ROOT  6.07/01
Reference Guide
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Groups Pages
List of all members | Public Member Functions | Static Public Member Functions | Protected Member Functions | Private Member Functions | Private Attributes | Static Private Attributes | List of all members
TMVA::MethodCFMlpANN Class Reference

Definition at line 100 of file MethodCFMlpANN.h.

Public Member Functions

 MethodCFMlpANN (const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption="3000:N-1:N-2", TDirectory *theTargetDir=0)
 standard constructor option string: "n_training_cycles:n_hidden_layers" default is: n_training_cycles = 5000, n_layers = 4 More...
 
 MethodCFMlpANN (DataSetInfo &theData, const TString &theWeightFile, TDirectory *theTargetDir=NULL)
 constructor from weight file More...
 
virtual ~MethodCFMlpANN (void)
 destructor More...
 
virtual Bool_t HasAnalysisType (Types::EAnalysisType type, UInt_t numberClasses, UInt_t)
 CFMlpANN can handle classification with 2 classes. More...
 
void Train (void)
 training of the Clement-Ferrand NN classifier More...
 
void AddWeightsXMLTo (void *parent) const
 write weights to xml file More...
 
void ReadWeightsFromStream (std::istream &istr)
 read back the weight from the training from file (stream) More...
 
void ReadWeightsFromXML (void *wghtnode)
 read weights from xml file More...
 
Double_t GetMvaValue (Double_t *err=0, Double_t *errUpper=0)
 returns CFMlpANN output (normalised within [0,1]) More...
 
Double_t GetData (Int_t isel, Int_t ivar) const
 
Int_t GetClass (Int_t ivar) const
 
const RankingCreateRanking ()
 
- Public Member Functions inherited from TMVA::MethodBase
 MethodBase (const TString &jobName, Types::EMVA methodType, const TString &methodTitle, DataSetInfo &dsi, const TString &theOption="", TDirectory *theBaseDir=0)
 standard constructur More...
 
 MethodBase (Types::EMVA methodType, DataSetInfo &dsi, const TString &weightFile, TDirectory *theBaseDir=0)
 constructor used for Testing + Application of the MVA, only (no training), using given WeightFiles More...
 
virtual ~MethodBase ()
 destructor More...
 
void SetupMethod ()
 setup of methods More...
 
void ProcessSetup ()
 process all options the "CheckForUnusedOptions" is done in an independent call, since it may be overridden by derived class (sometimes, eg, fitters are used which can only be implemented during training phase) More...
 
virtual void CheckSetup ()
 check may be overridden by derived class (sometimes, eg, fitters are used which can only be implemented during training phase) More...
 
void AddOutput (Types::ETreeType type, Types::EAnalysisType analysisType)
 
void TrainMethod ()
 
virtual std::map< TString,
Double_t
OptimizeTuningParameters (TString fomType="ROCIntegral", TString fitType="FitGA")
 call the Optimzier with the set of paremeters and ranges that are meant to be tuned. More...
 
virtual void SetTuneParameters (std::map< TString, Double_t > tuneParameters)
 set the tuning parameters accoding to the argument This is just a dummy . More...
 
void SetTrainTime (Double_t trainTime)
 
Double_t GetTrainTime () const
 
void SetTestTime (Double_t testTime)
 
Double_t GetTestTime () const
 
virtual void TestClassification ()
 initialization More...
 
virtual Double_t GetKSTrainingVsTest (Char_t SorB, TString opt="X")
 
virtual void TestMulticlass ()
 test multiclass classification More...
 
virtual void TestRegression (Double_t &bias, Double_t &biasT, Double_t &dev, Double_t &devT, Double_t &rms, Double_t &rmsT, Double_t &mInf, Double_t &mInfT, Double_t &corr, Types::ETreeType type)
 calculate <sum-of-deviation-squared> of regression output versus "true" value from test sample More...
 
virtual void DeclareCompatibilityOptions ()
 options that are used ONLY for the READER to ensure backward compatibility they are hence without any effect (the reader is only reading the training options that HAD been used at the training of the .xml weightfile at hand More...
 
virtual void Reset ()
 
Double_t GetMvaValue (const TMVA::Event *const ev, Double_t *err=0, Double_t *errUpper=0)
 
const std::vector< Float_t > & GetRegressionValues (const TMVA::Event *const ev)
 
virtual const std::vector
< Float_t > & 
GetRegressionValues ()
 
virtual const std::vector
< Float_t > & 
GetMulticlassValues ()
 
virtual Double_t GetProba (const Event *ev)
 
virtual Double_t GetProba (Double_t mvaVal, Double_t ap_sig)
 compute likelihood ratio More...
 
virtual Double_t GetRarity (Double_t mvaVal, Types::ESBType reftype=Types::kBackground) const
 compute rarity: R(x) = Integrate_[-oo..x] { PDF(x') dx' } where PDF(x) is the PDF of the classifier's signal or background distribution More...
 
