const TString& unit,
129  char type='F', Double_t min = 0, Double_t max = 0 );
130  void AddVariable ( const TString& expression, char type='F',
131  Double_t min = 0, Double_t max = 0 );
132  void AddTarget ( const TString& expression, const TString& title = "", const TString& unit = "",
133  Double_t min = 0, Double_t max = 0 );
134  void AddRegressionTarget( const TString& expression, const TString& title = "", const TString& unit = "",
135  Double_t min = 0, Double_t max = 0 )
136  {
137  AddTarget( expression, title, unit, min, max );
138  }
139  void AddSpectator ( const TString& expression, const TString& title = "", const TString& unit = "",
140  Double_t min = 0, Double_t max = 0 );
141 
142  // set weight for class
143  void SetWeightExpression( const TString& variable, const TString& className = "" );
144 
145  // set cut for class
146  void SetCut( const TString& cut, const TString& className = "" );
147  void SetCut( const TCut& cut, const TString& className = "" );
148  void AddCut( const TString& cut, const TString& className = "" );
149  void AddCut( const TCut& cut, const TString& className = "" );
150 
151 
152  // prepare input tree for training
153  void PrepareTrainingAndTestTree( const TCut& cut, const TString& splitOpt );
154  void PrepareTrainingAndTestTree( TCut sigcut, TCut bkgcut, const TString& splitOpt );
155 
156  // ... deprecated, kept for backwards compatibility
157  void PrepareTrainingAndTestTree( const TCut& cut, Int_t Ntrain, Int_t Ntest = -1 );
158 
159  void PrepareTrainingAndTestTree( const TCut& cut, Int_t NsigTrain, Int_t NbkgTrain, Int_t NsigTest, Int_t NbkgTest,
160  const TString& otherOpt="SplitMode=Random:!V" );
161 
162  void PrepareTrainingAndTestTree( int foldNumber, Types::ETreeType tt );
163 
164  void PrepareFoldDataSet( UInt_t foldNumber, Types::ETreeType tt);
165  void MakeKFoldDataSet(UInt_t numberFolds, bool validationSet=false);
166  std::vector<std::vector<TMVA::Event*>> SplitSets(std::vector<TMVA::Event*>& oldSet, int seedNum, int numFolds);
167 
169 
170  TH2* GetCorrelationMatrix(const TString& className);
171 
172  //Copy method use in VI and CV DEPRECATED: you can just call Clone DataLoader *dl2=(DataLoader *)dl1->Clone("dl2")
174  friend void DataLoaderCopy(TMVA::DataLoader* des, TMVA::DataLoader* src);
176 
177  private:
178 
179 
182 
183 
184  private:
185 
186  // data members
187 
188 
190 
191 
193 
194  std::vector<TMVA::VariableTransformBase*> fDefaultTrfs; // list of transformations on default DataSet
195 
196  // cd to local directory
197  TString fOptions; // option string given by construction (presently only "V")
198  TString fTransformations; // List of transformations to test
199  Bool_t fVerbose; // verbose mode
200 
201  // flag determining the way training and test data are assigned to DataLoader
205  DataAssignType fDataAssignType; // flags for data assigning
206  std::vector<TTree*> fTrainAssignTree; // for each class: tmp tree if user wants to assign the events directly
207  std::vector<TTree*> fTestAssignTree; // for each class: tmp tree if user wants to assign the events directly
208 
209  std::vector<std::vector<TMVA::Event*>> fTrainSigEvents;
210  std::vector<std::vector<TMVA::Event*>> fTrainBkgEvents;
211  std::vector<std::vector<TMVA::Event*>> fValidSigEvents;
212  std::vector<std::vector<TMVA::Event*>> fValidBkgEvents;
213  std::vector<std::vector<TMVA::Event*>> fTestSigEvents;
214  std::vector<std::vector<TMVA::Event*>> fTestBkgEvents;
215 
216  Int_t fATreeType = 0; // type of event (=classIndex)
217  Float_t fATreeWeight = 0.0; // weight of the event
218  std::vector<Float_t> fATreeEvent; // event variables
219 
220  Types::EAnalysisType fAnalysisType; // the training type
221 
222  Bool_t fMakeFoldDataSet; // flag telling if the DataSet folds have been done
223 
224  protected:
225 
226  ClassDef(DataLoader,3);
227  };
229 } // namespace TMVA
230 
231 #endif
232 
void AddBackgroundTree(TTree *background, Double_t weight=1.0, Types::ETreeType treetype=Types::kMaxTreeType)
number of signal events (used to compute significance)
Definition: DataLoader.cxx:408
DataSetManager * fDataSetManager
Definition: DataLoader.h:189
virtual ~DataLoader()
Definition: DataLoader.cxx:103
void AddTrainingEvent(const TString &className, const std::vector< Double_t > &event, Double_t weight)
add signal training event
Definition: DataLoader.cxx:266
std::vector< TMVA::VariableTransformBase * > fDefaultTrfs
Definition: DataLoader.h:194
DataLoader(TString thedlName="default")
Definition: DataLoader.cxx:86
float Float_t
Definition: RtypesCore.h:53
void AddRegressionTarget(const TString &expression, const TString &title="", const TString &unit="", Double_t min=0, Double_t max=0)
Definition: DataLoader.h:134
std::vector< std::vector< TMVA::Event * > > fTrainBkgEvents
Definition: DataLoader.h:210
DataSetInfo & GetDataSetInfo()
Definition: DataLoader.cxx:144
A ROOT file is a suite of consecutive data records (TKey instances) with a well defined format...
