![]() |
ROOT
6.06/09
Reference Guide
|
Definition at line 58 of file TMultiLayerPerceptron.h.
Public Types | |
enum | ELearningMethod { kStochastic, kBatch, kSteepestDescent, kRibierePolak, kFletcherReeves, kBFGS } |
enum | EDataSet { kTraining, kTest } |
![]() | |
enum | EStatusBits { kCanDelete = BIT(0), kMustCleanup = BIT(3), kObjInCanvas = BIT(3), kIsReferenced = BIT(4), kHasUUID = BIT(5), kCannotPick = BIT(6), kNoContextMenu = BIT(8), kInvalidObject = BIT(13) } |
enum | { kIsOnHeap = 0x01000000, kNotDeleted = 0x02000000, kZombie = 0x04000000, kBitMask = 0x00ffffff } |
enum | { kSingleKey = BIT(0), kOverwrite = BIT(1), kWriteDelete = BIT(2) } |
Public Member Functions | |
TMultiLayerPerceptron () | |
TMultiLayerPerceptron (const char *layout, TTree *data=0, const char *training="Entry$%2==0", const char *test="", TNeuron::ENeuronType type=TNeuron::kSigmoid, const char *extF="", const char *extD="") | |
The network is described by a simple string: The input/output layers are defined by giving the branch names separated by comas. More... | |
TMultiLayerPerceptron (const char *layout, const char *weight, TTree *data=0, const char *training="Entry$%2==0", const char *test="", TNeuron::ENeuronType type=TNeuron::kSigmoid, const char *extF="", const char *extD="") | |
The network is described by a simple string: The input/output layers are defined by giving the branch names separated by comas. More... | |
TMultiLayerPerceptron (const char *layout, TTree *data, TEventList *training, TEventList *test, TNeuron::ENeuronType type=TNeuron::kSigmoid, const char *extF="", const char *extD="") | |
The network is described by a simple string: The input/output layers are defined by giving the branch names separated by comas. More... | |
TMultiLayerPerceptron (const char *layout, const char *weight, TTree *data, TEventList *training, TEventList *test, TNeuron::ENeuronType type=TNeuron::kSigmoid, const char *extF="", const char *extD="") | |
The network is described by a simple string: The input/output layers are defined by giving the branch names separated by comas. More... | |
virtual | ~TMultiLayerPerceptron () |
Destructor. More... | |
void | SetData (TTree *) |
Set the data source. More... | |
void | SetTrainingDataSet (TEventList *train) |
Sets the Training dataset. More... | |
void | SetTestDataSet (TEventList *test) |
Sets the Test dataset. More... | |
void | SetTrainingDataSet (const char *train) |
Sets the Training dataset. More... | |
void | SetTestDataSet (const char *test) |
Sets the Test dataset. More... | |
void | SetLearningMethod (TMultiLayerPerceptron::ELearningMethod method) |
Sets the learning method. More... | |
void | SetEventWeight (const char *) |
Set the event weight. More... | |
void | Train (Int_t nEpoch, Option_t *option="text", Double_t minE=0) |
Train the network. More... | |
Double_t | Result (Int_t event, Int_t index=0) const |
Computes the output for a given event. More... | |
Double_t | GetError (Int_t event) const |
Error on the output for a given event. More... | |
Double_t | GetError (TMultiLayerPerceptron::EDataSet set) const |
Error on the whole dataset. More... | |
void | ComputeDEDw () const |
Compute the DEDw = sum on all training events of dedw for each weight normalized by the number of events. More... | |
void | Randomize () const |
Randomize the weights. More... | |
void | SetEta (Double_t eta) |
Sets Eta - used in stochastic minimisation (look at the constructor for the complete description of learning methods and parameters) More... | |
void | SetEpsilon (Double_t eps) |
Sets Epsilon - used in stochastic minimisation (look at the constructor for the complete description of learning methods and parameters) More... | |
void | SetDelta (Double_t delta) |
Sets Delta - used in stochastic minimisation (look at the constructor for the complete description of learning methods and parameters) More... | |
void | SetEtaDecay (Double_t ed) |
Sets EtaDecay - Eta *= EtaDecay at each epoch (look at the constructor for the complete description of learning methods and parameters) More... | |
void | SetTau (Double_t tau) |
Sets Tau - used in line search (look at the constructor for the complete description of learning methods and parameters) More... | |
void | SetReset (Int_t reset) |
Sets number of epochs between two resets of the search direction to the steepest descent. More... | |
Double_t | GetEta () const |
Double_t | GetEpsilon () const |
Double_t | GetDelta () const |
Double_t | GetEtaDecay () const |
TMultiLayerPerceptron::ELearningMethod | GetLearningMethod () const |
Double_t | GetTau () const |
Int_t | GetReset () const |
TString | GetStructure () const |
TNeuron::ENeuronType | GetType () const |
void | DrawResult (Int_t index=0, Option_t *option="test") const |
Draws the neural net output It produces an histogram with the output for the two datasets. More... | |
Bool_t | DumpWeights (Option_t *filename="-") const |
Dumps the weights to a text file. More... | |
Bool_t | LoadWeights (Option_t *filename="") |
Loads the weights from a text file conforming to the format defined by DumpWeights. More... | |
Double_t | Evaluate (Int_t index, Double_t *params) const |
Returns the Neural Net for a given set of input parameters #parameters must equal #input neurons. More... | |
void | Export (Option_t *filename="NNfunction", Option_t *language="C++") const |
Exports the NN as a function for any non-ROOT-dependant code Supported languages are: only C++ , FORTRAN and Python (yet) This feature is also usefull if you want to plot the NN as a function (TF1 or TF2). More... | |
virtual void | Draw (Option_t *option="") |
Draws the network structure. More... | |
![]() | |
TObject () | |
TObject (const TObject &object) | |
TObject copy ctor. More... | |
TObject & | operator= (const TObject &rhs) |
TObject assignment operator. More... | |
virtual | ~TObject () |
TObject destructor. More... | |
virtual void | AppendPad (Option_t *option="") |
Append graphics object to current pad. More... | |
virtual void | Browse (TBrowser *b) |
Browse object. May be overridden for another default action. More... | |
virtual const char * | ClassName () const |
Returns name of class to which the object belongs. More... | |
virtual void | Clear (Option_t *="") |
virtual TObject * | Clone (const char *newname="") const |
Make a clone of an object using the Streamer facility. More... | |
virtual Int_t | Compare (const TObject *obj) const |
Compare abstract method. More... | |
virtual void | Copy (TObject &object) const |
Copy this to obj. More... | |
virtual void | Delete (Option_t *option="") |
Delete this object. More... | |
virtual Int_t | DistancetoPrimitive (Int_t px, Int_t py) |
Computes distance from point (px,py) to the object. More... | |
virtual void | DrawClass () const |
Draw class inheritance tree of the class to which this object belongs. More... | |
virtual TObject * | DrawClone (Option_t *option="") const |
Draw a clone of this object in the current pad. More... | |
virtual void | Dump () const |
Dump contents of object on stdout. More... | |
virtual void | Execute (const char *method, const char *params, Int_t *error=0) |
Execute method on this object with the given parameter string, e.g. More... | |
virtual void | Execute (TMethod *method, TObjArray *params, Int_t *error=0) |
Execute method on this object with parameters stored in the TObjArray. More... | |
virtual void | ExecuteEvent (Int_t event, Int_t px, Int_t py) |
Execute action corresponding to an event at (px,py). More... | |
virtual TObject * | FindObject (const char *name) const |
Must be redefined in derived classes. More... | |
virtual TObject * | FindObject (const TObject *obj) const |
Must be redefined in derived classes. More... | |
virtual Option_t * | GetDrawOption () const |
Get option used by the graphics system to draw this object. More... | |
virtual UInt_t | GetUniqueID () const |
Return the unique object id. More... | |
virtual const char * | GetName () const |
Returns name of object. More... | |
virtual const char * | GetIconName () const |
Returns mime type name of object. More... | |
virtual Option_t * | GetOption () const |
virtual char * | GetObjectInfo (Int_t px, Int_t py) const |
Returns string containing info about the object at position (px,py). More... | |
virtual const char * | GetTitle () const |
Returns title of object. More... | |
virtual Bool_t | HandleTimer (TTimer *timer) |
Execute action in response of a timer timing out. More... | |
virtual ULong_t | Hash () const |
Return hash value for this object. More... | |
virtual Bool_t | InheritsFrom (const char *classname) const |
Returns kTRUE if object inherits from class "classname". More... | |
virtual Bool_t | InheritsFrom (const TClass *cl) const |
Returns kTRUE if object inherits from TClass cl. More... | |
virtual void | Inspect () const |
Dump contents of this object in a graphics canvas. More... | |
virtual Bool_t | IsFolder () const |
Returns kTRUE in case object contains browsable objects (like containers or lists of other objects). More... | |
virtual Bool_t | IsEqual (const TObject *obj) const |
Default equal comparison (objects are equal if they have the same address in memory). More... | |
virtual Bool_t | IsSortable () const |
Bool_t | IsOnHeap () const |
Bool_t | IsZombie () const |
virtual Bool_t | Notify () |
This method must be overridden to handle object notification. More... | |
virtual void | ls (Option_t *option="") const |
The ls function lists the contents of a class on stdout. More... | |
virtual void | Paint (Option_t *option="") |
This method must be overridden if a class wants to paint itself. More... | |
virtual void | Pop () |
Pop on object drawn in a pad to the top of the display list. More... | |
virtual void | Print (Option_t *option="") const |
This method must be overridden when a class wants to print itself. More... | |
virtual Int_t | Read (const char *name) |
Read contents of object with specified name from the current directory. More... | |
virtual void | RecursiveRemove (TObject *obj) |
Recursively remove this object from a list. More... | |
virtual void | SaveAs (const char *filename="", Option_t *option="") const |
Save this object in the file specified by filename. More... | |
virtual void | SavePrimitive (std::ostream &out, Option_t *option="") |
Save a primitive as a C++ statement(s) on output stream "out". More... | |
virtual void | SetDrawOption (Option_t *option="") |
Set drawing option for object. More... | |
virtual void | SetUniqueID (UInt_t uid) |
Set the unique object id. More... | |
virtual void | UseCurrentStyle () |
Set current style settings in this object This function is called when either TCanvas::UseCurrentStyle or TROOT::ForceStyle have been invoked. More... | |
virtual Int_t | Write (const char *name=0, Int_t option=0, Int_t bufsize=0) |
Write this object to the current directory. More... | |
virtual Int_t | Write (const char *name=0, Int_t option=0, Int_t bufsize=0) const |
Write this object to the current directory. More... | |
void * | operator new (size_t sz) |
void * | operator new[] (size_t sz) |
void * | operator new (size_t sz, void *vp) |
void * | operator new[] (size_t sz, void *vp) |
void | operator delete (void *ptr) |
Operator delete. More... | |
void | operator delete[] (void *ptr) |
Operator delete []. More... | |
void | SetBit (UInt_t f, Bool_t set) |
Set or unset the user status bits as specified in f. More... | |
void | SetBit (UInt_t f) |
void | ResetBit (UInt_t f) |
Bool_t | TestBit (UInt_t f) const |
Int_t | TestBits (UInt_t f) const |
void | InvertBit (UInt_t f) |
virtual void | Info (const char *method, const char *msgfmt,...) const |
Issue info message. More... | |
virtual void | Warning (const char *method, const char *msgfmt,...) const |
Issue warning message. More... | |
virtual void | Error (const char *method, const char *msgfmt,...) const |
Issue error message. More... | |
virtual void | SysError (const char *method, const char *msgfmt,...) const |
Issue system error message. More... | |
virtual void | Fatal (const char *method, const char *msgfmt,...) const |
Issue fatal error message. More... | |
void | AbstractMethod (const char *method) const |
Use this method to implement an "abstract" method that you don't want to leave purely abstract. More... | |
void | MayNotUse (const char *method) const |
Use this method to signal that a method (defined in a base class) may not be called in a derived class (in principle against good design since a child class should not provide less functionality than its parent, however, sometimes it is necessary). More... | |
void | Obsolete (const char *method, const char *asOfVers, const char *removedFromVers) const |
Use this method to declare a method obsolete. More... | |
Protected Member Functions | |
void | AttachData () |
Connects the TTree to Neurons in input and output layers. More... | |
void | BuildNetwork () |
Instanciates the network from the description. More... | |
void | GetEntry (Int_t) const |
Load an entry into the network. More... | |
void | MLP_Stochastic (Double_t *) |
One step for the stochastic method buffer should contain the previous dw vector and will be updated. More... | |
void | MLP_Batch (Double_t *) |
One step for the batch (stochastic) method. More... | |
Bool_t | LineSearch (Double_t *, Double_t *) |
Search along the line defined by direction. More... | |
void | SteepestDir (Double_t *) |
Sets the search direction to steepest descent. More... | |
void | ConjugateGradientsDir (Double_t *, Double_t) |
Sets the search direction to conjugate gradient direction beta should be: ||g_{(t+1)}||^2 / ||g_{(t)}||^2 (Fletcher-Reeves) g_{(t+1)} (g_{(t+1)}-g_{(t)}) / ||g_{(t)}||^2 (Ribiere-Polak) More... | |
void | SetGammaDelta (TMatrixD &, TMatrixD &, Double_t *) |
Sets the gamma (g_{(t+1)}-g_{(t)}) and delta (w_{(t+1)}-w_{(t)}) vectors Gamma is computed here, so ComputeDEDw cannot have been called before, and delta is a direct translation of buffer into a TMatrixD. More... | |
bool | GetBFGSH (TMatrixD &, TMatrixD &, TMatrixD &) |
Computes the hessian matrix using the BFGS update algorithm. More... | |
void | BFGSDir (TMatrixD &, Double_t *) |
Computes the direction for the BFGS algorithm as the product between the Hessian estimate (bfgsh) and the dir. More... | |
Double_t | DerivDir (Double_t *) |
scalar product between gradient and direction = derivative along direction More... | |
Double_t | GetCrossEntropyBinary () const |
Cross entropy error for sigmoid output neurons, for a given event. More... | |
Double_t | GetCrossEntropy () const |
Cross entropy error for a softmax output neuron, for a given event. More... | |
Double_t | GetSumSquareError () const |
Error on the output for a given event. More... | |
![]() | |
void | MakeZombie () |
virtual void | DoError (int level, const char *location, const char *fmt, va_list va) const |
Interface to ErrorHandler (protected). More... | |
Private Member Functions | |
TMultiLayerPerceptron (const TMultiLayerPerceptron &) | |
TMultiLayerPerceptron & | operator= (const TMultiLayerPerceptron &) |
void | ExpandStructure () |
Expand the structure of the first layer. More... | |
void | BuildFirstLayer (TString &) |
Instanciates the neurons in input Inputs are normalised and the type is set to kOff (simple forward of the formula value) More... | |
void | BuildHiddenLayers (TString &) |
Builds hidden layers. More... | |
void | BuildOneHiddenLayer (const TString &sNumNodes, Int_t &layer, Int_t &prevStart, Int_t &prevStop, Bool_t lastLayer) |
Builds a hidden layer, updates the number of layers. More... | |
void | BuildLastLayer (TString &, Int_t) |
Builds the output layer Neurons are linear combinations of input, by defaul. More... | |
void | Shuffle (Int_t *, Int_t) const |
Shuffle the Int_t index[n] in input. More... | |
void | MLP_Line (Double_t *, Double_t *, Double_t) |
Sets the weights to a point along a line Weights are set to [origin + (dist * dir)]. More... | |
Private Attributes | |
TTree * | fData |
Int_t | fCurrentTree |
pointer to the tree used as datasource More... | |
Double_t | fCurrentTreeWeight |
index of the current tree in a chain More... | |
TObjArray | fNetwork |
weight of the current tree in a chain More... | |
TObjArray | fFirstLayer |
TObjArray | fLastLayer |
TObjArray | fSynapses |
TString | fStructure |
TString | fWeight |
TNeuron::ENeuronType | fType |
TNeuron::ENeuronType | fOutType |
TString | fextF |
TString | fextD |
TEventList * | fTraining |
TEventList * | fTest |
EventList defining the events in the training dataset. More... | |
ELearningMethod | fLearningMethod |
EventList defining the events in the test dataset. More... | |
TTreeFormula * | fEventWeight |
The Learning Method. More... | |
TTreeFormulaManager * | fManager |
formula representing the event weight More... | |
Double_t | fEta |
TTreeFormulaManager for the weight and neurons. More... | |
Double_t | fEpsilon |
Eta - used in stochastic minimisation - Default=0.1. More... | |
Double_t | fDelta |
Epsilon - used in stochastic minimisation - Default=0. More... | |
Double_t | fEtaDecay |
Delta - used in stochastic minimisation - Default=0. More... | |
Double_t | fTau |
EtaDecay - Eta *= EtaDecay at each epoch - Default=1. More... | |
Double_t | fLastAlpha |
Tau - used in line search - Default=3. More... | |
Int_t | fReset |
internal parameter used in line search More... | |
Bool_t | fTrainingOwner |
number of epochs between two resets of the search direction to the steepest descent - Default=50 More... | |
Bool_t | fTestOwner |
internal flag whether one has to delete fTraining or not More... | |
Friends | |
class | TMLPAnalyzer |
Additional Inherited Members | |
![]() | |
static Long_t | GetDtorOnly () |
Return destructor only flag. More... | |
static void | SetDtorOnly (void *obj) |
Set destructor only flag. More... | |
static Bool_t | GetObjectStat () |
Get status of object stat flag. More... | |
static void | SetObjectStat (Bool_t stat) |
Turn on/off tracking of objects in the TObjectTable. More... | |
#include <TMultiLayerPerceptron.h>
Enumerator | |
---|---|
kTraining | |
kTest |
Definition at line 64 of file TMultiLayerPerceptron.h.
Enumerator | |
---|---|
kStochastic | |
kBatch | |
kSteepestDescent | |
kRibierePolak | |
kFletcherReeves | |
kBFGS |
Definition at line 62 of file TMultiLayerPerceptron.h.
TMultiLayerPerceptron::TMultiLayerPerceptron | ( | ) |
TMultiLayerPerceptron::TMultiLayerPerceptron | ( | const char * | layout, |
TTree * | data = 0 , |
||
const char * | training = "Entry$%2==0" , |
||
const char * | test = "" , |
||
TNeuron::ENeuronType | type = TNeuron::kSigmoid , |
||
const char * | extF = "" , |
||
const char * | extD = "" |
||
) |
The network is described by a simple string: The input/output layers are defined by giving the branch names separated by comas.
Hidden layers are just described by the number of neurons. The layers are separated by colons. Ex: "x,y:10:5:f" The output can be prepended by '@' if the variable has to be normalized. The output can be followed by '!' to use Softmax neurons for the output layer only. Ex: "x,y:10:5:c1,c2,c3!" Input and outputs are taken from the TTree given as second argument. training and test are two cuts (see TTreeFormula) defining events to be used during the neural net training and testing. Example: "Entry$%2", "(Entry$+1)%2". Both the TTree and the cut can be defined in the constructor, or later with the suited setter method.
Definition at line 420 of file TMultiLayerPerceptron.cxx.
TMultiLayerPerceptron::TMultiLayerPerceptron | ( | const char * | layout, |
const char * | weight, | ||
TTree * | data = 0 , |
||
const char * | training = "Entry$%2==0" , |
||
const char * | test = "" , |
||
TNeuron::ENeuronType | type = TNeuron::kSigmoid , |
||
const char * | extF = "" , |
||
const char * | extD = "" |
||
) |
The network is described by a simple string: The input/output layers are defined by giving the branch names separated by comas.
Hidden layers are just described by the number of neurons. The layers are separated by colons. Ex: "x,y:10:5:f" The output can be prepended by '@' if the variable has to be normalized. The output can be followed by '!' to use Softmax neurons for the output layer only. Ex: "x,y:10:5:c1,c2,c3!" Input and outputs are taken from the TTree given as second argument. training and test are two cuts (see TTreeFormula) defining events to be used during the neural net training and testing. Example: "Entry$%2", "(Entry$+1)%2". Both the TTree and the cut can be defined in the constructor, or later with the suited setter method.
Definition at line 486 of file TMultiLayerPerceptron.cxx.
TMultiLayerPerceptron::TMultiLayerPerceptron | ( | const char * | layout, |
TTree * | data, | ||
TEventList * | training, | ||
TEventList * | test, | ||
TNeuron::ENeuronType | type = TNeuron::kSigmoid , |
||
const char * | extF = "" , |
||
const char * | extD = "" |
||
) |
The network is described by a simple string: The input/output layers are defined by giving the branch names separated by comas.
Hidden layers are just described by the number of neurons. The layers are separated by colons. Ex: "x,y:10:5:f" The output can be prepended by '@' if the variable has to be normalized. The output can be followed by '!' to use Softmax neurons for the output layer only. Ex: "x,y:10:5:c1,c2,c3!" Input and outputs are taken from the TTree given as second argument. training and test are the two TEventLists defining events to be used during the neural net training. Both the TTree and the TEventLists can be defined in the constructor, or later with the suited setter method.
Definition at line 302 of file TMultiLayerPerceptron.cxx.
TMultiLayerPerceptron::TMultiLayerPerceptron | ( | const char * | layout, |
const char * | weight, | ||
TTree * | data, | ||
TEventList * | training, | ||
TEventList * | test, | ||
TNeuron::ENeuronType | type = TNeuron::kSigmoid , |
||
const char * | extF = "" , |
||
const char * | extD = "" |
||
) |
The network is described by a simple string: The input/output layers are defined by giving the branch names separated by comas.
Hidden layers are just described by the number of neurons. The layers are separated by colons. Ex: "x,y:10:5:f" The output can be prepended by '@' if the variable has to be normalized. The output can be followed by '!' to use Softmax neurons for the output layer only. Ex: "x,y:10:5:c1,c2,c3!" Input and outputs are taken from the TTree given as second argument. training and test are the two TEventLists defining events to be used during the neural net training. Both the TTree and the TEventLists can be defined in the constructor, or later with the suited setter method.
Definition at line 360 of file TMultiLayerPerceptron.cxx.
|
virtual |
Destructor.
Definition at line 537 of file TMultiLayerPerceptron.cxx.
|
private |
|
protected |
Connects the TTree to Neurons in input and output layers.
The formulas associated to each neuron are created and reported to the network formula manager. By default, the branch is not normalised since this would degrade performance for classification jobs. Normalisation can be requested by putting '@' in front of the formula.
Definition at line 1216 of file TMultiLayerPerceptron.cxx.
Referenced by SetData(), and TMultiLayerPerceptron().
Computes the direction for the BFGS algorithm as the product between the Hessian estimate (bfgsh) and the dir.
Definition at line 2439 of file TMultiLayerPerceptron.cxx.
Referenced by Train().
Instanciates the neurons in input Inputs are normalised and the type is set to kOff (simple forward of the formula value)
Definition at line 1351 of file TMultiLayerPerceptron.cxx.
Referenced by BuildNetwork().
Builds hidden layers.
Definition at line 1369 of file TMultiLayerPerceptron.cxx.
Referenced by BuildNetwork().
Builds the output layer Neurons are linear combinations of input, by defaul.
If the structure ends with "!", neurons are set up for classification, ie. with a sigmoid (1 neuron) or softmax (more neurons) activation function.
Definition at line 1433 of file TMultiLayerPerceptron.cxx.
Referenced by BuildNetwork().
|
protected |
Instanciates the network from the description.
Definition at line 1320 of file TMultiLayerPerceptron.cxx.
Referenced by SetData(), and TMultiLayerPerceptron().
|
private |
Builds a hidden layer, updates the number of layers.
Definition at line 1388 of file TMultiLayerPerceptron.cxx.
Referenced by BuildHiddenLayers().
void TMultiLayerPerceptron::ComputeDEDw | ( | ) | const |
Compute the DEDw = sum on all training events of dedw for each weight normalized by the number of events.
Definition at line 1113 of file TMultiLayerPerceptron.cxx.
Referenced by SetGammaDelta(), and Train().
Sets the search direction to conjugate gradient direction beta should be: ||g_{(t+1)}||^2 / ||g_{(t)}||^2 (Fletcher-Reeves) g_{(t+1)} (g_{(t+1)}-g_{(t)}) / ||g_{(t)}||^2 (Ribiere-Polak)
Definition at line 2324 of file TMultiLayerPerceptron.cxx.
Referenced by Train().
scalar product between gradient and direction = derivative along direction
Definition at line 2415 of file TMultiLayerPerceptron.cxx.
Referenced by Train().
Draws the network structure.
Neurons are depicted by a blue disk, and synapses by lines connecting neurons. The line width is proportionnal to the weight.
Reimplemented from TObject.
Definition at line 2469 of file TMultiLayerPerceptron.cxx.
Draws the neural net output It produces an histogram with the output for the two datasets.
Index is the number of the desired output neuron. "option" can contain:
Definition at line 1483 of file TMultiLayerPerceptron.cxx.
Dumps the weights to a text file.
Set filename to "-" (default) to dump to the standard output
Definition at line 1557 of file TMultiLayerPerceptron.cxx.
Returns the Neural Net for a given set of input parameters #parameters must equal #input neurons.
Definition at line 1663 of file TMultiLayerPerceptron.cxx.
Referenced by TMLPAnalyzer::GatherInformations().
|
private |
Expand the structure of the first layer.
Definition at line 1274 of file TMultiLayerPerceptron.cxx.
Referenced by BuildNetwork().
void TMultiLayerPerceptron::Export | ( | Option_t * | filename = "NNfunction" , |
Option_t * | language = "C++" |
||
) | const |
Exports the NN as a function for any non-ROOT-dependant code Supported languages are: only C++ , FORTRAN and Python (yet) This feature is also usefull if you want to plot the NN as a function (TF1 or TF2).
Definition at line 1688 of file TMultiLayerPerceptron.cxx.
|
protected |
Computes the hessian matrix using the BFGS update algorithm.
from gamma (g_{(t+1)}-g_{(t)}) and delta (w_{(t+1)}-w_{(t)}). It returns true if such a direction could not be found (if gamma and delta are orthogonal).
Definition at line 2350 of file TMultiLayerPerceptron.cxx.
Referenced by Train().
|
protected |
Cross entropy error for a softmax output neuron, for a given event.
Definition at line 1092 of file TMultiLayerPerceptron.cxx.
Referenced by GetError().
|
protected |
Cross entropy error for sigmoid output neurons, for a given event.
Definition at line 1061 of file TMultiLayerPerceptron.cxx.
Referenced by GetError().
|
inline |
Definition at line 110 of file TMultiLayerPerceptron.h.
Load an entry into the network.
Definition at line 709 of file TMultiLayerPerceptron.cxx.
Referenced by ComputeDEDw(), DrawResult(), TMLPAnalyzer::GatherInformations(), GetError(), MLP_Stochastic(), and Result().
|
inline |
Definition at line 109 of file TMultiLayerPerceptron.h.
Error on the output for a given event.
Definition at line 996 of file TMultiLayerPerceptron.cxx.
Referenced by GetError(), LineSearch(), and Train().
Double_t TMultiLayerPerceptron::GetError | ( | TMultiLayerPerceptron::EDataSet | set | ) | const |
Error on the whole dataset.
Definition at line 1025 of file TMultiLayerPerceptron.cxx.
|
inline |
Definition at line 108 of file TMultiLayerPerceptron.h.
|
inline |
Definition at line 111 of file TMultiLayerPerceptron.h.
|
inline |
Definition at line 112 of file TMultiLayerPerceptron.h.
|
inline |
Definition at line 114 of file TMultiLayerPerceptron.h.
|
inline |
Definition at line 115 of file TMultiLayerPerceptron.h.
Referenced by TMLPAnalyzer::CheckNetwork(), TMLPAnalyzer::GetLayers(), TMLPAnalyzer::GetNeuronFormula(), and TMLPAnalyzer::GetNeurons().
|
protected |
Error on the output for a given event.
Definition at line 1048 of file TMultiLayerPerceptron.cxx.
Referenced by GetError().
Definition at line 113 of file TMultiLayerPerceptron.h.
|
inline |
Definition at line 116 of file TMultiLayerPerceptron.h.
Referenced by Export().
Search along the line defined by direction.
buffer is not used but is updated with the new dw so that it can be used by a later stochastic step. It returns true if the line search fails.
Definition at line 2221 of file TMultiLayerPerceptron.cxx.
Referenced by Train().
Loads the weights from a text file conforming to the format defined by DumpWeights.
Definition at line 1607 of file TMultiLayerPerceptron.cxx.
Referenced by TMVA::MethodTMlpANN::ReadWeightsFromStream(), and TMVA::MethodTMlpANN::ReadWeightsFromXML().
One step for the batch (stochastic) method.
DEDw should have been updated before calling this.
Definition at line 2150 of file TMultiLayerPerceptron.cxx.
Referenced by Train().
Sets the weights to a point along a line Weights are set to [origin + (dist * dir)].
Definition at line 2178 of file TMultiLayerPerceptron.cxx.
Referenced by LineSearch().
One step for the stochastic method buffer should contain the previous dw vector and will be updated.
Definition at line 2105 of file TMultiLayerPerceptron.cxx.
Referenced by Train().
|
private |
void TMultiLayerPerceptron::Randomize | ( | ) | const |
Randomize the weights.
Definition at line 1189 of file TMultiLayerPerceptron.cxx.
Referenced by Train().
Computes the output for a given event.
Look at the output neuron designed by index.
Definition at line 983 of file TMultiLayerPerceptron.cxx.
Referenced by TMLPAnalyzer::DrawNetwork(), and DrawResult().
Set the data source.
Definition at line 546 of file TMultiLayerPerceptron.cxx.
Sets Delta - used in stochastic minimisation (look at the constructor for the complete description of learning methods and parameters)
Definition at line 670 of file TMultiLayerPerceptron.cxx.
Sets Epsilon - used in stochastic minimisation (look at the constructor for the complete description of learning methods and parameters)
Definition at line 660 of file TMultiLayerPerceptron.cxx.
Sets Eta - used in stochastic minimisation (look at the constructor for the complete description of learning methods and parameters)
Definition at line 650 of file TMultiLayerPerceptron.cxx.
Sets EtaDecay - Eta *= EtaDecay at each epoch (look at the constructor for the complete description of learning methods and parameters)
Definition at line 680 of file TMultiLayerPerceptron.cxx.
void TMultiLayerPerceptron::SetEventWeight | ( | const char * | branch | ) |
Set the event weight.
Definition at line 562 of file TMultiLayerPerceptron.cxx.
Referenced by TMVA::MethodTMlpANN::Train().
|
protected |
Sets the gamma (g_{(t+1)}-g_{(t)}) and delta (w_{(t+1)}-w_{(t)}) vectors Gamma is computed here, so ComputeDEDw cannot have been called before, and delta is a direct translation of buffer into a TMatrixD.
Definition at line 2376 of file TMultiLayerPerceptron.cxx.
Referenced by Train().
void TMultiLayerPerceptron::SetLearningMethod | ( | TMultiLayerPerceptron::ELearningMethod | method | ) |
Sets the learning method.
Available methods are: kStochastic, kBatch, kSteepestDescent, kRibierePolak, kFletcherReeves and kBFGS. (look at the constructor for the complete description of learning methods and parameters)
Definition at line 640 of file TMultiLayerPerceptron.cxx.
Sets number of epochs between two resets of the search direction to the steepest descent.
(look at the constructor for the complete description of learning methods and parameters)
Definition at line 701 of file TMultiLayerPerceptron.cxx.
Sets Tau - used in line search (look at the constructor for the complete description of learning methods and parameters)
Definition at line 690 of file TMultiLayerPerceptron.cxx.
void TMultiLayerPerceptron::SetTestDataSet | ( | TEventList * | test | ) |
Sets the Test dataset.
Those events will not be used for the minimization but for control
Definition at line 589 of file TMultiLayerPerceptron.cxx.
void TMultiLayerPerceptron::SetTestDataSet | ( | const char * | test | ) |
Sets the Test dataset.
Those events will not be used for the minimization but for control. Note that the tree must be already defined.
Definition at line 619 of file TMultiLayerPerceptron.cxx.
void TMultiLayerPerceptron::SetTrainingDataSet | ( | TEventList * | train | ) |
Sets the Training dataset.
Those events will be used for the minimization
Definition at line 578 of file TMultiLayerPerceptron.cxx.
void TMultiLayerPerceptron::SetTrainingDataSet | ( | const char * | train | ) |
Sets the Training dataset.
Those events will be used for the minimization. Note that the tree must be already defined.
Definition at line 601 of file TMultiLayerPerceptron.cxx.
Shuffle the Int_t index[n] in input.
Input: index: the array to shuffle n: the size of the array Output: index: the shuffled indexes This method is used for stochastic training
Definition at line 2086 of file TMultiLayerPerceptron.cxx.
Referenced by MLP_Stochastic().
Sets the search direction to steepest descent.
Definition at line 2200 of file TMultiLayerPerceptron.cxx.
Referenced by Train().
Train the network.
nEpoch is the number of iterations. option can contain:
Definition at line 738 of file TMultiLayerPerceptron.cxx.
|
friend |
Definition at line 59 of file TMultiLayerPerceptron.h.
|
private |
pointer to the tree used as datasource
Definition at line 156 of file TMultiLayerPerceptron.h.
Referenced by GetEntry(), and TMultiLayerPerceptron().
|
private |
index of the current tree in a chain
Definition at line 157 of file TMultiLayerPerceptron.h.
Referenced by ComputeDEDw(), GetError(), and TMultiLayerPerceptron().
|
private |
Definition at line 155 of file TMultiLayerPerceptron.h.
Referenced by AttachData(), ComputeDEDw(), TMLPAnalyzer::DrawNetwork(), DrawResult(), ExpandStructure(), TMLPAnalyzer::GatherInformations(), GetEntry(), GetError(), SetData(), SetEventWeight(), SetTestDataSet(), SetTrainingDataSet(), TMultiLayerPerceptron(), and Train().
|
private |
Epsilon - used in stochastic minimisation - Default=0.
Definition at line 175 of file TMultiLayerPerceptron.h.
Referenced by GetDelta(), MLP_Batch(), MLP_Stochastic(), SetDelta(), and TMultiLayerPerceptron().
|
private |
Eta - used in stochastic minimisation - Default=0.1.
Definition at line 174 of file TMultiLayerPerceptron.h.
Referenced by GetEpsilon(), MLP_Batch(), MLP_Stochastic(), SetEpsilon(), and TMultiLayerPerceptron().
|
private |
TTreeFormulaManager for the weight and neurons.
Definition at line 173 of file TMultiLayerPerceptron.h.
Referenced by GetEta(), MLP_Batch(), MLP_Stochastic(), SetEta(), and TMultiLayerPerceptron().
|
private |
Delta - used in stochastic minimisation - Default=0.
Definition at line 176 of file TMultiLayerPerceptron.h.
Referenced by GetEtaDecay(), MLP_Batch(), MLP_Stochastic(), SetEtaDecay(), and TMultiLayerPerceptron().
|
private |
The Learning Method.
Definition at line 171 of file TMultiLayerPerceptron.h.
Referenced by AttachData(), ComputeDEDw(), GetError(), SetEventWeight(), and TMultiLayerPerceptron().
|
private |
Definition at line 167 of file TMultiLayerPerceptron.h.
Referenced by BuildOneHiddenLayer(), and TMultiLayerPerceptron().
|
private |
Definition at line 166 of file TMultiLayerPerceptron.h.
Referenced by BuildOneHiddenLayer(), and TMultiLayerPerceptron().
|
private |
Definition at line 159 of file TMultiLayerPerceptron.h.
Referenced by AttachData(), BuildFirstLayer(), DumpWeights(), Evaluate(), Export(), TMLPAnalyzer::GetInputNeuronTitle(), LoadWeights(), MLP_Stochastic(), and TMultiLayerPerceptron().
|
private |
Tau - used in line search - Default=3.
Definition at line 178 of file TMultiLayerPerceptron.h.
Referenced by LineSearch(), TMultiLayerPerceptron(), and Train().
|
private |
Definition at line 160 of file TMultiLayerPerceptron.h.
Referenced by AttachData(), BuildLastLayer(), Draw(), DrawResult(), DumpWeights(), Evaluate(), Export(), TMLPAnalyzer::GatherInformations(), GetCrossEntropy(), GetCrossEntropyBinary(), GetError(), TMLPAnalyzer::GetOutputNeuronTitle(), GetSumSquareError(), LoadWeights(), Result(), and TMultiLayerPerceptron().
|
private |
EventList defining the events in the test dataset.
Definition at line 170 of file TMultiLayerPerceptron.h.
Referenced by GetLearningMethod(), SetLearningMethod(), TMultiLayerPerceptron(), and Train().
|
private |
formula representing the event weight
Definition at line 172 of file TMultiLayerPerceptron.h.
Referenced by AttachData(), GetEntry(), SetEventWeight(), and TMultiLayerPerceptron().
|
private |
weight of the current tree in a chain
Definition at line 158 of file TMultiLayerPerceptron.h.
Referenced by BFGSDir(), BuildFirstLayer(), BuildHiddenLayers(), BuildLastLayer(), BuildOneHiddenLayer(), ComputeDEDw(), ConjugateGradientsDir(), DerivDir(), DumpWeights(), Evaluate(), Export(), GetEntry(), LineSearch(), LoadWeights(), MLP_Batch(), MLP_Line(), MLP_Stochastic(), Randomize(), SetGammaDelta(), SteepestDir(), TMultiLayerPerceptron(), and Train().
|
private |
Definition at line 165 of file TMultiLayerPerceptron.h.
Referenced by BuildLastLayer(), GetError(), and TMultiLayerPerceptron().
|
private |
internal parameter used in line search
Definition at line 179 of file TMultiLayerPerceptron.h.
Referenced by GetReset(), SetReset(), TMultiLayerPerceptron(), and Train().
|
private |
Definition at line 162 of file TMultiLayerPerceptron.h.
Referenced by AttachData(), BuildLastLayer(), BuildNetwork(), Draw(), ExpandStructure(), GetStructure(), and TMultiLayerPerceptron().
|
private |
Definition at line 161 of file TMultiLayerPerceptron.h.
Referenced by BFGSDir(), BuildLastLayer(), BuildOneHiddenLayer(), ComputeDEDw(), ConjugateGradientsDir(), DerivDir(), Draw(), DumpWeights(), Export(), LineSearch(), LoadWeights(), MLP_Batch(), MLP_Line(), MLP_Stochastic(), Randomize(), SetGammaDelta(), SteepestDir(), TMultiLayerPerceptron(), and Train().
|
private |
EtaDecay - Eta *= EtaDecay at each epoch - Default=1.
Definition at line 177 of file TMultiLayerPerceptron.h.
Referenced by GetTau(), LineSearch(), SetTau(), and TMultiLayerPerceptron().
|
private |
EventList defining the events in the training dataset.
Definition at line 169 of file TMultiLayerPerceptron.h.
Referenced by TMLPAnalyzer::DrawNetwork(), DrawResult(), TMLPAnalyzer::GatherInformations(), GetError(), SetTestDataSet(), TMultiLayerPerceptron(), Train(), and ~TMultiLayerPerceptron().
|
private |
internal flag whether one has to delete fTraining or not
Definition at line 181 of file TMultiLayerPerceptron.h.
Referenced by SetTestDataSet(), TMultiLayerPerceptron(), and ~TMultiLayerPerceptron().
|
private |
Definition at line 168 of file TMultiLayerPerceptron.h.
Referenced by ComputeDEDw(), DrawResult(), GetError(), MLP_Stochastic(), SetTrainingDataSet(), TMultiLayerPerceptron(), Train(), and ~TMultiLayerPerceptron().
|
private |
number of epochs between two resets of the search direction to the steepest descent - Default=50
Definition at line 180 of file TMultiLayerPerceptron.h.
Referenced by SetTrainingDataSet(), TMultiLayerPerceptron(), and ~TMultiLayerPerceptron().
|
private |
Definition at line 164 of file TMultiLayerPerceptron.h.
Referenced by BuildOneHiddenLayer(), GetType(), and TMultiLayerPerceptron().
|
private |
Definition at line 163 of file TMultiLayerPerceptron.h.
Referenced by AttachData(), SetEventWeight(), and TMultiLayerPerceptron().