Logo ROOT  
Reference Guide
 
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
Loading...
Searching...
No Matches
ROOT::Math::GSLNLSMinimizer Class Reference

GSLNLSMinimizer class for Non Linear Least Square fitting It Uses the Levemberg-Marquardt algorithm from GSL Non Linear Least Square fitting.

Definition at line 60 of file GSLNLSMinimizer.h.

Public Member Functions

 GSLNLSMinimizer (const char *=nullptr)
 Constructor from name.
 
 GSLNLSMinimizer (int type)
 Constructor from a type.
 
 ~GSLNLSMinimizer () override
 Destructor (no operations)
 
double CovMatrix (unsigned int, unsigned int) const override
 return covariance matrices elements if the variable is fixed the matrix is zero The ordering of the variables is the same as in errors
 
int CovMatrixStatus () const override
 return covariance matrix status
 
double Edm () const override
 return expected distance reached from the minimum
 
const doubleErrors () const override
 return errors at the minimum
 
const doubleMinGradient () const override
 return pointer to gradient values at the minimum
 
bool Minimize () override
 method to perform the minimization
 
unsigned int NCalls () const override
 number of function calls to reach the minimum
 
bool ProvidesError () const override
 number of free variables (real dimension of the problem) this is <= Function().NDim() which is the total
 
void SetFunction (const ROOT::Math::IMultiGenFunction &func) override
 set the function to minimize
 
- Public Member Functions inherited from ROOT::Math::BasicMinimizer
 BasicMinimizer ()
 Default constructor.
 
 ~BasicMinimizer () override
 Destructor.
 
bool FixVariable (unsigned int ivar) override
 fix an existing variable
 
bool GetVariableSettings (unsigned int ivar, ROOT::Fit::ParameterSettings &varObj) const override
 get variable settings in a variable object (like ROOT::Fit::ParamsSettings)
 
const ROOT::Math::IMultiGradFunctionGradObjFunction () const
 return pointer to used gradient object function (NULL if gradient is not supported)
 
bool IsFixedVariable (unsigned int ivar) const override
 query if an existing variable is fixed (i.e.
 
double MinValue () const override
 return minimum function value
 
unsigned int NDim () const override
 number of dimensions
 
unsigned int NFree () const override
 number of free variables (real dimension of the problem)
 
virtual unsigned int NPar () const
 total number of parameter defined
 
const ROOT::Math::IMultiGenFunctionObjFunction () const
 return pointer to used objective function
 
void PrintResult () const
 print result of minimization
 
bool ReleaseVariable (unsigned int ivar) override
 release an existing variable
 
bool SetFixedVariable (unsigned int, const std::string &, double) override
 set fixed variable (override if minimizer supports them )
 
bool SetLimitedVariable (unsigned int ivar, const std::string &name, double val, double step, double, double) override
 set upper/lower limited variable (override if minimizer supports them )
 
bool SetLowerLimitedVariable (unsigned int ivar, const std::string &name, double val, double step, double lower) override
 set lower limit variable (override if minimizer supports them )
 
bool SetUpperLimitedVariable (unsigned int ivar, const std::string &name, double val, double step, double upper) override
 set upper limit variable (override if minimizer supports them )
 
bool SetVariable (unsigned int ivar, const std::string &name, double val, double step) override
 set free variable
 
bool SetVariableLimits (unsigned int ivar, double lower, double upper) override
 set the limits of an already existing variable
 
bool SetVariableLowerLimit (unsigned int ivar, double lower) override
 set the lower-limit of an already existing variable
 
bool SetVariableStepSize (unsigned int ivar, double step) override
 set the step size of an already existing variable
 
bool SetVariableUpperLimit (unsigned int ivar, double upper) override
 set the upper-limit of an already existing variable
 
bool SetVariableValue (unsigned int ivar, double val) override
 set the value of an existing variable
 
bool SetVariableValues (const double *x) override
 set the values of all existing variables (array must be dimensioned to the size of existing parameters)
 
virtual const doubleStepSizes () const
 accessor methods
 
int VariableIndex (const std::string &name) const override
 get index of variable given a variable given a name return -1 if variable is not found
 
std::string VariableName (unsigned int ivar) const override
 get name of variables (override if minimizer support storing of variable names)
 
const doubleX () const override
 return pointer to X values at the minimum
 
- Public Member Functions inherited from ROOT::Math::Minimizer
 Minimizer ()
 Default constructor.
 
 Minimizer (Minimizer &&)=delete
 
 Minimizer (Minimizer const &)=delete
 
virtual ~Minimizer ()
 Destructor (no operations).
 
virtual void Clear ()
 Reset for consecutive minimization - implement if needed.
 
virtual bool Contour (unsigned int ivar, unsigned int jvar, unsigned int &npoints, double *xi, double *xj)
 Find the contour points (xi, xj) of the function for parameter ivar and jvar around the minimum.
 
virtual double Correlation (unsigned int i, unsigned int j) const
 
double ErrorDef () const
 
virtual bool GetCovMatrix (double *covMat) const
 Fill the passed array with the covariance matrix elements if the variable is fixed or const the value is zero.
 
virtual bool GetHessianMatrix (double *hMat) const
 Fill the passed array with the Hessian matrix elements The Hessian matrix is the matrix of the second derivatives and is the inverse of the covariance matrix If the variable is fixed or const the values for that variables are zero.
 
virtual bool GetMinosError (unsigned int ivar, double &errLow, double &errUp, int option=0)
 Minos error for variable i, return false if Minos failed or not supported and the lower and upper errors are returned in errLow and errUp An extra flag specifies if only the lower (option=-1) or the upper (option=+1) error calculation is run.
 
virtual double GlobalCC (unsigned int ivar) const
 
virtual bool Hesse ()
 Perform a full calculation of the Hessian matrix for error calculation.
 
bool IsValidError () const
 
unsigned int MaxFunctionCalls () const
 Max number of function calls.
 
unsigned int MaxIterations () const
 Max iterations.
 
virtual int MinosStatus () const
 Status code of Minos (to be re-implemented by the minimizers supporting Minos).
 
virtual unsigned int NIterations () const
 Number of iterations to reach the minimum.
 
Minimizeroperator= (Minimizer &&)=delete
 
Minimizeroperator= (Minimizer const &)=delete
 
virtual MinimizerOptions Options () const
 Retrieve the minimizer options (implement derived class if needed).
 
double Precision () const
 Precision of minimizer in the evaluation of the objective function.
 
int PrintLevel () const
 Set print level.
 
virtual void PrintResults ()
 Print the result according to set level (implemented for TMinuit for maintaining Minuit-style printing).
 
virtual bool Scan (unsigned int ivar, unsigned int &nstep, double *x, double *y, double xmin=0, double xmax=0)
 Scan function minimum for variable i.
 
virtual bool SetCovariance (std::span< const double > cov, unsigned int nrow)
 Set initial covariance matrix.
 
virtual bool SetCovarianceDiag (std::span< const double > d2, unsigned int n)
 Set initial second derivatives.
 
void SetDefaultOptions ()
 Reset the default options (defined in MinimizerOptions).
 
void SetErrorDef (double up)
 Set scale for calculating the errors.
 
void SetExtraOptions (const IOptions &extraOptions)
 Set only the extra options.
 
virtual void SetHessianFunction (std::function< bool(std::span< const double >, double *)>)
 Set the function implementing Hessian computation (re-implemented by Minimizer using it).
 
void SetMaxFunctionCalls (unsigned int maxfcn)
 Set maximum of function calls.
 
void SetMaxIterations (unsigned int maxiter)
 Set maximum iterations (one iteration can have many function calls).
 
void SetOptions (const MinimizerOptions &opt)
 Set all options in one go.
 
void SetPrecision (double prec)
 Set in the minimizer the objective function evaluation precision.
 
void SetPrintLevel (int level)
 Set print level.
 
void SetStrategy (int strategyLevel)
 Set the strategy.
 
void SetTolerance (double tol)
 Set the tolerance.
 
void SetValidError (bool on)
 Flag to check if minimizer needs to perform accurate error analysis (e.g. run Hesse for Minuit).
 
virtual bool SetVariableInitialRange (unsigned int, double, double)
 Set the initial range of an existing variable.
 
template<class VariableIterator >
int SetVariables (const VariableIterator &begin, const VariableIterator &end)
 Add variables.
 
int Status () const
 Status code of minimizer.
 
int Strategy () const
 Strategy.
 
double Tolerance () const
 Absolute tolerance.
 

Protected Member Functions

template<class Func , class FitterType >
bool DoMinimize (const Func &f, FitterType *fitter)
 Internal method to perform minimization template on the type of method function.
 
- Protected Member Functions inherited from ROOT::Math::BasicMinimizer
bool CheckDimension () const
 
bool CheckObjFunction () const
 
MinimTransformFunctionCreateTransformation (std::vector< double > &startValues, const ROOT::Math::IMultiGradFunction *func=nullptr)
 
void SetFinalValues (const double *x, const MinimTransformFunction *func=nullptr)
 
void SetMinValue (double val)
 

Private Attributes

std::vector< doublefCovMatrix
 
double fEdm
 
std::vector< doublefErrors
 
ROOT::Math::GSLMultiFitfGSLMultiFit = nullptr
 
ROOT::Math::GSLMultiFit2fGSLMultiFit2 = nullptr
 
double fLSTolerance
 
unsigned int fNCalls
 
unsigned int fNFree
 
bool fUseGradFunction = false
 

Additional Inherited Members

- Protected Attributes inherited from ROOT::Math::Minimizer
MinimizerOptions fOptions
 minimizer options
 
int fStatus = -1
 status of minimizer
 
bool fValidError = false
 flag to control if errors have been validated (Hesse has been run in case of Minuit)
 

#include <Math/GSLNLSMinimizer.h>

Inheritance diagram for ROOT::Math::GSLNLSMinimizer:
[legend]

Constructor & Destructor Documentation

◆ GSLNLSMinimizer() [1/2]

ROOT::Math::GSLNLSMinimizer::GSLNLSMinimizer ( int type)
explicit

Constructor from a type.

Definition at line 208 of file GSLNLSMinimizer.cxx.

◆ GSLNLSMinimizer() [2/2]

ROOT::Math::GSLNLSMinimizer::GSLNLSMinimizer ( const char * name = nullptr)
explicit

Constructor from name.

Definition at line 206 of file GSLNLSMinimizer.cxx.

◆ ~GSLNLSMinimizer()

ROOT::Math::GSLNLSMinimizer::~GSLNLSMinimizer ( )
override

Destructor (no operations)

Definition at line 249 of file GSLNLSMinimizer.cxx.

Member Function Documentation

◆ CovMatrix()

double ROOT::Math::GSLNLSMinimizer::CovMatrix ( unsigned int i,
unsigned int j ) const
overridevirtual

return covariance matrices elements if the variable is fixed the matrix is zero The ordering of the variables is the same as in errors

Reimplemented from ROOT::Math::Minimizer.

Definition at line 516 of file GSLNLSMinimizer.cxx.

◆ CovMatrixStatus()

int ROOT::Math::GSLNLSMinimizer::CovMatrixStatus ( ) const
overridevirtual

return covariance matrix status

Reimplemented from ROOT::Math::Minimizer.

Definition at line 527 of file GSLNLSMinimizer.cxx.

◆ DoMinimize()

template<class Func , class FitterType >
bool ROOT::Math::GSLNLSMinimizer::DoMinimize ( const Func & f,
FitterType * fitter )
protected

Internal method to perform minimization template on the type of method function.

Definition at line 314 of file GSLNLSMinimizer.cxx.

◆ Edm()

double ROOT::Math::GSLNLSMinimizer::Edm ( ) const
inlineoverridevirtual

return expected distance reached from the minimum

Reimplemented from ROOT::Math::Minimizer.

Definition at line 88 of file GSLNLSMinimizer.h.

◆ Errors()

const double * ROOT::Math::GSLNLSMinimizer::Errors ( ) const
inlineoverridevirtual

return errors at the minimum

Reimplemented from ROOT::Math::Minimizer.

Definition at line 105 of file GSLNLSMinimizer.h.

◆ MinGradient()

const double * ROOT::Math::GSLNLSMinimizer::MinGradient ( ) const
overridevirtual

return pointer to gradient values at the minimum

Reimplemented from ROOT::Math::Minimizer.

Definition at line 510 of file GSLNLSMinimizer.cxx.

◆ Minimize()

bool ROOT::Math::GSLNLSMinimizer::Minimize ( )
overridevirtual

method to perform the minimization

Reimplemented from ROOT::Math::BasicMinimizer.

Definition at line 268 of file GSLNLSMinimizer.cxx.

◆ NCalls()

unsigned int ROOT::Math::GSLNLSMinimizer::NCalls ( ) const
inlineoverridevirtual

number of function calls to reach the minimum

Reimplemented from ROOT::Math::Minimizer.

Definition at line 95 of file GSLNLSMinimizer.h.

◆ ProvidesError()

bool ROOT::Math::GSLNLSMinimizer::ProvidesError ( ) const
inlineoverridevirtual

number of free variables (real dimension of the problem) this is <= Function().NDim() which is the total

minimizer provides error and error matrix

Reimplemented from ROOT::Math::Minimizer.

Definition at line 102 of file GSLNLSMinimizer.h.

◆ SetFunction()

void ROOT::Math::GSLNLSMinimizer::SetFunction ( const ROOT::Math::IMultiGenFunction & func)
overridevirtual

set the function to minimize

Reimplemented from ROOT::Math::BasicMinimizer.

Definition at line 257 of file GSLNLSMinimizer.cxx.

Member Data Documentation

◆ fCovMatrix

std::vector<double> ROOT::Math::GSLNLSMinimizer::fCovMatrix
private

Definition at line 141 of file GSLNLSMinimizer.h.

◆ fEdm

double ROOT::Math::GSLNLSMinimizer::fEdm
private

Definition at line 138 of file GSLNLSMinimizer.h.

◆ fErrors

std::vector<double> ROOT::Math::GSLNLSMinimizer::fErrors
private

Definition at line 140 of file GSLNLSMinimizer.h.

◆ fGSLMultiFit

ROOT::Math::GSLMultiFit* ROOT::Math::GSLNLSMinimizer::fGSLMultiFit = nullptr
private

Definition at line 135 of file GSLNLSMinimizer.h.

◆ fGSLMultiFit2

ROOT::Math::GSLMultiFit2* ROOT::Math::GSLNLSMinimizer::fGSLMultiFit2 = nullptr
private

Definition at line 136 of file GSLNLSMinimizer.h.

◆ fLSTolerance

double ROOT::Math::GSLNLSMinimizer::fLSTolerance
private

Definition at line 139 of file GSLNLSMinimizer.h.

◆ fNCalls

unsigned int ROOT::Math::GSLNLSMinimizer::fNCalls
private

Definition at line 133 of file GSLNLSMinimizer.h.

◆ fNFree

unsigned int ROOT::Math::GSLNLSMinimizer::fNFree
private

Definition at line 132 of file GSLNLSMinimizer.h.

◆ fUseGradFunction

bool ROOT::Math::GSLNLSMinimizer::fUseGradFunction = false
private

Definition at line 131 of file GSLNLSMinimizer.h.

Libraries for ROOT::Math::GSLNLSMinimizer:

The documentation for this class was generated from the following files: