ROOT  6.06/09
Reference Guide
Public Types | Public Member Functions | Static Public Member Functions | Private Member Functions | Private Attributes | Static Private Attributes | List of all members
TMVA::DecisionTree Class Reference

Definition at line 73 of file DecisionTree.h.

Public Types

enum  EPruneMethod { kExpectedErrorPruning =0, kCostComplexityPruning, kNoPruning }
 
typedef std::vector< TMVA::Event * > EventList
 
typedef std::vector< const TMVA::Event * > EventConstList
 

Public Member Functions

 DecisionTree (void)
 
 DecisionTree (SeparationBase *sepType, Float_t minSize, Int_t nCuts, DataSetInfo *=NULL, UInt_t cls=0, Bool_t randomisedTree=kFALSE, Int_t useNvars=0, Bool_t usePoissonNvars=kFALSE, UInt_t nMaxDepth=9999999, Int_t iSeed=fgRandomSeed, Float_t purityLimit=0.5, Int_t treeID=0)
 constructor specifying the separation type, the min number of events in a no that is still subjected to further splitting, the number of bins in the grid used in applying the cut for the node splitting. More...
 
 DecisionTree (const DecisionTree &d)
 copy constructor that creates a true copy, i.e. More...
 
virtual ~DecisionTree (void)
 destructor More...
 
virtual DecisionTreeNodeGetRoot () const
 
virtual DecisionTreeNodeCreateNode (UInt_t) const
 
virtual BinaryTreeCreateTree () const
 
virtual const char * ClassName () const
 
UInt_t BuildTree (const EventConstList &eventSample, DecisionTreeNode *node=NULL)
 building the decision tree by recursively calling the splitting of one (root-) node into two daughter nodes (returns the number of nodes) More...
 
Double_t TrainNode (const EventConstList &eventSample, DecisionTreeNode *node)
 
Double_t TrainNodeFast (const EventConstList &eventSample, DecisionTreeNode *node)
 Decide how to split a node using one of the variables that gives the best separation of signal/background. More...
 
Double_t TrainNodeFull (const EventConstList &eventSample, DecisionTreeNode *node)
 
void GetRandomisedVariables (Bool_t *useVariable, UInt_t *variableMap, UInt_t &nVars)
 
std::vector< Double_tGetFisherCoefficients (const EventConstList &eventSample, UInt_t nFisherVars, UInt_t *mapVarInFisher)
 calculate the fisher coefficients for the event sample and the variables used More...
 
void FillTree (const EventList &eventSample)
 
void FillEvent (const TMVA::Event &event, TMVA::DecisionTreeNode *node)
 fill the existing the decision tree structure by filling event in from the top node and see where they happen to end up More...
 
Double_t CheckEvent (const TMVA::Event *, Bool_t UseYesNoLeaf=kFALSE) const
 the event e is put into the decision tree (starting at the root node) and the output is NodeType (signal) or (background) of the final node (basket) in which the given events ends up. More...
 
TMVA::DecisionTreeNodeGetEventNode (const TMVA::Event &e) const
 get the pointer to the leaf node where a particular event ends up in... More...
 
std::vector< Double_tGetVariableImportance ()
 Return the relative variable importance, normalized to all variables together having the importance 1. More...
 
Double_t GetVariableImportance (UInt_t ivar)
 returns the relative improtance of variable ivar More...
 
void ClearTree ()
 clear the tree nodes (their S/N, Nevents etc), just keep the structure of the tree More...
 
void SetPruneMethod (EPruneMethod m=kCostComplexityPruning)
 
Double_t PruneTree (const EventConstList *validationSample=NULL)
 prune (get rid of internal nodes) the Decision tree to avoid overtraining serveral different pruning methods can be applied as selected by the variable "fPruneMethod". More...
 
void SetPruneStrength (Double_t p)
 
Double_t GetPruneStrength () const
 
void ApplyValidationSample (const EventConstList *validationSample) const
 run the validation sample through the (pruned) tree and fill in the nodes the variables NSValidation and NBValidadtion (i.e. More...
 
Double_t TestPrunedTreeQuality (const DecisionTreeNode *dt=NULL, Int_t mode=0) const
 return the misclassification rate of a pruned tree a "pruned tree" may have set the variable "IsTerminal" to "arbitrary" at any node, hence this tree quality testing will stop there, hence test the pruned tree (while the full tree is still in place for normal/later use) More...
 
void CheckEventWithPrunedTree (const TMVA::Event *) const
 pass a single validation event throught a pruned decision tree on the way down the tree, fill in all the "intermediate" information that would normally be there from training. More...
 