virtual void MakeClass (const TString &classFileName=TString("")) const
 create reader class for method (classification only at present) More...
 
void PrintHelpMessage () const
 prints out method-specific help method More...
 
void WriteStateToFile () const
 write options and weights to file note that each one text file for the main configuration information and one ROOT file for ROOT objects are created More...
 
void ReadStateFromFile ()
 Function to write options and weights to file. More...
 
void ReadStateFromStream (std::istream &tf)
 read the header from the weight files of the different MVA methods More...
 
void ReadStateFromStream (TFile &rf)
 write reference MVA distributions (and other information) to a ROOT type weight file More...
 
void ReadStateFromXMLString (const char *xmlstr)
 for reading from memory More...
 
virtual void WriteEvaluationHistosToFile (Types::ETreeType treetype)
 writes all MVA evaluation histograms to file More...
 
virtual void WriteMonitoringHistosToFile () const
 write special monitoring histograms to file dummy implementation here --------------— More...
 
virtual Double_t GetEfficiency (const TString &, Types::ETreeType, Double_t &err)
 fill background efficiency (resp. More...
 
virtual Double_t GetTrainingEfficiency (const TString &)
 
virtual std::vector< Float_tGetMulticlassEfficiency (std::vector< std::vector< Float_t > > &purity)
 
virtual std::vector< Float_tGetMulticlassTrainingEfficiency (std::vector< std::vector< Float_t > > &purity)
 
virtual Double_t GetSignificance () const
 compute significance of mean difference significance = |<S> - |/Sqrt(RMS_S2 + RMS_B2) More...
 
virtual Double_t GetROCIntegral (TH1D *histS, TH1D *histB) const
 calculate the area (integral) under the ROC curve as a overall quality measure of the classification More...
 
virtual Double_t GetROCIntegral (PDF *pdfS=0, PDF *pdfB=0) const
 calculate the area (integral) under the ROC curve as a overall quality measure of the classification More...
 
virtual Double_t GetMaximumSignificance (Double_t SignalEvents, Double_t BackgroundEvents, Double_t &optimal_significance_value) const
 plot significance, S/Sqrt(S^2 + B^2), curve for given number of signal and background events; returns cut for maximum significance also returned via reference is the maximum significance More...
 
virtual Double_t GetSeparation (TH1 *, TH1 *) const
 compute "separation" defined as <s2> = (1/2) Int_-oo..+oo { (S(x) - B(x))^2/(S(x) + B(x)) dx } More...
 
virtual Double_t GetSeparation (PDF *pdfS=0, PDF *pdfB=0) const
 compute "separation" defined as <s2> = (1/2) Int_-oo..+oo { (S(x) - B(x))^2/(S(x) + B(x)) dx } More...
 
virtual void GetRegressionDeviation (UInt_t tgtNum, Types::ETreeType type, Double_t &stddev, Double_t &stddev90Percent) const
 
const TStringGetJobName () const
 
const TStringGetMethodName () const
 
TString GetMethodTypeName () const
 
Types::EMVA GetMethodType () const
 
const char * GetName () const
 Returns name of object. More...
 
const TStringGetTestvarName () const
 
const TString GetProbaName () const
 
TString GetWeightFileName () const
 retrieve weight file name More...
 
void SetTestvarName (const TString &v="")
 
UInt_t GetNvar () const
 
UInt_t GetNVariables () const
 
UInt_t GetNTargets () const
 
const TStringGetInputVar (Int_t i) const
 
const TStringGetInputLabel (Int_t i) const
 
const TStringGetInputTitle (Int_t i) const
 
Double_t GetMean (Int_t ivar) const
 
Double_t GetRMS (Int_t ivar) const
 
Double_t GetXmin (Int_t ivar) const
 
Double_t GetXmax (Int_t ivar) const
 
Double_t GetSignalReferenceCut () const
 
Double_t GetSignalReferenceCutOrientation () const
 
void SetSignalReferenceCut (Double_t cut)
 
void SetSignalReferenceCutOrientation (Double_t cutOrientation)
 
TDirectoryBaseDir () const
 returns the ROOT directory where info/histograms etc of the corresponding MVA method instance are stored More...
 
TDirectoryMethodBaseDir () const
 returns the ROOT directory where all instances of the corresponding MVA method are stored More...
 
void SetMethodDir (TDirectory *methodDir)
 
void SetBaseDir (TDirectory *methodDir)
 
void SetMethodBaseDir (TDirectory *methodDir)
 
UInt_t GetTrainingTMVAVersionCode () const
 
UInt_t GetTrainingROOTVersionCode () const
 
TString GetTrainingTMVAVersionString () const
 calculates the TMVA version string from the training version code on the fly More...
 
