3 from ROOT
import TMVA, TFile, TTree, TCut
4 from subprocess
import call
5 from os.path
import isfile
7 from keras.models
import Sequential
8 from keras.layers.core
import Dense, Activation
9 from keras.regularizers
import l2
10 from keras
import initializations
11 from keras.optimizers
import SGD
19 '!V:!Silent:Color:DrawProgressBar:Transformations=D,G:AnalysisType=Classification')
22 if not isfile(
'tmva_class_example.root'):
23 call([
'curl',
'-O',
'http://root.cern.ch/files/tmva_class_example.root'])
26 signal = data.Get(
'TreeS')
27 background = data.Get(
'TreeB')
30 for branch
in signal.GetListOfBranches():
31 dataloader.AddVariable(branch.GetName())
33 dataloader.AddSignalTree(signal, 1.0)
34 dataloader.AddBackgroundTree(background, 1.0)
35 dataloader.PrepareTrainingAndTestTree(TCut(
''),
36 'nTrain_Signal=4000:nTrain_Background=4000:SplitMode=Random:NormMode=NumEvents:!V')
42 return initializations.normal(shape, scale=0.05, name=name)
46 model.add(Dense(64, init=normal, activation=
'relu', W_regularizer=l2(1e-5), input_dim=4))
48 model.add(Dense(2, init=normal, activation=
'softmax'))
51 model.compile(loss=
'categorical_crossentropy', optimizer=SGD(lr=0.01), metrics=[
'accuracy',])
54 model.save(
'model.h5')
58 factory.BookMethod(dataloader, TMVA.Types.kFisher,
'Fisher',
59 '!H:!V:Fisher:VarTransform=D,G')
60 factory.BookMethod(dataloader, TMVA.Types.kPyKeras,
'PyKeras',
61 'H:!V:VarTransform=D,G:FilenameModel=model.h5:NumEpochs=20:BatchSize=32')
64 factory.TrainAllMethods()
65 factory.TestAllMethods()
66 factory.EvaluateAllMethods()
static void PyInitialize()
Initialize Python interpreter.
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=1, Int_t netopt=0)
Create / open a file.
This is the main MVA steering class.
def normal(shape, name=None)