Double_t GetSumWeights (const EventConstList *validationSample) const
 calculate the normalization factor for a pruning validation sample More...
 
void SetNodePurityLimit (Double_t p)
 
Double_t GetNodePurityLimit () const
 
void DescendTree (Node *n=NULL)
 descend a tree to find all its leaf nodes More...
 
void SetParentTreeInNodes (Node *n=NULL)
 descend a tree to find all its leaf nodes, fill max depth reached in the tree at the same time. More...
 
NodeGetNode (ULong_t sequence, UInt_t depth)
 retrieve node from the tree. More...
 
UInt_t CleanTree (DecisionTreeNode *node=NULL)
 remove those last splits that result in two leaf nodes that are both of the type (i.e. More...
 
void PruneNode (TMVA::DecisionTreeNode *node)
 prune away the subtree below the node More...
 
void PruneNodeInPlace (TMVA::DecisionTreeNode *node)
 prune a node temporaily (without actually deleting its decendants which allows testing the pruned tree quality for many different pruning stages without "touching" the tree. More...
 
Int_t GetNNodesBeforePruning ()
 
UInt_t CountLeafNodes (TMVA::Node *n=NULL)
 return the number of terminal nodes in the sub-tree below Node n More...
 
void SetTreeID (Int_t treeID)
 
Int_t GetTreeID ()
 
Bool_t DoRegression () const
 
void SetAnalysisType (Types::EAnalysisType t)
 
Types::EAnalysisType GetAnalysisType (void)
 
void SetUseFisherCuts (Bool_t t=kTRUE)
 
void SetMinLinCorrForFisher (Double_t min)
 
void SetUseExclusiveVars (Bool_t t=kTRUE)
 
void SetNVars (Int_t n)
 
- Public Member Functions inherited from TMVA::BinaryTree
 BinaryTree (void)
 
virtual ~BinaryTree ()
 destructor (deletes the nodes and "events" if owned by the tree More...
 
void SetRoot (Node *r)
 
UInt_t GetNNodes () const
 
UInt_t CountNodes (Node *n=NULL)
 return the number of nodes in the tree. (make a new count –> takes time) More...
 
UInt_t GetTotalTreeDepth () const
 
void SetTotalTreeDepth (Int_t depth)
 
void SetTotalTreeDepth (Node *n=NULL)
 descend a tree to find all its leaf nodes, fill max depth reached in the tree at the same time. More...
 
NodeGetLeftDaughter (Node *n)
 get left daughter node current node "n" More...
 
NodeGetRightDaughter (Node *n)
 get right daughter node current node "n" More...
 
virtual void Print (std::ostream &os) const
 recursively print the tree More...
 
virtual void Read (std::istream &istr, UInt_t tmva_Version_Code=TMVA_VERSION_CODE)
 Read the binary tree from an input stream. More...
 
virtual voidAddXMLTo (void *parent) const
 add attributes to XML More...
 
virtual void ReadXML (void *node, UInt_t tmva_Version_Code=TMVA_VERSION_CODE)
 read attributes from XML More...
 

Static Public Member Functions

static DecisionTreeCreateFromXML (void *node, UInt_t tmva_Version_Code=TMVA_VERSION_CODE)
 re-create a new tree (decision tree or search tree) from XML More...
 

Private Member Functions

Double_t SamplePurity (EventList eventSample)
 calculates the purity S/(S+B) of a given event sample More...
 

Private Attributes

UInt_t fNvars
 
Int_t fNCuts
 
Bool_t fUseFisherCuts
 
Double_t fMinLinCorrForFisher
 
Bool_t fUseExclusiveVars
 
SeparationBasefSepType
 
RegressionVariancefRegType
 
Double_t fMinSize
 
Double_t fMinNodeSize
 
Double_t fMinSepGain
 
Bool_t fUseSearchTree
 
Double_t fPruneStrength
 
EPruneMethod fPruneMethod
 
Int_t fNNodesBeforePruning
 
Double_t fNodePurityLimit
 
Bool_t fRandomisedTree
 
Int_t fUseNvars
 
Bool_t fUsePoissonNvars
 
TRandom3fMyTrandom
 
std::vector< Double_tfVariableImportance
 
UInt_t fMaxDepth
 
UInt_t fSigClass
 
Int_t fTreeID
 
Types::EAnalysisType fAnalysisType
 
DataSetInfofDataSetInfo
 

Static Private Attributes

static const Int_t fgRandomSeed = 0
 
static const Int_t fgDebugLevel = 0
 

Additional Inherited Members

- Protected Member Functions inherited from TMVA::BinaryTree
void DeleteNode (Node *)
 protected, recursive, function used by the class destructor and when Pruning More...
 
MsgLoggerLog () const
 
- Protected Attributes inherited from TMVA::BinaryTree
NodefRoot
 
UInt_t fNNodes
 
UInt_t fDepth
 

#include <TMVA/DecisionTree.h>

+ Inheritance diagram for TMVA::DecisionTree:
+ Collaboration diagram for TMVA::DecisionTree:

Member Typedef Documentation

typedef std::vector<const TMVA::Event*> TMVA::DecisionTree::EventConstList

Definition at line 82 of file DecisionTree.h.

Definition at line 81 of file DecisionTree.h.

Member Enumeration Documentation

Enumerator
kExpectedErrorPruning 
kCostComplexityPruning 
kNoPruning 

Definition at line 147 of file DecisionTree.h.

Constructor & Destructor Documentation

TMVA::DecisionTree::DecisionTree ( void  )

Referenced by CreateTree().

TMVA::DecisionTree::DecisionTree ( TMVA::SeparationBase sepType,
Float_t  minSize,
Int_t  nCuts,
DataSetInfo dataInfo = NULL,
UInt_t  cls = 0,
Bool_t  randomisedTree = kFALSE,
Int_t  useNvars = 0,
Bool_t  usePoissonNvars = kFALSE,
UInt_t  nMaxDepth = 9999999,
Int_t  iSeed = fgRandomSeed,
Float_t  purityLimit = 0.5,
Int_t  treeID = 0 
)

constructor specifying the separation type, the min number of events in a no that is still subjected to further splitting, the number of bins in the grid used in applying the cut for the node splitting.

Definition at line 133 of file DecisionTree.cxx.

TMVA::DecisionTree::DecisionTree ( const DecisionTree d)

copy constructor that creates a true copy, i.e.

a completely independent tree the node copy will recursively copy all the nodes

Definition at line 183 of file DecisionTree.cxx.

TMVA::DecisionTree::~DecisionTree ( void  )
virtual

destructor

Definition at line 218 of file DecisionTree.cxx.

Member Function Documentation

void TMVA::DecisionTree::ApplyValidationSample ( const EventConstList validationSample) const

run the validation sample through the (pruned) tree and fill in the nodes the variables NSValidation and NBValidadtion (i.e.

how many of the Signal and Background events from the validation sample. This is then later used when asking for the "tree quality" ..

Definition at line 671 of file DecisionTree.cxx.

Referenced by TMVA::CostComplexityPruneTool::CalculatePruningInfo().

UInt_t TMVA::DecisionTree::BuildTree ( const EventConstList eventSample,
DecisionTreeNode node = NULL 
)

building the decision tree by recursively calling the splitting of one (root-) node into two daughter nodes (returns the number of nodes)

Definition at line 277 of file DecisionTree.cxx.

Referenced by TMVA::RuleFit::BuildTree().

Double_t TMVA::DecisionTree::CheckEvent ( const TMVA::Event e,
Bool_t  UseYesNoLeaf = kFALSE 
) const

the event e is put into the decision tree (starting at the root node) and the output is NodeType (signal) or (background) of the final node (basket) in which the given events ends up.

I.e. the result of the classification if the event for this decision tree.

Definition at line 1693 of file DecisionTree.cxx.

Referenced by TMVA::MethodBDT::AdaBoost(), TMVA::MethodBDT::AdaBoostR2(), TMVA::MethodBDT::AdaCost(), TMVA::RuleFit::Boost(), TMVA::MethodDT::TestTreeQuality(), and TMVA::MethodBDT::TestTreeQuality().

void TMVA::DecisionTree::CheckEventWithPrunedTree ( const TMVA::Event e) const

pass a single validation event throught a pruned decision tree on the way down the tree, fill in all the "intermediate" information that would normally be there from training.

Definition at line 727 of file DecisionTree.cxx.

virtual const char* TMVA::DecisionTree::ClassName ( ) const
inlinevirtual

Implements TMVA::BinaryTree.

Definition at line 106 of file DecisionTree.h.

UInt_t TMVA::DecisionTree::CleanTree ( DecisionTreeNode node = NULL)

remove those last splits that result in two leaf nodes that are both of the type (i.e.

both signal or both background) this of course is only a reasonable thing to do when you use "YesOrNo" leafs, while it might loose s.th. if you use the purity information in the nodes. –> hence I don't call it automatically in the tree building

Definition at line 575 of file DecisionTree.cxx.

void TMVA::DecisionTree::ClearTree ( )

clear the tree nodes (their S/N, Nevents etc), just keep the structure of the tree

Definition at line 561 of file DecisionTree.cxx.

UInt_t TMVA::DecisionTree::CountLeafNodes ( TMVA::Node n = NULL)

return the number of terminal nodes in the sub-tree below Node n

Definition at line 775 of file DecisionTree.cxx.

TMVA::DecisionTree * TMVA::DecisionTree::CreateFromXML ( void node,
UInt_t  tmva_Version_Code = TMVA_VERSION_CODE 
)
static

re-create a new tree (decision tree or search tree) from XML

Definition at line 263 of file DecisionTree.cxx.

Referenced by TMVA::MethodBDT::ReadWeightsFromXML().

virtual DecisionTreeNode* TMVA::DecisionTree::CreateNode ( UInt_t  ) const
inlinevirtual

Implements TMVA::BinaryTree.

Definition at line 103 of file DecisionTree.h.

virtual BinaryTree* TMVA::DecisionTree::CreateTree ( ) const
inlinevirtual

Implements TMVA::BinaryTree.

Definition at line 104 of file DecisionTree.h.

void TMVA::DecisionTree::DescendTree ( Node n = NULL)

descend a tree to find all its leaf nodes

Definition at line 804 of file DecisionTree.cxx.

Bool_t TMVA::DecisionTree::DoRegression ( ) const
inline

Definition at line 196 of file DecisionTree.h.

void TMVA::DecisionTree::FillEvent ( const TMVA::Event event,
TMVA::DecisionTreeNode node 
)

fill the existing the decision tree structure by filling event in from the top node and see where they happen to end up

Definition at line 527 of file DecisionTree.cxx.

void TMVA::DecisionTree::FillTree ( const EventList eventSample)

Definition at line 513 of file DecisionTree.cxx.

Types::EAnalysisType TMVA::DecisionTree::GetAnalysisType ( void  )
inline

Definition at line 198 of file DecisionTree.h.

TMVA::DecisionTreeNode * TMVA::DecisionTree::GetEventNode ( const TMVA::Event e) const

get the pointer to the leaf node where a particular event ends up in...

(used in gradient boosting)

Definition at line 1676 of file DecisionTree.cxx.

Referenced by TMVA::MethodBDT::GradBoost(), and TMVA::MethodBDT::GradBoostRegression().

std::vector< Double_t > TMVA::DecisionTree::GetFisherCoefficients ( const EventConstList eventSample,
UInt_t  nFisherVars,
UInt_t mapVarInFisher 
)

calculate the fisher coefficients for the event sample and the variables used

Definition at line 1350 of file DecisionTree.cxx.

Int_t TMVA::DecisionTree::GetNNodesBeforePruning ( )
inline

Definition at line 188 of file DecisionTree.h.

Referenced by TMVA::MethodDT::GetNNodesBeforePruning().

TMVA::Node * TMVA::DecisionTree::GetNode ( ULong_t  sequence,
UInt_t  depth 
)

retrieve node from the tree.

Its position (up to a maximal tree depth of 64) is coded as a sequence of left-right moves starting from the root, coded as 0-1 bit patterns stored in the "long-integer" (i.e. 0:left ; 1:right

Definition at line 875 of file DecisionTree.cxx.

Double_t TMVA::DecisionTree::GetNodePurityLimit ( ) const
inline
Double_t TMVA::DecisionTree::GetPruneStrength ( ) const
inline

Definition at line 155 of file DecisionTree.h.

void TMVA::DecisionTree::GetRandomisedVariables ( Bool_t useVariable,
UInt_t variableMap,
UInt_t nVars 
)

Definition at line 892 of file DecisionTree.cxx.

virtual DecisionTreeNode* TMVA::DecisionTree::GetRoot ( ) const
inlinevirtual
Double_t TMVA::DecisionTree::GetSumWeights ( const EventConstList validationSample) const

calculate the normalization factor for a pruning validation sample

Definition at line 760 of file DecisionTree.cxx.

Referenced by TMVA::CostComplexityPruneTool::CalculatePruningInfo().

Int_t TMVA::DecisionTree::GetTreeID ( )
inline
vector< Double_t > TMVA::DecisionTree::GetVariableImportance ( )

Return the relative variable importance, normalized to all variables together having the importance 1.

The importance in evaluated as the total separation-gain that this variable had in the decision trees (weighted by the number of events)

Definition at line 1746 of file DecisionTree.cxx.

Double_t TMVA::DecisionTree::GetVariableImportance ( UInt_t  ivar)

returns the relative improtance of variable ivar

Definition at line 1767 of file DecisionTree.cxx.

void TMVA::DecisionTree::PruneNode ( TMVA::DecisionTreeNode node)

prune away the subtree below the node

Definition at line 838 of file DecisionTree.cxx.

void TMVA::DecisionTree::PruneNodeInPlace ( TMVA::DecisionTreeNode node)

prune a node temporaily (without actually deleting its decendants which allows testing the pruned tree quality for many different pruning stages without "touching" the tree.

Definition at line 861 of file DecisionTree.cxx.

Referenced by TMVA::CostComplexityPruneTool::Optimize().

Double_t TMVA::DecisionTree::PruneTree ( const EventConstList validationSample = NULL)

prune (get rid of internal nodes) the Decision tree to avoid overtraining serveral different pruning methods can be applied as selected by the variable "fPruneMethod".

Definition at line 602 of file DecisionTree.cxx.

Referenced by TMVA::RuleFit::BuildTree().

Double_t TMVA::DecisionTree::SamplePurity ( EventList  eventSample)
private

calculates the purity S/(S+B) of a given event sample

Definition at line 1723 of file DecisionTree.cxx.

void TMVA::DecisionTree::SetAnalysisType ( Types::EAnalysisType  t)
inline

Definition at line 197 of file DecisionTree.h.

void TMVA::DecisionTree::SetMinLinCorrForFisher ( Double_t  min)
inline

Definition at line 200 of file DecisionTree.h.

void TMVA::DecisionTree::SetNodePurityLimit ( Double_t  p)
inline

Definition at line 169 of file DecisionTree.h.

void TMVA::DecisionTree::SetNVars ( Int_t  n)
inline

Definition at line 202 of file DecisionTree.h.

Referenced by TMVA::RuleFit::MakeForest().

void TMVA::DecisionTree::SetParentTreeInNodes ( Node n = NULL)

descend a tree to find all its leaf nodes, fill max depth reached in the tree at the same time.

Definition at line 230 of file DecisionTree.cxx.

Referenced by DecisionTree().

void TMVA::DecisionTree::SetPruneMethod ( EPruneMethod  m = kCostComplexityPruning)
inline

Definition at line 148 of file DecisionTree.h.

Referenced by TMVA::RuleFit::BuildTree().

void TMVA::DecisionTree::SetPruneStrength ( Double_t  p)
inline

Definition at line 154 of file DecisionTree.h.

Referenced by TMVA::RuleFit::BuildTree().

void TMVA::DecisionTree::SetTreeID ( Int_t  treeID)
inline

Definition at line 193 of file DecisionTree.h.

void TMVA::DecisionTree::SetUseExclusiveVars ( Bool_t  t = kTRUE)
inline

Definition at line 201 of file DecisionTree.h.

void TMVA::DecisionTree::SetUseFisherCuts ( Bool_t  t = kTRUE)
inline

Definition at line 199 of file DecisionTree.h.

Double_t TMVA::DecisionTree::TestPrunedTreeQuality ( const DecisionTreeNode dt = NULL,
Int_t  mode = 0 
) const

return the misclassification rate of a pruned tree a "pruned tree" may have set the variable "IsTerminal" to "arbitrary" at any node, hence this tree quality testing will stop there, hence test the pruned tree (while the full tree is still in place for normal/later use)

Definition at line 685 of file DecisionTree.cxx.

Referenced by TMVA::CostComplexityPruneTool::CalculatePruningInfo(), and TMVA::CostComplexityPruneTool::Optimize().

Double_t TMVA::DecisionTree::TrainNode ( const EventConstList eventSample,
DecisionTreeNode node 
)
inline

Definition at line 116 of file DecisionTree.h.

Double_t TMVA::DecisionTree::TrainNodeFast ( const EventConstList eventSample,
TMVA::DecisionTreeNode node 
)

Decide how to split a node using one of the variables that gives the best separation of signal/background.

In order to do this, for each variable a scan of the different cut values in a grid (grid = fNCuts) is performed and the resulting separation gains are compared. in addition to the individual variables, one can also ask for a fisher discriminant being built out of (some) of the variables and used as a possible multivariate split.

Definition at line 925 of file DecisionTree.cxx.

Referenced by TrainNode().

Double_t TMVA::DecisionTree::TrainNodeFull ( const EventConstList eventSample,
TMVA::DecisionTreeNode node 
)

Definition at line 1542 of file DecisionTree.cxx.

Member Data Documentation

Types::EAnalysisType TMVA::DecisionTree::fAnalysisType
private

Definition at line 248 of file DecisionTree.h.

Referenced by DecisionTree(), DoRegression(), GetAnalysisType(), and SetAnalysisType().

DataSetInfo* TMVA::DecisionTree::fDataSetInfo
private

Definition at line 250 of file DecisionTree.h.

const Int_t TMVA::DecisionTree::fgDebugLevel = 0
staticprivate

Definition at line 245 of file DecisionTree.h.

const Int_t TMVA::DecisionTree::fgRandomSeed = 0
staticprivate

Definition at line 77 of file DecisionTree.h.

UInt_t TMVA::DecisionTree::fMaxDepth
private

Definition at line 243 of file DecisionTree.h.

Double_t TMVA::DecisionTree::fMinLinCorrForFisher
private

Definition at line 217 of file DecisionTree.h.

Referenced by SetMinLinCorrForFisher().

Double_t TMVA::DecisionTree::fMinNodeSize
private

Definition at line 224 of file DecisionTree.h.

Double_t TMVA::DecisionTree::fMinSepGain
private

Definition at line 225 of file DecisionTree.h.

Double_t TMVA::DecisionTree::fMinSize
private

Definition at line 223 of file DecisionTree.h.

TRandom3* TMVA::DecisionTree::fMyTrandom
private

Definition at line 239 of file DecisionTree.h.

Int_t TMVA::DecisionTree::fNCuts
private

Definition at line 215 of file DecisionTree.h.

Referenced by DecisionTree().

Int_t TMVA::DecisionTree::fNNodesBeforePruning
private

Definition at line 231 of file DecisionTree.h.

Referenced by GetNNodesBeforePruning().

Double_t TMVA::DecisionTree::fNodePurityLimit
private

Definition at line 233 of file DecisionTree.h.

Referenced by GetNodePurityLimit(), and SetNodePurityLimit().

UInt_t TMVA::DecisionTree::fNvars
private

Definition at line 214 of file DecisionTree.h.

Referenced by SetNVars().

EPruneMethod TMVA::DecisionTree::fPruneMethod
private

Definition at line 230 of file DecisionTree.h.

Referenced by SetPruneMethod().

Double_t TMVA::DecisionTree::fPruneStrength
private

Definition at line 228 of file DecisionTree.h.

Referenced by GetPruneStrength(), and SetPruneStrength().

Bool_t TMVA::DecisionTree::fRandomisedTree
private

Definition at line 235 of file DecisionTree.h.

RegressionVariance* TMVA::DecisionTree::fRegType
private

Definition at line 221 of file DecisionTree.h.

Referenced by DecisionTree().

SeparationBase* TMVA::DecisionTree::fSepType
private

Definition at line 220 of file DecisionTree.h.

UInt_t TMVA::DecisionTree::fSigClass
private

Definition at line 244 of file DecisionTree.h.

Int_t TMVA::DecisionTree::fTreeID
private

Definition at line 246 of file DecisionTree.h.

Referenced by GetTreeID(), and SetTreeID().

Bool_t TMVA::DecisionTree::fUseExclusiveVars
private

Definition at line 218 of file DecisionTree.h.

Referenced by SetUseExclusiveVars().

Bool_t TMVA::DecisionTree::fUseFisherCuts
private

Definition at line 216 of file DecisionTree.h.

Referenced by SetUseFisherCuts().

Int_t TMVA::DecisionTree::fUseNvars
private

Definition at line 236 of file DecisionTree.h.

Bool_t TMVA::DecisionTree::fUsePoissonNvars
private

Definition at line 237 of file DecisionTree.h.

Bool_t TMVA::DecisionTree::fUseSearchTree
private

Definition at line 227 of file DecisionTree.h.

std::vector< Double_t > TMVA::DecisionTree::fVariableImportance
private

Definition at line 241 of file DecisionTree.h.


The documentation for this class was generated from the following files: