GSLNLSMinimizer class for Non Linear Least Square fitting It Uses the Levemberg-Marquardt algorithm from GSL Non Linear Least Square fitting.
Definition at line 60 of file GSLNLSMinimizer.h.
Public Member Functions | |
GSLNLSMinimizer (const char *=nullptr) | |
Constructor from name. | |
GSLNLSMinimizer (int type) | |
Constructor from a type. | |
~GSLNLSMinimizer () override | |
Destructor (no operations) | |
double | CovMatrix (unsigned int, unsigned int) const override |
return covariance matrices elements if the variable is fixed the matrix is zero The ordering of the variables is the same as in errors | |
int | CovMatrixStatus () const override |
return covariance matrix status | |
double | Edm () const override |
return expected distance reached from the minimum | |
const double * | Errors () const override |
return errors at the minimum | |
const double * | MinGradient () const override |
return pointer to gradient values at the minimum | |
bool | Minimize () override |
method to perform the minimization | |
unsigned int | NCalls () const override |
number of function calls to reach the minimum | |
bool | ProvidesError () const override |
number of free variables (real dimension of the problem) this is <= Function().NDim() which is the total | |
void | SetFunction (const ROOT::Math::IMultiGenFunction &func) override |
set the function to minimize | |
![]() | |
BasicMinimizer () | |
Default constructor. | |
~BasicMinimizer () override | |
Destructor. | |
bool | FixVariable (unsigned int ivar) override |
fix an existing variable | |
bool | GetVariableSettings (unsigned int ivar, ROOT::Fit::ParameterSettings &varObj) const override |
get variable settings in a variable object (like ROOT::Fit::ParamsSettings) | |
const ROOT::Math::IMultiGradFunction * | GradObjFunction () const |
return pointer to used gradient object function (NULL if gradient is not supported) | |
bool | IsFixedVariable (unsigned int ivar) const override |
query if an existing variable is fixed (i.e. | |
double | MinValue () const override |
return minimum function value | |
unsigned int | NDim () const override |
number of dimensions | |
unsigned int | NFree () const override |
number of free variables (real dimension of the problem) | |
virtual unsigned int | NPar () const |
total number of parameter defined | |
const ROOT::Math::IMultiGenFunction * | ObjFunction () const |
return pointer to used objective function | |
void | PrintResult () const |
print result of minimization | |
bool | ReleaseVariable (unsigned int ivar) override |
release an existing variable | |
bool | SetFixedVariable (unsigned int, const std::string &, double) override |
set fixed variable (override if minimizer supports them ) | |
bool | SetLimitedVariable (unsigned int ivar, const std::string &name, double val, double step, double, double) override |
set upper/lower limited variable (override if minimizer supports them ) | |
bool | SetLowerLimitedVariable (unsigned int ivar, const std::string &name, double val, double step, double lower) override |
set lower limit variable (override if minimizer supports them ) | |
bool | SetUpperLimitedVariable (unsigned int ivar, const std::string &name, double val, double step, double upper) override |
set upper limit variable (override if minimizer supports them ) | |
bool | SetVariable (unsigned int ivar, const std::string &name, double val, double step) override |
set free variable | |
bool | SetVariableLimits (unsigned int ivar, double lower, double upper) override |
set the limits of an already existing variable | |
bool | SetVariableLowerLimit (unsigned int ivar, double lower) override |
set the lower-limit of an already existing variable | |
bool | SetVariableStepSize (unsigned int ivar, double step) override |
set the step size of an already existing variable | |
bool | SetVariableUpperLimit (unsigned int ivar, double upper) override |
set the upper-limit of an already existing variable | |
bool | SetVariableValue (unsigned int ivar, double val) override |
set the value of an existing variable | |
bool | SetVariableValues (const double *x) override |
set the values of all existing variables (array must be dimensioned to the size of existing parameters) | |
virtual const double * | StepSizes () const |
accessor methods | |
int | VariableIndex (const std::string &name) const override |
get index of variable given a variable given a name return -1 if variable is not found | |
std::string | VariableName (unsigned int ivar) const override |
get name of variables (override if minimizer support storing of variable names) | |
const double * | X () const override |
return pointer to X values at the minimum | |
![]() | |
Minimizer () | |
Default constructor. | |
Minimizer (Minimizer &&)=delete | |
Minimizer (Minimizer const &)=delete | |
virtual | ~Minimizer () |
Destructor (no operations). | |
virtual void | Clear () |
Reset for consecutive minimization - implement if needed. | |
virtual bool | Contour (unsigned int ivar, unsigned int jvar, unsigned int &npoints, double *xi, double *xj) |
Find the contour points (xi, xj) of the function for parameter ivar and jvar around the minimum. | |
virtual double | Correlation (unsigned int i, unsigned int j) const |
double | ErrorDef () const |
virtual bool | GetCovMatrix (double *covMat) const |
Fill the passed array with the covariance matrix elements if the variable is fixed or const the value is zero. | |
virtual bool | GetHessianMatrix (double *hMat) const |
Fill the passed array with the Hessian matrix elements The Hessian matrix is the matrix of the second derivatives and is the inverse of the covariance matrix If the variable is fixed or const the values for that variables are zero. | |
virtual bool | GetMinosError (unsigned int ivar, double &errLow, double &errUp, int option=0) |
Minos error for variable i, return false if Minos failed or not supported and the lower and upper errors are returned in errLow and errUp An extra flag specifies if only the lower (option=-1) or the upper (option=+1) error calculation is run. | |
virtual double | GlobalCC (unsigned int ivar) const |
virtual bool | Hesse () |
Perform a full calculation of the Hessian matrix for error calculation. | |
bool | IsValidError () const |
unsigned int | MaxFunctionCalls () const |
Max number of function calls. | |
unsigned int | MaxIterations () const |
Max iterations. | |
virtual int | MinosStatus () const |
Status code of Minos (to be re-implemented by the minimizers supporting Minos). | |
virtual unsigned int | NIterations () const |
Number of iterations to reach the minimum. | |
Minimizer & | operator= (Minimizer &&)=delete |
Minimizer & | operator= (Minimizer const &)=delete |
virtual MinimizerOptions | Options () const |
Retrieve the minimizer options (implement derived class if needed). | |
double | Precision () const |
Precision of minimizer in the evaluation of the objective function. | |
int | PrintLevel () const |
Set print level. | |
virtual void | PrintResults () |
Print the result according to set level (implemented for TMinuit for maintaining Minuit-style printing). | |
virtual bool | Scan (unsigned int ivar, unsigned int &nstep, double *x, double *y, double xmin=0, double xmax=0) |
Scan function minimum for variable i. | |
virtual bool | SetCovariance (std::span< const double > cov, unsigned int nrow) |
Set initial covariance matrix. | |
virtual bool | SetCovarianceDiag (std::span< const double > d2, unsigned int n) |
Set initial second derivatives. | |
void | SetDefaultOptions () |
Reset the default options (defined in MinimizerOptions). | |
void | SetErrorDef (double up) |
Set scale for calculating the errors. | |
void | SetExtraOptions (const IOptions &extraOptions) |
Set only the extra options. | |
virtual void | SetHessianFunction (std::function< bool(std::span< const double >, double *)>) |
Set the function implementing Hessian computation (re-implemented by Minimizer using it). | |
void | SetMaxFunctionCalls (unsigned int maxfcn) |
Set maximum of function calls. | |
void | SetMaxIterations (unsigned int maxiter) |
Set maximum iterations (one iteration can have many function calls). | |
void | SetOptions (const MinimizerOptions &opt) |
Set all options in one go. | |
void | SetPrecision (double prec) |
Set in the minimizer the objective function evaluation precision. | |
void | SetPrintLevel (int level) |
Set print level. | |
void | SetStrategy (int strategyLevel) |
Set the strategy. | |
void | SetTolerance (double tol) |
Set the tolerance. | |
void | SetValidError (bool on) |
Flag to check if minimizer needs to perform accurate error analysis (e.g. run Hesse for Minuit). | |
virtual bool | SetVariableInitialRange (unsigned int, double, double) |
Set the initial range of an existing variable. | |
template<class VariableIterator > | |
int | SetVariables (const VariableIterator &begin, const VariableIterator &end) |
Add variables. | |
int | Status () const |
Status code of minimizer. | |
int | Strategy () const |
Strategy. | |
double | Tolerance () const |
Absolute tolerance. | |
Protected Member Functions | |
template<class Func , class FitterType > | |
bool | DoMinimize (const Func &f, FitterType *fitter) |
Internal method to perform minimization template on the type of method function. | |
![]() | |
bool | CheckDimension () const |
bool | CheckObjFunction () const |
MinimTransformFunction * | CreateTransformation (std::vector< double > &startValues, const ROOT::Math::IMultiGradFunction *func=nullptr) |
void | SetFinalValues (const double *x, const MinimTransformFunction *func=nullptr) |
void | SetMinValue (double val) |
Private Attributes | |
std::vector< double > | fCovMatrix |
double | fEdm |
std::vector< double > | fErrors |
ROOT::Math::GSLMultiFit * | fGSLMultiFit = nullptr |
ROOT::Math::GSLMultiFit2 * | fGSLMultiFit2 = nullptr |
double | fLSTolerance |
unsigned int | fNCalls |
unsigned int | fNFree |
bool | fUseGradFunction = false |
Additional Inherited Members | |
![]() | |
MinimizerOptions | fOptions |
minimizer options | |
int | fStatus = -1 |
status of minimizer | |
bool | fValidError = false |
flag to control if errors have been validated (Hesse has been run in case of Minuit) | |
#include <Math/GSLNLSMinimizer.h>
|
explicit |
Constructor from a type.
Definition at line 208 of file GSLNLSMinimizer.cxx.
|
explicit |
Constructor from name.
Definition at line 206 of file GSLNLSMinimizer.cxx.
|
override |
Destructor (no operations)
Definition at line 249 of file GSLNLSMinimizer.cxx.
|
overridevirtual |
return covariance matrices elements if the variable is fixed the matrix is zero The ordering of the variables is the same as in errors
Reimplemented from ROOT::Math::Minimizer.
Definition at line 516 of file GSLNLSMinimizer.cxx.
|
overridevirtual |
return covariance matrix status
Reimplemented from ROOT::Math::Minimizer.
Definition at line 527 of file GSLNLSMinimizer.cxx.
|
protected |
Internal method to perform minimization template on the type of method function.
Definition at line 314 of file GSLNLSMinimizer.cxx.
|
inlineoverridevirtual |
return expected distance reached from the minimum
Reimplemented from ROOT::Math::Minimizer.
Definition at line 88 of file GSLNLSMinimizer.h.
return errors at the minimum
Reimplemented from ROOT::Math::Minimizer.
Definition at line 105 of file GSLNLSMinimizer.h.
return pointer to gradient values at the minimum
Reimplemented from ROOT::Math::Minimizer.
Definition at line 510 of file GSLNLSMinimizer.cxx.
|
overridevirtual |
method to perform the minimization
Reimplemented from ROOT::Math::BasicMinimizer.
Definition at line 268 of file GSLNLSMinimizer.cxx.
|
inlineoverridevirtual |
number of function calls to reach the minimum
Reimplemented from ROOT::Math::Minimizer.
Definition at line 95 of file GSLNLSMinimizer.h.
|
inlineoverridevirtual |
number of free variables (real dimension of the problem) this is <= Function().NDim() which is the total
minimizer provides error and error matrix
Reimplemented from ROOT::Math::Minimizer.
Definition at line 102 of file GSLNLSMinimizer.h.
|
overridevirtual |
set the function to minimize
Reimplemented from ROOT::Math::BasicMinimizer.
Definition at line 257 of file GSLNLSMinimizer.cxx.
|
private |
Definition at line 141 of file GSLNLSMinimizer.h.
|
private |
Definition at line 138 of file GSLNLSMinimizer.h.
|
private |
Definition at line 140 of file GSLNLSMinimizer.h.
|
private |
Definition at line 135 of file GSLNLSMinimizer.h.
|
private |
Definition at line 136 of file GSLNLSMinimizer.h.
|
private |
Definition at line 139 of file GSLNLSMinimizer.h.
|
private |
Definition at line 133 of file GSLNLSMinimizer.h.
|
private |
Definition at line 132 of file GSLNLSMinimizer.h.
Definition at line 131 of file GSLNLSMinimizer.h.