ROOT  6.07/01
Reference Guide
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Groups Pages
TMLPAnalyzer.h
Go to the documentation of this file.
1 // @(#)root/mlp:$Id$
2 // Author: Christophe.Delaere@cern.ch 25/04/04
3 
4 /*************************************************************************
5  * Copyright (C) 1995-2003, Rene Brun and Fons Rademakers. *
6  * All rights reserved. *
7  * *
8  * For the licensing terms see $ROOTSYS/LICENSE. *
9  * For the list of contributors see $ROOTSYS/README/CREDITS. *
10  *************************************************************************/
11 
12 #ifndef ROOT_TMLPAnalyzer
13 #define ROOT_TMLPAnalyzer
14 
15 
16 #ifndef ROOT_TObject
17 #include "TObject.h"
18 #endif
19 
20 class TTree;
21 class TNeuron;
22 class TSynapse;
24 class TProfile;
25 class THStack;
26 
27 //____________________________________________________________________
28 //
29 // TMLPAnalyzer
30 //
31 // This utility class contains a set of tests usefull when developing
32 // a neural network.
33 // It allows you to check for unneeded variables, and to control
34 // the network structure.
35 //
36 //--------------------------------------------------------------------
37 
38 class TMLPAnalyzer : public TObject {
39 
40 private:
44 
45 protected:
46  Int_t GetLayers();
47  Int_t GetNeurons(Int_t layer);
49  const char* GetInputNeuronTitle(Int_t in);
50  const char* GetOutputNeuronTitle(Int_t out);
51 
52 public:
54  fNetwork(&net), fAnalysisTree(0), fIOTree(0) {}
56  fNetwork(net), fAnalysisTree(0), fIOTree(0) {}
57  virtual ~TMLPAnalyzer();
58  void DrawNetwork(Int_t neuron, const char* signal, const char* bg);
59  void DrawDInput(Int_t i);
60  void DrawDInputs();
61  TProfile* DrawTruthDeviation(Int_t outnode=0, Option_t *option="");
63  TProfile* DrawTruthDeviationInOut(Int_t innode, Int_t outnode=0,
64  Option_t *option="");
65  THStack* DrawTruthDeviationInsOut(Int_t outnode=0, Option_t *option="");
66 
67  void CheckNetwork();
68  void GatherInformations();
69  TTree* GetIOTree() const { return fIOTree;}
70 
71  ClassDef(TMLPAnalyzer, 0) // A simple analysis class for MLP
72 };
73 
74 #endif
const char * GetOutputNeuronTitle(Int_t out)
Returns the name of any neuron from the output layer.
TTree * GetIOTree() const
Definition: TMLPAnalyzer.h:69
The Histogram stack class.
Definition: THStack.h:35
void CheckNetwork()
Gives some information about the network in the terminal.
const char Option_t
Definition: RtypesCore.h:62
void DrawDInput(Int_t i)
Draws the distribution (on the test sample) of the impact on the network output of a small variation ...
Basic string class.
Definition: TString.h:137
int Int_t
Definition: RtypesCore.h:41
void GatherInformations()
Collect information about what is usefull in the network.
void DrawDInputs()
Draws the distribution (on the test sample) of the impact on the network output of a small variation ...
Profile Historam.
Definition: TProfile.h:34
Int_t GetLayers()
Returns the number of layers.
Int_t GetNeurons(Int_t layer)
Returns the number of neurons in given layer.
void DrawNetwork(Int_t neuron, const char *signal, const char *bg)
Draws the distribution of the neural network (using ith neuron).
TProfile * DrawTruthDeviationInOut(Int_t innode, Int_t outnode=0, Option_t *option="")
Creates a profile of the difference of the MLP output outnode minus the true value of outnode vs the ...
#define ClassDef(name, id)
Definition: Rtypes.h:254
TMultiLayerPerceptron * fNetwork
Definition: TMLPAnalyzer.h:41
char * out
Definition: TBase64.cxx:29
const char * GetInputNeuronTitle(Int_t in)
Returns the name of any neuron from the input layer.
TMLPAnalyzer(TMultiLayerPerceptron *net)
Definition: TMLPAnalyzer.h:55
TTree * fAnalysisTree
Definition: TMLPAnalyzer.h:42
virtual ~TMLPAnalyzer()
TString GetNeuronFormula(Int_t idx)
Returns the formula used as input for neuron (idx) in the first layer.
Mother of all ROOT objects.
Definition: TObject.h:58
TProfile * DrawTruthDeviation(Int_t outnode=0, Option_t *option="")
Create a profile of the difference of the MLP output minus the true value for a given output node out...
A TTree object has a header with a name and a title.
Definition: TTree.h:98
TMLPAnalyzer(TMultiLayerPerceptron &net)
Definition: TMLPAnalyzer.h:53
THStack * DrawTruthDeviations(Option_t *option="")
Creates TProfiles of the difference of the MLP output minus the true value vs the true value...
TTree * fIOTree
Definition: TMLPAnalyzer.h:43
THStack * DrawTruthDeviationInsOut(Int_t outnode=0, Option_t *option="")
Creates a profile of the difference of the MLP output outnode minus the true value of outnode vs the ...