28 #ifndef ROOT_TMVA_DataLoader 29 #define ROOT_TMVA_DataLoader 51 class DataInputHandler;
54 class VariableTransformBase;
55 class VarTransformHandler;
114 AddTree( tree,
"Regression", weight,
"", treetype );
122 const TCut& cut =
"",
137 AddTarget( expression, title, unit, min, max );
160 const TString& otherOpt=
"SplitMode=Random:!V" );
166 std::vector<std::vector<TMVA::Event*>>
SplitSets(std::vector<TMVA::Event*>& oldSet,
int seedNum,
int numFolds);
void AddBackgroundTree(TTree *background, Double_t weight=1.0, Types::ETreeType treetype=Types::kMaxTreeType)
number of signal events (used to compute significance)
DataSetManager * fDataSetManager
void AddTrainingEvent(const TString &className, const std::vector< Double_t > &event, Double_t weight)
add signal training event
std::vector< TMVA::VariableTransformBase * > fDefaultTrfs
DataLoader(TString thedlName="default")
void AddRegressionTarget(const TString &expression, const TString &title="", const TString &unit="", Double_t min=0, Double_t max=0)
std::vector< std::vector< TMVA::Event * > > fTrainBkgEvents
DataSetInfo & GetDataSetInfo()
A ROOT file is a suite of consecutive data records (TKey instances) with a well defined format...
TTree * CreateEventAssignTrees(const TString &name)
create the data assignment tree (for event-wise data assignment by user)
DataSetInfo & DefaultDataSetInfo()
default creation
DataLoader * VarTransform(TString trafoDefinition)
Transforms the variables and return a new DataLoader with the transformed variables.
void MakeKFoldDataSet(UInt_t numberFolds, bool validationSet=false)
Function required to split the training and testing datasets into a number of folds.
void SetBackgroundTree(TTree *background, Double_t weight=1.0)
DataInputHandler * fDataInputHandler
Types::EAnalysisType fAnalysisType
void AddBackgroundTestEvent(const std::vector< Double_t > &event, Double_t weight=1.0)
add signal training event
TH2 * GetCorrelationMatrix(const TString &className)
returns the correlation matrix of datasets
std::vector< std::vector< TMVA::Event * > > fTestBkgEvents
void AddVariable(const TString &expression, const TString &title, const TString &unit, char type='F', Double_t min=0, Double_t max=0)
user inserts discriminating variable in data set info
#define ClassDef(name, id)
void AddTestEvent(const TString &className, const std::vector< Double_t > &event, Double_t weight)
add signal test event
void SetInputTrees(const TString &signalFileName, const TString &backgroundFileName, Double_t signalWeight=1.0, Double_t backgroundWeight=1.0)
void SetTree(TTree *tree, const TString &className, Double_t weight)
set background tree
void PrepareFoldDataSet(UInt_t foldNumber, Types::ETreeType tt)
Function for assigning the correct folds to the testing or training set.
Base class for all machine learning algorithms.
Class that contains all the data information.
void SetInputVariables(std::vector< TString > *theVariables)
fill input variables in data set
DataSetInfo & AddDataSet(DataSetInfo &)
void AddCut(const TString &cut, const TString &className="")
A specialized string object used for TTree selections.
void SetInputTreesFromEventAssignTrees()
assign event-wise local trees to data set
DataInputHandler & DataInput()
Service class for 2-Dim histogram classes.
std::vector< TTree * > fTestAssignTree
Bool_t UserAssignEvents(UInt_t clIndex)
std::vector< Float_t > fATreeEvent
void AddRegressionTree(TTree *tree, Double_t weight=1.0, Types::ETreeType treetype=Types::kMaxTreeType)
std::vector< std::vector< TMVA::Event * > > fTestSigEvents
This is the main MVA steering class.
DataLoader * MakeCopy(TString name)
Copy method use in VI and CV.
const DataSetInfo & GetDefaultDataSetInfo()
void AddTree(TTree *tree, const TString &className, Double_t weight=1.0, const TCut &cut="", Types::ETreeType tt=Types::kMaxTreeType)
void PrepareTrainingAndTestTree(const TCut &cut, const TString &splitOpt)
prepare the training and test trees -> same cuts for signal and background
DataAssignType fDataAssignType
void AddEvent(const TString &className, Types::ETreeType tt, const std::vector< Double_t > &event, Double_t weight)
add event vector event : the order of values is: variables + targets + spectators ...
Class that contains all the data information.
Describe directory structure in memory.
void SetBackgroundWeightExpression(const TString &variable)
void AddTarget(const TString &expression, const TString &title="", const TString &unit="", Double_t min=0, Double_t max=0)
user inserts target in data set info
void SetWeightExpression(const TString &variable, const TString &className="")
void AddBackgroundTrainingEvent(const std::vector< Double_t > &event, Double_t weight=1.0)
add signal training event
void SetSignalWeightExpression(const TString &variable)
std::vector< std::vector< TMVA::Event * > > fTrainSigEvents
Abstract ClassifierFactory template that handles arbitrary types.
std::vector< TTree * > fTrainAssignTree
void AddSignalTestEvent(const std::vector< Double_t > &event, Double_t weight=1.0)
add signal testing event
std::vector< std::vector< TMVA::Event * > > fValidBkgEvents
void AddSignalTrainingEvent(const std::vector< Double_t > &event, Double_t weight=1.0)
add signal training event
friend void DataLoaderCopy(TMVA::DataLoader *des, TMVA::DataLoader *src)
void SetSignalTree(TTree *signal, Double_t weight=1.0)
A TTree object has a header with a name and a title.
std::vector< std::vector< TMVA::Event * > > SplitSets(std::vector< TMVA::Event *> &oldSet, int seedNum, int numFolds)
Splits the input vector in to equally sized randomly sampled folds.
std::vector< std::vector< TMVA::Event * > > fValidSigEvents
void AddSignalTree(TTree *signal, Double_t weight=1.0, Types::ETreeType treetype=Types::kMaxTreeType)
number of signal events (used to compute significance)
void SetCut(const TString &cut, const TString &className="")
void AddSpectator(const TString &expression, const TString &title="", const TString &unit="", Double_t min=0, Double_t max=0)
user inserts target in data set info