TString GetTrainingROOTVersionString () const
 calculates the ROOT version string from the training version code on the fly More...
 
TransformationHandlerGetTransformationHandler (Bool_t takeReroutedIfAvailable=true)
 
const TransformationHandlerGetTransformationHandler (Bool_t takeReroutedIfAvailable=true) const
 
void RerouteTransformationHandler (TransformationHandler *fTargetTransformation)
 
DataSetData () const
 
DataSetInfoDataInfo () const
 
UInt_t GetNEvents () const
 temporary event when testing on a different DataSet than the own one More...
 
const EventGetEvent () const
 
const EventGetEvent (const TMVA::Event *ev) const
 
const EventGetEvent (Long64_t ievt) const
 
const EventGetEvent (Long64_t ievt, Types::ETreeType type) const
 
const EventGetTrainingEvent (Long64_t ievt) const
 
const EventGetTestingEvent (Long64_t ievt) const
 
const std::vector< TMVA::Event * > & GetEventCollection (Types::ETreeType type)
 returns the event collection (i.e. More...
 
virtual Bool_t IsSignalLike ()
 uses a pre-set cut on the MVA output (SetSignalReferenceCut and SetSignalReferenceCutOrientation) for a quick determination if an event would be selected as signal or background More...
 
virtual Bool_t IsSignalLike (Double_t mvaVal)
 uses a pre-set cut on the MVA output (SetSignalReferenceCut and SetSignalReferenceCutOrientation) for a quick determination if an event with this mva output value would tbe selected as signal or background More...
 
Bool_t HasMVAPdfs () const
 
virtual void SetAnalysisType (Types::EAnalysisType type)
 
Types::EAnalysisType GetAnalysisType () const
 
Bool_t DoRegression () const
 
Bool_t DoMulticlass () const
 
void DisableWriting (Bool_t setter)
 
- Public Member Functions inherited from TMVA::IMethod
 IMethod ()
 
virtual ~IMethod ()
 
- Public Member Functions inherited from TMVA::Configurable
 Configurable (const TString &theOption="")
 
virtual ~Configurable ()
 default destructur More...
 
virtual void ParseOptions ()
 options parser More...
 
void PrintOptions () const
 prints out the options set in the options string and the defaults More...
 
const char * GetConfigName () const
 
const char * GetConfigDescription () const
 
void SetConfigName (const char *n)
 
void SetConfigDescription (const char *d)
 
template<class T >
OptionBaseDeclareOptionRef (T &ref, const TString &name, const TString &desc="")
 
template<class T >
OptionBaseDeclareOptionRef (T *&ref, Int_t size, const TString &name, const TString &desc="")
 
template<class T >
void AddPreDefVal (const T &)
 
template<class T >
void AddPreDefVal (const TString &optname, const T &)
 
void CheckForUnusedOptions () const
 checks for unused options in option string More...
 
const TStringGetOptions () const
 
void SetOptions (const TString &s)
 
void WriteOptionsToStream (std::ostream &o, const TString &prefix) const
 write options to output stream (e.g. in writing the MVA weight files More...
 
void ReadOptionsFromStream (std::istream &istr)
 read option back from the weight file More...
 
void AddOptionsXMLTo (void *parent) const
 write options to XML file More...
 
void ReadOptionsFromXML (void *node)
 
void SetMsgType (EMsgType t)
 
template<class T >
TMVA::OptionBaseDeclareOptionRef (T &ref, const TString &name, const TString &desc)
 
template<class T >
TMVA::OptionBaseDeclareOptionRef (T *&ref, Int_t size, const TString &name, const TString &desc)
 
- Public Member Functions inherited from TObject
 TObject ()
 
 TObject (const TObject &object)
 TObject copy ctor. More...
 
TObjectoperator= (const TObject &rhs)
 TObject assignment operator. More...
 
virtual ~TObject ()
 TObject destructor. More...
 
virtual void AppendPad (Option_t *option="")
 Append graphics object to current pad. More...
 
virtual void Browse (TBrowser *b)
 Browse object. May be overridden for another default action. More...
 
virtual const char * ClassName () const
 Returns name of class to which the object belongs. More...
 
virtual void Clear (Option_t *="")
 
virtual TObjectClone (const char *newname="") const
 Make a clone of an object using the Streamer facility. More...
 
virtual Int_t Compare (const TObject *obj) const
 Compare abstract method. More...
 
virtual void Copy (TObject &object) const
 Copy this to obj. More...
 
virtual void Delete (Option_t *option="")
 Delete this object. More...
 
virtual Int_t DistancetoPrimitive (Int_t px, Int_t py)
 Computes distance from point (px,py) to the object. More...
 
virtual void Draw (Option_t *option="")
 Default Draw method for all objects. More...
 
virtual void DrawClass () const
 Draw class inheritance tree of the class to which this object belongs. More...
 
virtual TObjectDrawClone (Option_t *option="") const
 Draw a clone of this object in the current pad. More...
 
virtual void Dump () const
 Dump contents of object on stdout. More...
 
virtual void Execute (const char *method, const char *params, Int_t *error=0)
 Execute method on this object with the given parameter string, e.g. More...
 
virtual void Execute (TMethod *method, TObjArray *params, Int_t *error=0)
 Execute method on this object with parameters stored in the TObjArray. More...
 
virtual void ExecuteEvent (Int_t event, Int_t px, Int_t py)
 Execute action corresponding to an event at (px,py). More...
 
virtual TObjectFindObject (const char *name) const
 Must be redefined in derived classes. More...
 
virtual TObjectFindObject (const TObject *obj) const
 Must be redefined in derived classes. More...
 
virtual Option_tGetDrawOption () const
 Get option used by the graphics system to draw this object. More...
 
virtual UInt_t GetUniqueID () const
 Return the unique object id. More...
 
virtual const char * GetIconName () const
 Returns mime type name of object. More...
 
virtual Option_tGetOption () const
 
virtual char * GetObjectInfo (Int_t px, Int_t py) const
 Returns string containing info about the object at position (px,py). More...
 
virtual const char * GetTitle () const
 Returns title of object. More...
 
virtual Bool_t HandleTimer (TTimer *timer)
 Execute action in response of a timer timing out. More...
 
virtual ULong_t Hash () const
 Return hash value for this object. More...
 
virtual Bool_t InheritsFrom (const char *classname) const
 Returns kTRUE if object inherits from class "classname". More...
 
virtual Bool_t InheritsFrom (const TClass *cl) const
 Returns kTRUE if object inherits from TClass cl. More...
 
virtual void Inspect () const
 Dump contents of this object in a graphics canvas. More...
 
virtual Bool_t IsFolder () const
 Returns kTRUE in case object contains browsable objects (like containers or lists of other objects). More...
 
virtual Bool_t IsEqual (const TObject *obj) const
 Default equal comparison (objects are equal if they have the same address in memory). More...
 
virtual Bool_t IsSortable () const
 
Bool_t IsOnHeap () const
 
Bool_t IsZombie () const
 
virtual Bool_t Notify ()
 This method must be overridden to handle object notification. More...
 
virtual void ls (Option_t *option="") const
 The ls function lists the contents of a class on stdout. More...
 
virtual void Paint (Option_t *option="")
 This method must be overridden if a class wants to paint itself. More...
 
virtual void Pop ()
 Pop on object drawn in a pad to the top of the display list. More...
 
virtual void Print (Option_t *option="") const
 This method must be overridden when a class wants to print itself. More...
 
virtual Int_t Read (const char *name)
 Read contents of object with specified name from the current directory. More...
 
virtual void RecursiveRemove (TObject *obj)
 Recursively remove this object from a list. More...
 
virtual void SaveAs (const char *filename="", Option_t *option="") const
 Save this object in the file specified by filename. More...
 
virtual void SavePrimitive (std::ostream &out, Option_t *option="")
 Save a primitive as a C++ statement(s) on output stream "out". More...
 
virtual void SetDrawOption (Option_t *option="")
 Set drawing option for object. More...
 
virtual void SetUniqueID (UInt_t uid)
 Set the unique object id. More...
 
virtual void UseCurrentStyle ()
 Set current style settings in this object This function is called when either TCanvas::UseCurrentStyle or TROOT::ForceStyle have been invoked. More...
 
virtual Int_t Write (const char *name=0, Int_t option=0, Int_t bufsize=0)
 Write this object to the current directory. More...
 
virtual Int_t Write (const char *name=0, Int_t option=0, Int_t bufsize=0) const
 Write this object to the current directory. More...
 
voidoperator new (size_t sz)
 
voidoperator new[] (size_t sz)
 
voidoperator new (size_t sz, void *vp)
 
voidoperator new[] (size_t sz, void *vp)
 
void operator delete (void *ptr)
 Operator delete. More...
 
void operator delete[] (void *ptr)
 Operator delete []. More...
 
void SetBit (UInt_t f, Bool_t set)
 Set or unset the user status bits as specified in f. More...
 
void SetBit (UInt_t f)
 
void ResetBit (UInt_t f)
 
Bool_t TestBit (UInt_t f) const
 
Int_t TestBits (UInt_t f) const
 
void InvertBit (UInt_t f)
 
virtual void Info (const char *method, const char *msgfmt,...) const
 Issue info message. More...
 
virtual void Warning (const char *method, const char *msgfmt,...) const
 Issue warning message. More...
 
virtual void Error (const char *method, const char *msgfmt,...) const
 Issue error message. More...
 
virtual void SysError (const char *method, const char *msgfmt,...) const
 Issue system error message. More...
 
virtual void Fatal (const char *method, const char *msgfmt,...) const
 Issue fatal error message. More...
 
void AbstractMethod (const char *method) const
 Use this method to implement an "abstract" method that you don't want to leave purely abstract. More...
 
void MayNotUse (const char *method) const
 Use this method to signal that a method (defined in a base class) may not be called in a derived class (in principle against good design since a child class should not provide less functionality than its parent, however, sometimes it is necessary). More...
 
void Obsolete (const char *method, const char *asOfVers, const char *removedFromVers) const
 Use this method to declare a method obsolete. More...
 

Static Public Member Functions

static MethodCFMlpANNThis (void)
 static pointer to this object (required for external functions More...
 
- Static Public Member Functions inherited from TObject
static Long_t GetDtorOnly ()
 Return destructor only flag. More...
 
static void SetDtorOnly (void *obj)
 Set destructor only flag. More...
 
static Bool_t GetObjectStat ()
 Get status of object stat flag. More...
 
static void SetObjectStat (Bool_t stat)
 Turn on/off tracking of objects in the TObjectTable. More...
 

Protected Member Functions

void MakeClassSpecific (std::ostream &, const TString &) const
 
void MakeClassSpecificHeader (std::ostream &, const TString &="") const
 write specific classifier response for header More...
 
void GetHelpMessage () const
 get help message text More...
 
Int_t DataInterface (Double_t *, Double_t *, Int_t *, Int_t *, Int_t *, Int_t *, Double_t *, Int_t *, Int_t *)
 data interface function More...
 
- Protected Member Functions inherited from TMVA::MethodBase
void NoErrorCalc (Double_t *const err, Double_t *const errUpper)
 
virtual void ReadWeightsFromStream (TFile &)
 
void SetWeightFileName (TString)
 set the weight file name (depreciated) More...
 
const TStringGetWeightFileDir () const
 
void SetWeightFileDir (TString fileDir)
 set directory of weight file More...
 
Bool_t IsNormalised () const
 
void SetNormalised (Bool_t norm)
 
Bool_t Verbose () const
 
Bool_t Help () const
 
const TStringGetInternalVarName (Int_t ivar) const
 
const TStringGetOriginalVarName (Int_t ivar) const
 
Bool_t HasTrainingTree () const
 
void Statistics (Types::ETreeType treeType, const TString &theVarName, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &, Double_t &)
 calculates rms,mean, xmin, xmax of the event variable this can be either done for the variables as they are or for normalised variables (in the range of 0-1) if "norm" is set to kTRUE More...
 
Bool_t TxtWeightsOnly () const
 
Bool_t IsConstructedFromWeightFile () const
 
Bool_t IgnoreEventsWithNegWeightsInTraining () const
 
- Protected Member Functions inherited from TMVA::Configurable
Bool_t LooseOptionCheckingEnabled () const
 
void EnableLooseOptions (Bool_t b=kTRUE)
 
void WriteOptionsReferenceToFile ()
 write complete options to output stream More...
 
void ResetSetFlag ()
 resets the IsSet falg for all declare options to be called before options are read from stream More...
 
const TStringGetReferenceFile () const
 
MsgLoggerLog () const
 
- Protected Member Functions inherited from TObject
void MakeZombie ()
 
virtual void DoError (int level, const char *location, const char *fmt, va_list va) const
 Interface to ErrorHandler (protected). More...
 

Private Member Functions

void PrintWeights (std::ostream &o) const
 write the weights of the neural net More...
 
void DeclareOptions ()
 define the options (their key words) that can be set in the option string know options: NCycles=xx :the number of training cycles HiddenLayser="N-1,N-2" :the specification of the hidden layers More...
 
void ProcessOptions ()
 decode the options in the option string More...
 
Double_t EvalANN (std::vector< Double_t > &, Bool_t &isOK)
 evaluates NN value as function of input variables More...
 
void NN_ava (Double_t *)
 auxiliary functions More...
 
Double_t NN_fonc (Int_t, Double_t) const
 activation function More...
 
void Init (void)
 default initialisation called by all constructors More...
 
- Private Member Functions inherited from TMVA::MethodCFMlpANN_Utils
 MethodCFMlpANN_Utils ()
 
virtual ~MethodCFMlpANN_Utils ()
 
void Train_nn (Double_t *tin2, Double_t *tout2, Int_t *ntrain, Int_t *ntest, Int_t *nvar2, Int_t *nlayer, Int_t *nodes, Int_t *ncycle)
 
void Entree_new (Int_t *, char *, Int_t *ntrain, Int_t *ntest, Int_t *numlayer, Int_t *nodes, Int_t *numcycle, Int_t)
 
Double_t Fdecroi (Int_t *i__)
 
Double_t Sen3a (void)
 
void Wini ()
 
void En_avant (Int_t *ievent)
 
void En_avant2 (Int_t *ievent)
 
void En_arriere (Int_t *ievent)
 
void Leclearn (Int_t *ktest, Double_t *tout2, Double_t *tin2)
 
void Out (Int_t *iii, Int_t *maxcycle)
 
void Cout (Int_t *, Double_t *xxx)
 
void Innit (char *det, Double_t *tout2, Double_t *tin2, Int_t)
 
void TestNN ()
 
void Inl ()
 
void GraphNN (Int_t *ilearn, Double_t *, Double_t *, char *, Int_t)
 
void Foncf (Int_t *i__, Double_t *u, Double_t *f)
 
void Cout2 (Int_t *, Double_t *yyy)
 
void Lecev2 (Int_t *ktest, Double_t *tout2, Double_t *tin2)
 
void Arret (const char *mot)
 
void CollectVar (Int_t *nvar, Int_t *class__, Double_t *xpg)
 
Double_t W_ref (const Double_t wNN[], Int_t a_1, Int_t a_2, Int_t a_3) const
 
Double_tW_ref (Double_t wNN[], Int_t a_1, Int_t a_2, Int_t a_3)
 
Double_t Ww_ref (const Double_t wwNN[], Int_t a_1, Int_t a_2) const
 
Double_tWw_ref (Double_t wwNN[], Int_t a_1, Int_t a_2)
 
void SetLogger (MsgLogger *l)
 

Private Attributes

TMatrixFfData
 
std::vector< Int_t > * fClass
 
Int_t fNlayers
 
Int_t fNcycles
 
Int_tfNodes
 
Double_t ** fYNN
 
TString fLayerSpec
 
struct {
   Double_t   epsmin
 
   Double_t   epsmax
 
   Double_t   eeps
 
   Double_t   eta
 
   Int_t   layerm
 
   Int_t   lclass
 
   Int_t   nevl
 
   Int_t   nblearn
 
   Int_t   nunilec
 
   Int_t   nunisor
 
   Int_t   nunishort
 
   Int_t   nunap
 
   Int_t   nvar
 
   Int_t   itest
 
   Int_t   ndiv
 
   Int_t   ichoi
 
   Int_t   ndivis
 
   Int_t   nevt
 
fParam_1
 
struct {
   Double_t   xmax [max_nVar_]
 
   Double_t   xmin [max_nVar_]
 
   Int_t   nclass [max_Events_]
 
   Int_t   mclass [max_Events_]
 
   Int_t   iclass
 
fVarn_1
 
class
TMVA::MethodCFMlpANN_Utils::VARn2 
fVarn2_1
 
class
TMVA::MethodCFMlpANN_Utils::VARn2 
fVarn3_1
 
struct {
   Double_t   x [max_nLayers_ *max_nNodes_]
 
   Double_t   y [max_nLayers_ *max_nNodes_]
 
   Double_t   o [max_nNodes_]
 
   Double_t   w [max_nLayers_ *max_nNodes_
      *max_nNodes_]
 
   Double_t   ww [max_nLayers_ *max_nNodes_]
 
   Double_t   cut [max_nNodes_]
 
   Double_t   deltaww [max_nLayers_ *max_nNodes_]
 
   Int_t   neuron [max_nLayers_]
 
fNeur_1
 
struct {
   Double_t   coef [max_nNodes_]
 
   Double_t   temp [max_nLayers_]
 
   Double_t   demin
 
   Double_t   demax
 
   Double_t   del [max_nLayers_ *max_nNodes_]
 
   Double_t   delw [max_nLayers_ *max_nNodes_
      *max_nNodes_]
 
   Double_t   delta [max_nLayers_ *max_nNodes_
      *max_nNodes_]
 
   Double_t   delww [max_nLayers_ *max_nNodes_]
 
   Int_t   idde
 
fDel_1
 
struct {
   Double_t   ancout
 
   Double_t   tolcou
 
   Int_t   ieps
 
fCost_1
 

Static Private Attributes

static MethodCFMlpANNfgThis = 0
 
- Static Private Attributes inherited from TMVA::MethodCFMlpANN_Utils
static Int_t fg_100
 
static Int_t fg_0
 
static const Int_t fg_max_nVar_ = max_nVar_
 
static const Int_t fg_max_nNodes_ = max_nNodes_
 
static Int_t fg_999 = 999
 
static const char *const fg_MethodName = "--- CFMlpANN "
 

Additional Inherited Members

- Public Types inherited from TMVA::MethodBase
enum  EWeightFileType { kROOT =0, kTEXT }
 
- Public Types inherited from TObject
enum  EStatusBits {
  kCanDelete = BIT(0), kMustCleanup = BIT(3), kObjInCanvas = BIT(3), kIsReferenced = BIT(4),
  kHasUUID = BIT(5), kCannotPick = BIT(6), kNoContextMenu = BIT(8), kInvalidObject = BIT(13)
}
 
enum  { kIsOnHeap = 0x01000000, kNotDeleted = 0x02000000, kZombie = 0x04000000, kBitMask = 0x00ffffff }
 
enum  { kSingleKey = BIT(0), kOverwrite = BIT(1), kWriteDelete = BIT(2) }
 
- Public Attributes inherited from TMVA::MethodBase
const EventfTmpEvent
 
Bool_t fSetupCompleted
 
- Static Protected Member Functions inherited from TMVA::MethodBase
static MethodBaseGetThisBase ()
 return a pointer the base class of this method More...
 
- Protected Attributes inherited from TMVA::MethodBase
RankingfRanking
 
std::vector< TString > * fInputVars
 
Int_t fNbins
 
Int_t fNbinsMVAoutput
 
Int_t fNbinsH
 
Types::EAnalysisType fAnalysisType
 
std::vector< Float_t > * fRegressionReturnVal
 
std::vector< Float_t > * fMulticlassReturnVal
 
UInt_t fSignalClass
 
UInt_t fBackgroundClass
 

#include <TMVA/MethodCFMlpANN.h>

Inheritance diagram for TMVA::MethodCFMlpANN:
[legend]

Constructor & Destructor Documentation

TMVA::MethodCFMlpANN::MethodCFMlpANN ( const TString jobName,
const TString methodTitle,
DataSetInfo theData,
const TString theOption = "3000:N-1:N-2",
TDirectory theTargetDir = 0 
)

standard constructor option string: "n_training_cycles:n_hidden_layers" default is: n_training_cycles = 5000, n_layers = 4

  • note that the number of hidden layers in the NN is: n_hidden_layers = n_layers - 2
  • since there is one input and one output layer. The number of nodes (neurons) is predefined to be: n_nodes[i] = nvars + 1 - i (where i=1..n_layers)

    with nvars being the number of variables used in the NN.

Hence, the default case is: n_neurons(layer 1 (input)) : nvars n_neurons(layer 2 (hidden)): nvars-1 n_neurons(layer 3 (hidden)): nvars-1 n_neurons(layer 4 (out)) : 2

This artificial neural network usually needs a relatively large number of cycles to converge (8000 and more). Overtraining can be efficienctly tested by comparing the signal and background output of the NN for the events that were used for training and an independent data sample (with equal properties). If the separation performance is significantly better for the training sample, the NN interprets statistical effects, and is hence overtrained. In this case, the number of cycles should be reduced, or the size of the training sample increased.

Definition at line 129 of file MethodCFMlpANN.cxx.

TMVA::MethodCFMlpANN::MethodCFMlpANN ( DataSetInfo theData,
const TString theWeightFile,
TDirectory theTargetDir = NULL 
)

constructor from weight file

Definition at line 149 of file MethodCFMlpANN.cxx.

TMVA::MethodCFMlpANN::~MethodCFMlpANN ( void  )
virtual

destructor

Definition at line 272 of file MethodCFMlpANN.cxx.

Member Function Documentation

void TMVA::MethodCFMlpANN::AddWeightsXMLTo ( void parent) const
virtual

write weights to xml file

Implements TMVA::MethodBase.

Definition at line 540 of file MethodCFMlpANN.cxx.

const Ranking* TMVA::MethodCFMlpANN::CreateRanking ( )
inlinevirtual

Implements TMVA::MethodBase.

Definition at line 140 of file MethodCFMlpANN.h.

Int_t TMVA::MethodCFMlpANN::DataInterface ( Double_t ,
Double_t ,
Int_t ,
Int_t ,
Int_t ,
Int_t nvar,
Double_t xpg,
Int_t iclass,
Int_t ikend 
)
protectedvirtual

data interface function

Implements TMVA::MethodCFMlpANN_Utils.

Definition at line 507 of file MethodCFMlpANN.cxx.

void TMVA::MethodCFMlpANN::DeclareOptions ( )
privatevirtual

define the options (their key words) that can be set in the option string know options: NCycles=xx :the number of training cycles HiddenLayser="N-1,N-2" :the specification of the hidden layers

Implements TMVA::MethodBase.

Definition at line 176 of file MethodCFMlpANN.cxx.

Double_t TMVA::MethodCFMlpANN::EvalANN ( std::vector< Double_t > &  inVar,
Bool_t isOK 
)
private

evaluates NN value as function of input variables

Definition at line 344 of file MethodCFMlpANN.cxx.

Int_t TMVA::MethodCFMlpANN::GetClass ( Int_t  ivar) const
inline

Definition at line 134 of file MethodCFMlpANN.h.

Referenced by DataInterface().

Double_t TMVA::MethodCFMlpANN::GetData ( Int_t  isel,
Int_t  ivar 
) const
inline

Definition at line 133 of file MethodCFMlpANN.h.

Referenced by DataInterface().

void TMVA::MethodCFMlpANN::GetHelpMessage ( ) const
protectedvirtual

get help message text

typical length of text line: "|--------------------------------------------------------------|"

Implements TMVA::IMethod.

Definition at line 718 of file MethodCFMlpANN.cxx.

Double_t TMVA::MethodCFMlpANN::GetMvaValue ( Double_t err = 0,
Double_t errUpper = 0 
)
virtual

returns CFMlpANN output (normalised within [0,1])

Implements TMVA::MethodBase.

Definition at line 322 of file MethodCFMlpANN.cxx.

Bool_t TMVA::MethodCFMlpANN::HasAnalysisType ( Types::EAnalysisType  type,
UInt_t  numberClasses,
UInt_t   
)
virtual

CFMlpANN can handle classification with 2 classes.

Implements TMVA::IMethod.

Definition at line 165 of file MethodCFMlpANN.cxx.

void TMVA::MethodCFMlpANN::Init ( void  )
privatevirtual

default initialisation called by all constructors

Implements TMVA::MethodBase.

Definition at line 257 of file MethodCFMlpANN.cxx.

void TMVA::MethodCFMlpANN::MakeClassSpecific ( std::ostream &  fout,
const TString className 
) const
protectedvirtual

Reimplemented from TMVA::MethodBase.

Definition at line 698 of file MethodCFMlpANN.cxx.

void TMVA::MethodCFMlpANN::MakeClassSpecificHeader ( std::ostream &  ,
const TString = "" 
) const
protectedvirtual

write specific classifier response for header

Reimplemented from TMVA::MethodBase.

Definition at line 708 of file MethodCFMlpANN.cxx.

void TMVA::MethodCFMlpANN::NN_ava ( Double_t xeev)
private

auxiliary functions

Definition at line 378 of file MethodCFMlpANN.cxx.

Double_t TMVA::MethodCFMlpANN::NN_fonc ( Int_t  i,
Double_t  u 
) const
private

activation function

Definition at line 398 of file MethodCFMlpANN.cxx.

void TMVA::MethodCFMlpANN::PrintWeights ( std::ostream &  o) const
private

write the weights of the neural net

Definition at line 633 of file MethodCFMlpANN.cxx.

void TMVA::MethodCFMlpANN::ProcessOptions ( )
privatevirtual

decode the options in the option string

Implements TMVA::MethodBase.

Definition at line 185 of file MethodCFMlpANN.cxx.

void TMVA::MethodCFMlpANN::ReadWeightsFromStream ( std::istream &  istr)
virtual

read back the weight from the training from file (stream)

Implements TMVA::MethodBase.

Definition at line 415 of file MethodCFMlpANN.cxx.

void TMVA::MethodCFMlpANN::ReadWeightsFromXML ( void wghtnode)
virtual

read weights from xml file

Implements TMVA::MethodBase.

Definition at line 584 of file MethodCFMlpANN.cxx.

TMVA::MethodCFMlpANN * TMVA::MethodCFMlpANN::This ( void  )
static

static pointer to this object (required for external functions

Definition at line 694 of file MethodCFMlpANN.cxx.

Referenced by DataInterface().

void TMVA::MethodCFMlpANN::Train ( void  )
virtual

training of the Clement-Ferrand NN classifier

Implements TMVA::MethodBase.

Definition at line 288 of file MethodCFMlpANN.cxx.

Member Data Documentation

std::vector<Int_t>* TMVA::MethodCFMlpANN::fClass
private

Definition at line 168 of file MethodCFMlpANN.h.

Referenced by GetClass().

TMatrixF* TMVA::MethodCFMlpANN::fData
private

Definition at line 167 of file MethodCFMlpANN.h.

Referenced by GetData().

TMVA::MethodCFMlpANN * TMVA::MethodCFMlpANN::fgThis = 0
staticprivate

Definition at line 164 of file MethodCFMlpANN.h.

TString TMVA::MethodCFMlpANN::fLayerSpec
private

Definition at line 176 of file MethodCFMlpANN.h.

Int_t TMVA::MethodCFMlpANN::fNcycles
private

Definition at line 171 of file MethodCFMlpANN.h.

Int_t TMVA::MethodCFMlpANN::fNlayers
private

Definition at line 170 of file MethodCFMlpANN.h.

Int_t* TMVA::MethodCFMlpANN::fNodes
private

Definition at line 172 of file MethodCFMlpANN.h.

Double_t** TMVA::MethodCFMlpANN::fYNN
private

Definition at line 175 of file MethodCFMlpANN.h.

Collaboration diagram for TMVA::MethodCFMlpANN:
[legend]

The documentation for this class was generated from the following files: