67 TMVA::MethodRuleFit::MethodRuleFit( const
TString& jobName,
72 MethodBase( jobName, Types::kRuleFit, methodTitle, theData, theOption, theTargetDir )
95 , fPruneMethod(TMVA::DecisionTree::kCostComplexityPruning)
143 , fPruneMethod(TMVA::
DecisionTree::kCostComplexityPruning)
167 for (
UInt_t i=0; i<fEventSample.size(); i++)
delete fEventSample[i];
168 for (
UInt_t i=0; i<fForest.size(); i++)
delete fForest[i];
227 DeclareOptionRef(fGDTau=-1,
"GDTau",
"Gradient-directed (GD) path: default fit cut-off");
228 DeclareOptionRef(fGDTauPrec=0.01,
"GDTauPrec",
"GD path: precision of tau");
229 DeclareOptionRef(fGDPathStep=0.01,
"GDStep",
"GD path: step size");
230 DeclareOptionRef(fGDNPathSteps=10000,
"GDNSteps",
"GD path: number of steps");
231 DeclareOptionRef(fGDErrScale=1.1,
"GDErrScale",
"Stop scan when error > scale*errmin");
232 DeclareOptionRef(fLinQuantile,
"LinQuantile",
"Quantile of linear terms (removes outliers)");
233 DeclareOptionRef(fGDPathEveFrac=0.5,
"GDPathEveFrac",
"Fraction of events used for the path search");
234 DeclareOptionRef(fGDValidEveFrac=0.5,
"GDValidEveFrac",
"Fraction of events used for the validation");
236 DeclareOptionRef(fMinFracNEve=0.1,
"fEventsMin",
"Minimum fraction of events in a splittable node");
237 DeclareOptionRef(fMaxFracNEve=0.9,
"fEventsMax",
"Maximum fraction of events in a splittable node");
238 DeclareOptionRef(fNTrees=20,
"nTrees",
"Number of trees in forest.");
240 DeclareOptionRef(fForestTypeS=
"AdaBoost",
"ForestType",
"Method to use for forest generation (AdaBoost or RandomForest)");
241 AddPreDefVal(
TString(
"AdaBoost"));
242 AddPreDefVal(
TString(
"Random"));
244 DeclareOptionRef(fRuleMinDist=0.001,
"RuleMinDist",
"Minimum distance between rules");
245 DeclareOptionRef(fMinimp=0.01,
"MinImp",
"Minimum rule importance accepted");
247 DeclareOptionRef(fModelTypeS=
"ModRuleLinear",
"Model",
"Model to be used");
248 AddPreDefVal(
TString(
"ModRule"));
249 AddPreDefVal(
TString(
"ModRuleLinear"));
250 AddPreDefVal(
TString(
"ModLinear"));
251 DeclareOptionRef(fRuleFitModuleS=
"RFTMVA",
"RuleFitModule",
"Which RuleFit module to use");
252 AddPreDefVal(
TString(
"RFTMVA"));
253 AddPreDefVal(
TString(
"RFFriedman"));
255 DeclareOptionRef(fRFWorkDir=
"./rulefit",
"RFWorkDir",
"Friedman\'s RuleFit module (RFF): working dir");
256 DeclareOptionRef(fRFNrules=2000,
"RFNrules",
"RFF: Mximum number of rules");
257 DeclareOptionRef(fRFNendnodes=4,
"RFNendnodes",
"RFF: Average number of end nodes");
265 if (IgnoreEventsWithNegWeightsInTraining()) {
266 Log() <<
kFATAL <<
"Mechanism to ignore events with negative weights in training not yet available for method: "
267 << GetMethodTypeName()
268 <<
" --> please remove \"IgnoreNegWeightsInTraining\" option from booking string."
272 fRuleFitModuleS.ToLower();
273 if (fRuleFitModuleS ==
"rftmva") fUseRuleFitJF =
kFALSE;
274 else if (fRuleFitModuleS ==
"rffriedman") fUseRuleFitJF =
kTRUE;
275 else fUseRuleFitJF =
kTRUE;
279 else if (fSepTypeS ==
"giniindex") fSepType =
new GiniIndex();
280 else if (fSepTypeS ==
"crossentropy") fSepType =
new CrossEntropy();
283 fModelTypeS.ToLower();
284 if (fModelTypeS ==
"modlinear" ) fRuleFit.SetModelLinear();
285 else if (fModelTypeS ==
"modrule" ) fRuleFit.SetModelRules();
286 else fRuleFit.SetModelFull();
288 fPruneMethodS.ToLower();
293 fForestTypeS.ToLower();
294 if (fForestTypeS ==
"random" ) fUseBoost =
kFALSE;
295 else if (fForestTypeS ==
"adaboost" ) fUseBoost =
kTRUE;
296 else fUseBoost =
kTRUE;
301 if (fUseBoost && (!fUseRuleFitJF)) fTreeEveFrac = 1.0;
305 if (fTreeEveFrac<=0) {
306 Int_t nevents =
Data()->GetNTrainingEvents();
308 fTreeEveFrac =
min( 0.5, (100.0 +6.0*
sqrt(n))/n);
311 VerifyRange(
Log(),
"nTrees", fNTrees,0,100000,20);
312 VerifyRange(
Log(),
"MinImp", fMinimp,0.0,1.0,0.0);
313 VerifyRange(
Log(),
"GDTauPrec", fGDTauPrec,1e-5,5e-1);
314 VerifyRange(
Log(),
"GDTauMin", fGDTauMin,0.0,1.0);
315 VerifyRange(
Log(),
"GDTauMax", fGDTauMax,fGDTauMin,1.0);
316 VerifyRange(
Log(),
"GDPathStep", fGDPathStep,0.0,100.0,0.01);
317 VerifyRange(
Log(),
"GDErrScale", fGDErrScale,1.0,100.0,1.1);
318 VerifyRange(
Log(),
"GDPathEveFrac", fGDPathEveFrac,0.01,0.9,0.5);
319 VerifyRange(
Log(),
"GDValidEveFrac",fGDValidEveFrac,0.01,1.0-fGDPathEveFrac,1.0-fGDPathEveFrac);
320 VerifyRange(
Log(),
"fEventsMin", fMinFracNEve,0.0,1.0);
321 VerifyRange(
Log(),
"fEventsMax", fMaxFracNEve,fMinFracNEve,1.0);
323 fRuleFit.GetRuleEnsemblePtr()->SetLinQuantile(fLinQuantile);
324 fRuleFit.GetRuleFitParamsPtr()->SetGDTauRange(fGDTauMin,fGDTauMax);
325 fRuleFit.GetRuleFitParamsPtr()->SetGDTau(fGDTau);
326 fRuleFit.GetRuleFitParamsPtr()->SetGDTauPrec(fGDTauPrec);
327 fRuleFit.GetRuleFitParamsPtr()->SetGDTauScan(fGDTauScan);
328 fRuleFit.GetRuleFitParamsPtr()->SetGDPathStep(fGDPathStep);
329 fRuleFit.GetRuleFitParamsPtr()->SetGDNPathSteps(fGDNPathSteps);
330 fRuleFit.GetRuleFitParamsPtr()->SetGDErrScale(fGDErrScale);
331 fRuleFit.SetImportanceCut(fMinimp);
332 fRuleFit.SetRuleMinDist(fRuleMinDist);
339 Log() <<
kINFO <<
"--------------------------------------" <<
Endl;
340 Log() <<
kINFO <<
"Friedmans RuleFit module is selected." <<
Endl;
341 Log() <<
kINFO <<
"Only the following options are used:" <<
Endl;
350 Log() <<
kINFO <<
"--------------------------------------" <<
Endl;
361 fRuleFit.UseImportanceVisHists();
363 fRuleFit.SetMsgType(
Log().GetMinType() );
365 if (HasTrainingTree()) InitEventSample();
375 fMonitorNtuple=
new TTree(
"MonitorNtuple_RuleFit",
"RuleFit variables");
376 fMonitorNtuple->Branch(
"importance",&fNTImportance,
"importance/D");
377 fMonitorNtuple->Branch(
"support",&fNTSupport,
"support/D");
378 fMonitorNtuple->Branch(
"coefficient",&fNTCoefficient,
"coefficient/D");
379 fMonitorNtuple->Branch(
"ncuts",&fNTNcuts,
"ncuts/I");
380 fMonitorNtuple->Branch(
"nvars",&fNTNvars,
"nvars/I");
381 fMonitorNtuple->Branch(
"type",&fNTType,
"type/I");
382 fMonitorNtuple->Branch(
"ptag",&fNTPtag,
"ptag/D");
383 fMonitorNtuple->Branch(
"pss",&fNTPss,
"pss/D");
384 fMonitorNtuple->Branch(
"psb",&fNTPsb,
"psb/D");
385 fMonitorNtuple->Branch(
"pbs",&fNTPbs,
"pbs/D");
386 fMonitorNtuple->Branch(
"pbb",&fNTPbb,
"pbb/D");
387 fMonitorNtuple->Branch(
"soversb",&fNTSSB,
"soversb/D");
396 SetSignalReferenceCut( 0.0 );
400 fLinQuantile = 0.025;
403 fSepTypeS =
"GiniIndex";
404 fPruneMethodS =
"NONE";
405 fPruneStrength = 3.5;
420 if (
Data()->GetNEvents()==0)
Log() <<
kFATAL <<
"<Init> Data().TrainingTree() is zero pointer" <<
Endl;
423 for (
Int_t ievt=0; ievt<nevents; ievt++){
424 const Event * ev = GetEvent(ievt);
425 fEventSample.push_back(
new Event(*ev));
427 if (fTreeEveFrac<=0) {
429 fTreeEveFrac =
min( 0.5, (100.0 +6.0*
sqrt(n))/n);
431 if (fTreeEveFrac>1.0) fTreeEveFrac=1.0;
433 std::random_shuffle(fEventSample.begin(), fEventSample.end());
435 Log() <<
kDEBUG <<
"Set sub-sample fraction to " << fTreeEveFrac <<
Endl;
448 this->InitEventSample();
456 fRuleFit.GetRuleEnsemblePtr()->ClearRuleMap();
465 if (IsNormalised())
Log() <<
kFATAL <<
"\"Normalise\" option cannot be used with RuleFit; "
466 <<
"please remove the optoin from the configuration string, or "
467 <<
"use \"!Normalise\""
483 fRuleFit.Initialize(
this );
490 fRuleFit.FitCoefficients();
493 Log() <<
kDEBUG <<
"Computing rule and variable importance" <<
Endl;
494 fRuleFit.CalcImportance();
497 fRuleFit.GetRuleEnsemblePtr()->
Print();
500 UInt_t nrules = fRuleFit.GetRuleEnsemble().GetRulesConst().size();
502 for (
UInt_t i=0; i<nrules; i++ ) {
510 fNTPtag = fRuleFit.GetRuleEnsemble().GetRulePTag(i);
511 fNTPss = fRuleFit.GetRuleEnsemble().GetRulePSS(i);
512 fNTPsb = fRuleFit.GetRuleEnsemble().GetRulePSB(i);
513 fNTPbs = fRuleFit.GetRuleEnsemble().GetRulePBS(i);
514 fNTPbb = fRuleFit.GetRuleEnsemble().GetRulePBB(i);
516 fMonitorNtuple->Fill();
520 fRuleFit.MakeVisHists();
522 fRuleFit.MakeDebugHists();
530 fRuleFit.InitPtrs(
this );
532 UInt_t nevents =
Data()->GetNTrainingEvents();
533 std::vector<const TMVA::Event*> tmp;
534 for (
Long64_t ievt=0; ievt<nevents; ievt++) {
535 const Event *
event = GetEvent(ievt);
536 tmp.push_back(event);
538 fRuleFit.SetTrainingEvents( tmp );
550 Log() <<
kDEBUG <<
"reading model summary from rf_go.exe output" <<
Endl;
555 Log() <<
kDEBUG <<
"calculating rule and variable importance" <<
Endl;
556 fRuleFit.CalcImportance();
559 fRuleFit.GetRuleEnsemblePtr()->
Print();
561 fRuleFit.MakeVisHists();
574 fRanking =
new Ranking( GetName(),
"Importance" );
576 for (
UInt_t ivar=0; ivar<GetNvar(); ivar++) {
577 fRanking->AddRank(
Rank( GetInputLabel(ivar), fRuleFit.GetRuleEnsemble().GetVarImportance(ivar) ) );
588 fRuleFit.GetRuleEnsemble().AddXMLTo( parent );
596 fRuleFit.GetRuleEnsemblePtr()->ReadRaw( istr );
604 fRuleFit.GetRuleEnsemblePtr()->ReadFromXML( wghtnode );
613 NoErrorCalc(err, errUpper);
615 return fRuleFit.EvalEvent( *GetEvent() );
624 Log() <<
kINFO <<
"Write monitoring ntuple to file: " << BaseDir()->GetPath() <<
Endl;
625 fMonitorNtuple->
Write();
633 Int_t dp = fout.precision();
634 fout <<
" // not implemented for class: \"" << className <<
"\"" << std::endl;
635 fout <<
"};" << std::endl;
636 fout <<
"void " << className <<
"::Initialize(){}" << std::endl;
637 fout <<
"void " << className <<
"::Clear(){}" << std::endl;
638 fout <<
"double " << className <<
"::GetMvaValue__( const std::vector<double>& inputValues ) const {" << std::endl;
639 fout <<
" double rval=" << std::setprecision(10) << fRuleFit.GetRuleEnsemble().GetOffset() <<
";" << std::endl;
640 MakeClassRuleCuts(fout);
641 MakeClassLinear(fout);
642 fout <<
" return rval;" << std::endl;
643 fout <<
"}" << std::endl;
644 fout << std::setprecision(dp);
652 Int_t dp = fout.precision();
653 if (!fRuleFit.GetRuleEnsemble().DoRules()) {
654 fout <<
" //" << std::endl;
655 fout <<
" // ==> MODEL CONTAINS NO RULES <==" << std::endl;
656 fout <<
" //" << std::endl;
659 const RuleEnsemble *rens = &(fRuleFit.GetRuleEnsemble());
660 const std::vector< Rule* > *rules = &(rens->
GetRulesConst());
663 std::list< std::pair<Double_t,Int_t> > sortedRules;
664 for (
UInt_t ir=0; ir<rules->size(); ir++) {
665 sortedRules.push_back( std::pair<Double_t,Int_t>( (*rules)[ir]->GetImportance()/rens->
GetImportanceRef(),ir ) );
669 fout <<
" //" << std::endl;
670 fout <<
" // here follows all rules ordered in importance (most important first)" << std::endl;
671 fout <<
" // at the end of each line, the relative importance of the rule is given" << std::endl;
672 fout <<
" //" << std::endl;
674 for ( std::list< std::pair<double,int> >::reverse_iterator itpair = sortedRules.rbegin();
675 itpair != sortedRules.rend(); itpair++ ) {
676 UInt_t ir = itpair->second;
678 ruleCut = (*rules)[ir]->GetRuleCut();
679 if (impr<rens->GetImportanceCut()) fout <<
" //" << std::endl;
680 fout <<
" if (" << std::flush;
688 if (ic>0) fout <<
"&&" << std::flush;
690 fout <<
"(" << std::setprecision(10) << valmin << std::flush;
691 fout <<
"<inputValues[" << sel <<
"])" << std::flush;
694 if (domin) fout <<
"&&" << std::flush;
695 fout <<
"(inputValues[" << sel <<
"]" << std::flush;
696 fout <<
"<" << std::setprecision(10) << valmax <<
")" <<std::flush;
699 fout <<
") rval+=" << std::setprecision(10) << (*rules)[ir]->GetCoefficient() <<
";" << std::flush;
700 fout <<
" // importance = " <<
Form(
"%3.3f",impr) << std::endl;
702 fout << std::setprecision(dp);
710 if (!fRuleFit.GetRuleEnsemble().DoLinear()) {
711 fout <<
" //" << std::endl;
712 fout <<
" // ==> MODEL CONTAINS NO LINEAR TERMS <==" << std::endl;
713 fout <<
" //" << std::endl;
716 fout <<
" //" << std::endl;
717 fout <<
" // here follows all linear terms" << std::endl;
718 fout <<
" // at the end of each line, the relative importance of the term is given" << std::endl;
719 fout <<
" //" << std::endl;
720 const RuleEnsemble *rens = &(fRuleFit.GetRuleEnsemble());
722 for (
UInt_t il=0; il<nlin; il++) {
730 <<
"*std::min( double(" << std::setprecision(10) << rens->
GetLinDP(il)
731 <<
"), std::max( double(inputValues[" << il <<
"]), double(" << std::setprecision(10) << rens->
GetLinDM(il) <<
")));"
733 fout <<
" // importance = " <<
Form(
"%3.3f",imp) << std::endl;
751 Log() << col <<
"--- Short description:" << colres <<
Endl;
753 Log() <<
"This method uses a collection of so called rules to create a" <<
Endl;
754 Log() <<
"discriminating scoring function. Each rule consists of a series" <<
Endl;
755 Log() <<
"of cuts in parameter space. The ensemble of rules are created" <<
Endl;
756 Log() <<
"from a forest of decision trees, trained using the training data." <<
Endl;
757 Log() <<
"Each node (apart from the root) corresponds to one rule." <<
Endl;
758 Log() <<
"The scoring function is then obtained by linearly combining" <<
Endl;
759 Log() <<
"the rules. A fitting procedure is applied to find the optimum" <<
Endl;
760 Log() <<
"set of coefficients. The goal is to find a model with few rules" <<
Endl;
761 Log() <<
"but with a strong discriminating power." <<
Endl;
763 Log() << col <<
"--- Performance optimisation:" << colres <<
Endl;
765 Log() <<
"There are two important considerations to make when optimising:" <<
Endl;
767 Log() <<
" 1. Topology of the decision tree forest" << brk <<
Endl;
768 Log() <<
" 2. Fitting of the coefficients" <<
Endl;
770 Log() <<
"The maximum complexity of the rules is defined by the size of" <<
Endl;
771 Log() <<
"the trees. Large trees will yield many complex rules and capture" <<
Endl;
772 Log() <<
"higher order correlations. On the other hand, small trees will" <<
Endl;
773 Log() <<
"lead to a smaller ensemble with simple rules, only capable of" <<
Endl;
774 Log() <<
"modeling simple structures." <<
Endl;
775 Log() <<
"Several parameters exists for controlling the complexity of the" <<
Endl;
776 Log() <<
"rule ensemble." <<
Endl;
778 Log() <<
"The fitting procedure searches for a minimum using a gradient" <<
Endl;
779 Log() <<
"directed path. Apart from step size and number of steps, the" <<
Endl;
780 Log() <<
"evolution of the path is defined by a cut-off parameter, tau." <<
Endl;
781 Log() <<
"This parameter is unknown and depends on the training data." <<
Endl;
782 Log() <<
"A large value will tend to give large weights to a few rules." <<
Endl;
783 Log() <<
"Similarily, a small value will lead to a large set of rules" <<
Endl;
784 Log() <<
"with similar weights." <<
Endl;
786 Log() <<
"A final point is the model used; rules and/or linear terms." <<
Endl;
787 Log() <<
"For a given training sample, the result may improve by adding" <<
Endl;
788 Log() <<
"linear terms. If best performance is optained using only linear" <<
Endl;
789 Log() <<
"terms, it is very likely that the Fisher discriminant would be" <<
Endl;
790 Log() <<
"a better choice. Ideally the fitting procedure should be able to" <<
Endl;
791 Log() <<
"make this choice by giving appropriate weights for either terms." <<
Endl;
793 Log() << col <<
"--- Performance tuning via configuration options:" << colres <<
Endl;
795 Log() <<
"I. TUNING OF RULE ENSEMBLE:" <<
Endl;
797 Log() <<
" " << col <<
"ForestType " << colres
798 <<
": Recomended is to use the default \"AdaBoost\"." << brk <<
Endl;
799 Log() <<
" " << col <<
"nTrees " << colres
800 <<
": More trees leads to more rules but also slow" <<
Endl;
801 Log() <<
" performance. With too few trees the risk is" <<
Endl;
802 Log() <<
" that the rule ensemble becomes too simple." << brk <<
Endl;
803 Log() <<
" " << col <<
"fEventsMin " << colres << brk <<
Endl;
804 Log() <<
" " << col <<
"fEventsMax " << colres
805 <<
": With a lower min, more large trees will be generated" <<
Endl;
806 Log() <<
" leading to more complex rules." <<
Endl;
807 Log() <<
" With a higher max, more small trees will be" <<
Endl;
808 Log() <<
" generated leading to more simple rules." <<
Endl;
809 Log() <<
" By changing this range, the average complexity" <<
Endl;
810 Log() <<
" of the rule ensemble can be controlled." << brk <<
Endl;
811 Log() <<
" " << col <<
"RuleMinDist " << colres
812 <<
": By increasing the minimum distance between" <<
Endl;
813 Log() <<
" rules, fewer and more diverse rules will remain." <<
Endl;
814 Log() <<
" Initially it is a good idea to keep this small" <<
Endl;
815 Log() <<
" or zero and let the fitting do the selection of" <<
Endl;
816 Log() <<
" rules. In order to reduce the ensemble size," <<
Endl;
817 Log() <<
" the value can then be increased." <<
Endl;
820 Log() <<
"II. TUNING OF THE FITTING:" <<
Endl;
822 Log() <<
" " << col <<
"GDPathEveFrac " << colres
823 <<
": fraction of events in path evaluation" <<
Endl;
824 Log() <<
" Increasing this fraction will improve the path" <<
Endl;
825 Log() <<
" finding. However, a too high value will give few" <<
Endl;
826 Log() <<
" unique events available for error estimation." <<
Endl;
827 Log() <<
" It is recomended to usethe default = 0.5." << brk <<
Endl;
828 Log() <<
" " << col <<
"GDTau " << colres
829 <<
": cutoff parameter tau" <<
Endl;
830 Log() <<
" By default this value is set to -1.0." <<
Endl;
832 Log() <<
" This means that the cut off parameter is" <<
Endl;
833 Log() <<
" automatically estimated. In most cases" <<
Endl;
834 Log() <<
" this should be fine. However, you may want" <<
Endl;
835 Log() <<
" to fix this value if you already know it" <<
Endl;
836 Log() <<
" and want to reduce on training time." << brk <<
Endl;
837 Log() <<
" " << col <<
"GDTauPrec " << colres
838 <<
": precision of estimated tau" <<
Endl;
839 Log() <<
" Increase this precision to find a more" <<
Endl;
840 Log() <<
" optimum cut-off parameter." << brk <<
Endl;
841 Log() <<
" " << col <<
"GDNStep " << colres
842 <<
": number of steps in path search" <<
Endl;
843 Log() <<
" If the number of steps is too small, then" <<
Endl;
844 Log() <<
" the program will give a warning message." <<
Endl;
846 Log() <<
"III. WARNING MESSAGES" <<
Endl;
848 Log() << col <<
"Risk(i+1)>=Risk(i) in path" << colres << brk <<
Endl;
849 Log() << col <<
"Chaotic behaviour of risk evolution." << colres <<
Endl;
851 Log() <<
" The error rate was still decreasing at the end" <<
Endl;
852 Log() <<
" By construction the Risk should always decrease." <<
Endl;
853 Log() <<
" However, if the training sample is too small or" <<
Endl;
854 Log() <<
" the model is overtrained, such warnings can" <<
Endl;
856 Log() <<
" The warnings can safely be ignored if only a" <<
Endl;
857 Log() <<
" few (<3) occur. If more warnings are generated," <<
Endl;
858 Log() <<
" the fitting fails." <<
Endl;
859 Log() <<
" A remedy may be to increase the value" << brk <<
Endl;
861 << col <<
"GDValidEveFrac" << colres
862 <<
" to 1.0 (or a larger value)." << brk <<
Endl;
863 Log() <<
" In addition, if "
864 << col <<
"GDPathEveFrac" << colres
865 <<
" is too high" <<
Endl;
866 Log() <<
" the same warnings may occur since the events" <<
Endl;
867 Log() <<
" used for error estimation are also used for" <<
Endl;
868 Log() <<
" path estimation." <<
Endl;
869 Log() <<
" Another possibility is to modify the model - " <<
Endl;
870 Log() <<
" See above on tuning the rule ensemble." <<
Endl;
872 Log() << col <<
"The error rate was still decreasing at the end of the path"
874 Log() <<
" Too few steps in path! Increase "
875 << col <<
"GDNSteps" << colres <<
"." <<
Endl;
877 Log() << col <<
"Reached minimum early in the search" << colres <<
Endl;
879 Log() <<
" Minimum was found early in the fitting. This" <<
Endl;
880 Log() <<
" may indicate that the used step size "
881 << col <<
"GDStep" << colres <<
"." <<
Endl;
882 Log() <<
" was too large. Reduce it and rerun." <<
Endl;
883 Log() <<
" If the results still are not OK, modify the" <<
Endl;
884 Log() <<
" model either by modifying the rule ensemble" <<
Endl;
885 Log() <<
" or add/remove linear terms" <<
Endl;
void DeclareOptions()
define the options (their key words) that can be set in the option string know options.
virtual Int_t Write(const char *name=0, Int_t option=0, Int_t bufsize=0)
Write this object to the current directory.
void Init(void)
default initialization
void WelcomeMessage()
welcome message
void ReadWeightsFromXML(void *wghtnode)
read rules from XML node
static Vc_ALWAYS_INLINE int_v min(const int_v &x, const int_v &y)
MsgLogger & Endl(MsgLogger &ml)
void ReadWeightsFromStream(std::istream &istr)
read rules from an std::istream
const std::vector< Double_t > & GetLinCoefficients() const
Double_t GetLinDP(int i) const
void InitMonitorNtuple()
initialize the monitoring ntuple
void WriteMonitoringHistosToFile(void) const
write special monitoring histograms to file (here ntuple)
Bool_t IsSignalRule() const
Double_t GetCutMax(Int_t is) const
const Ranking * CreateRanking()
computes ranking of input variables
void TrainJFRuleFit()
training of rules using Jerome Friedmans implementation
Double_t GetImportanceRef() const
UInt_t GetSelector(Int_t is) const
Double_t GetMvaValue(Double_t *err=0, Double_t *errUpper=0)
returns MVA value for given event
const std::vector< Double_t > & GetLinImportance() const
Char_t GetCutDoMax(Int_t is) const
Double_t GetCutMin(Int_t is) const
void ProcessOptions()
process the options specified by the user
void MakeClassLinear(std::ostream &) const
print out the linear terms
Bool_t IsLinTermOK(int i) const
std::vector< std::vector< double > > Data
Bool_t ReadModelSum()
read model from rulefit.sum
void TrainTMVARuleFit()
training of rules using TMVA implementation
const RuleCut * GetRuleCut() const
virtual void Print(Option_t *option="") const
This method must be overridden when a class wants to print itself.
Double_t GetLinDM(int i) const
void AddWeightsXMLTo(void *parent) const
add the rules to XML node
const RuleEnsemble * GetRuleEnsemble() const
char * Form(const char *fmt,...)
UInt_t GetNcuts() const
get number of cuts
const std::vector< TMVA::Rule * > & GetRulesConst() const
void GetHelpMessage() const
get help message text
UInt_t GetNLinear() const
Describe directory structure in memory.
Double_t GetRelImportance() const
Char_t GetCutDoMin(Int_t is) const
Double_t GetCoefficient() const
#define REGISTER_METHOD(CLASS)
for example
ClassImp(TMVA::MethodRuleFit) TMVA
standard constructor
Double_t GetSupport() const
Bool_t WriteOptionsReference() const
void MakeClassSpecific(std::ostream &, const TString &) const
write specific classifier response
A TTree object has a header with a name and a title.
const std::vector< Double_t > & GetLinNorm() const
virtual Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t)
RuleFit can handle classification with 2 classes.
virtual ~MethodRuleFit(void)
destructor
double norm(double *x, double *p)
MethodRuleFit(const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption="", TDirectory *theTargetDir=0)
void InitEventSample(void)
write all Events from the Tree into a vector of Events, that are more easily manipulated.
void MakeClassRuleCuts(std::ostream &) const
print out the rule cuts