Definition: TFile.h:46
EAnalysisType
Definition: Types.h:125
TTree * CreateEventAssignTrees(const TString &name)
create the data assignment tree (for event-wise data assignment by user)
Definition: DataLoader.cxx:201
DataSetInfo & DefaultDataSetInfo()
default creation
Definition: DataLoader.cxx:530
DataLoader * VarTransform(TString trafoDefinition)
Transforms the variables and return a new DataLoader with the transformed variables.
Definition: DataLoader.cxx:153
Basic string class.
Definition: TString.h:129
int Int_t
Definition: RtypesCore.h:41
void MakeKFoldDataSet(UInt_t numberFolds, bool validationSet=false)
Function required to split the training and testing datasets into a number of folds.
Definition: DataLoader.cxx:659
bool Bool_t
Definition: RtypesCore.h:59
void SetBackgroundTree(TTree *background, Double_t weight=1.0)
Definition: DataLoader.cxx:445
DataInputHandler * fDataInputHandler
Definition: DataLoader.h:192
Types::EAnalysisType fAnalysisType
Definition: DataLoader.h:220
void AddBackgroundTestEvent(const std::vector< Double_t > &event, Double_t weight=1.0)
add signal training event
Definition: DataLoader.cxx:258
TH2 * GetCorrelationMatrix(const TString &className)
returns the correlation matrix of datasets
Definition: DataLoader.cxx:870
std::vector< std::vector< TMVA::Event * > > fTestBkgEvents
Definition: DataLoader.h:214
void AddVariable(const TString &expression, const TString &title, const TString &unit, char type='F', Double_t min=0, Double_t max=0)
user inserts discriminating variable in data set info
Definition: DataLoader.cxx:491
#define ClassDef(name, id)
Definition: Rtypes.h:297
TText * tt
Definition: textangle.C:16
void AddTestEvent(const TString &className, const std::vector< Double_t > &event, Double_t weight)
add signal test event
Definition: DataLoader.cxx:274
void SetInputTrees(const TString &signalFileName, const TString &backgroundFileName, Double_t signalWeight=1.0, Double_t backgroundWeight=1.0)
Definition: DataLoader.cxx:470
void SetTree(TTree *tree, const TString &className, Double_t weight)
set background tree
Definition: DataLoader.cxx:453
void PrepareFoldDataSet(UInt_t foldNumber, Types::ETreeType tt)
Function for assigning the correct folds to the testing or training set.
Definition: DataLoader.cxx:716
Base class for all machine learning algorithms.
Definition: Envelope.h:35
Class that contains all the data information.
Definition: DataSetInfo.h:60
void SetInputVariables(std::vector< TString > *theVariables)
fill input variables in data set
Definition: DataLoader.cxx:538
DataSetInfo & AddDataSet(DataSetInfo &)
Definition: DataLoader.cxx:126
void AddCut(const TString &cut, const TString &className="")
Definition: DataLoader.cxx:585
A specialized string object used for TTree selections.
Definition: TCut.h:25
void SetInputTreesFromEventAssignTrees()
assign event-wise local trees to data set
Definition: DataLoader.cxx:325
Float_t fATreeWeight
Definition: DataLoader.h:217
Bool_t fMakeFoldDataSet
Definition: DataLoader.h:222
DataInputHandler & DataInput()
Definition: DataLoader.h:175
Service class for 2-Dim histogram classes.
Definition: TH2.h:30
Class that contains all the data information.
unsigned int UInt_t
Definition: RtypesCore.h:42
std::vector< TTree * > fTestAssignTree
Definition: DataLoader.h:207
Bool_t UserAssignEvents(UInt_t clIndex)
Definition: DataLoader.cxx:317
std::vector< Float_t > fATreeEvent
Definition: DataLoader.h:218
void AddRegressionTree(TTree *tree, Double_t weight=1.0, Types::ETreeType treetype=Types::kMaxTreeType)
Definition: DataLoader.h:112
std::vector< std::vector< TMVA::Event * > > fTestSigEvents
Definition: DataLoader.h:213
This is the main MVA steering class.
Definition: Factory.h:81
DataLoader * MakeCopy(TString name)
Copy method use in VI and CV.
Definition: DataLoader.cxx:844
const DataSetInfo & GetDefaultDataSetInfo()
Definition: DataLoader.h:168
void AddTree(TTree *tree, const TString &className, Double_t weight=1.0, const TCut &cut="", Types::ETreeType tt=Types::kMaxTreeType)
Definition: DataLoader.cxx:357
void PrepareTrainingAndTestTree(const TCut &cut, const TString &splitOpt)
prepare the training and test trees -> same cuts for signal and background
Definition: DataLoader.cxx:629
DataAssignType fDataAssignType
Definition: DataLoader.h:205
TString fTransformations
Definition: DataLoader.h:198
double Double_t
Definition: RtypesCore.h:55
void AddEvent(const TString &className, Types::ETreeType tt, const std::vector< Double_t > &event, Double_t weight)
add event vector event : the order of values is: variables + targets + spectators ...
Definition: DataLoader.cxx:283
Class that contains all the data information.
Describe directory structure in memory.
Definition: TDirectory.h:34
void SetBackgroundWeightExpression(const TString &variable)
Definition: DataLoader.cxx:553
int type
Definition: TGX11.cxx:120
void AddTarget(const TString &expression, const TString &title="", const TString &unit="", Double_t min=0, Double_t max=0)
user inserts target in data set info
Definition: DataLoader.cxx:509
void SetWeightExpression(const TString &variable, const TString &className="")
Definition: DataLoader.cxx:560
void AddBackgroundTrainingEvent(const std::vector< Double_t > &event, Double_t weight=1.0)
add signal training event
Definition: DataLoader.cxx:250
void SetSignalWeightExpression(const TString &variable)
Definition: DataLoader.cxx:546
std::vector< std::vector< TMVA::Event * > > fTrainSigEvents
Definition: DataLoader.h:209
Abstract ClassifierFactory template that handles arbitrary types.
std::vector< TTree * > fTrainAssignTree
Definition: DataLoader.h:206
void AddSignalTestEvent(const std::vector< Double_t > &event, Double_t weight=1.0)
add signal testing event
Definition: DataLoader.cxx:242
std::vector< std::vector< TMVA::Event * > > fValidBkgEvents
Definition: DataLoader.h:212
void AddSignalTrainingEvent(const std::vector< Double_t > &event, Double_t weight=1.0)
add signal training event
Definition: DataLoader.cxx:234
friend void DataLoaderCopy(TMVA::DataLoader *des, TMVA::DataLoader *src)
TString fOptions
Definition: DataLoader.h:197
void SetSignalTree(TTree *signal, Double_t weight=1.0)
Definition: DataLoader.cxx:438
Definition: tree.py:1
A TTree object has a header with a name and a title.
Definition: TTree.h:78
std::vector< std::vector< TMVA::Event * > > SplitSets(std::vector< TMVA::Event *> &oldSet, int seedNum, int numFolds)
Splits the input vector in to equally sized randomly sampled folds.
Definition: DataLoader.cxx:808
std::vector< std::vector< TMVA::Event * > > fValidSigEvents
Definition: DataLoader.h:211
void AddSignalTree(TTree *signal, Double_t weight=1.0, Types::ETreeType treetype=Types::kMaxTreeType)
number of signal events (used to compute significance)
Definition: DataLoader.cxx:377
void SetCut(const TString &cut, const TString &className="")
Definition: DataLoader.cxx:572
void AddSpectator(const TString &expression, const TString &title="", const TString &unit="", Double_t min=0, Double_t max=0)
user inserts target in data set info
Definition: DataLoader.cxx:521