ROOT   Reference Guide
Loading...
Searching...
No Matches
One-dimensional Root-Finding

Classes implementing algorithms for finding the roots of a one-dimensional function.

Various implementations exist in MathCore and MathMore The user interacts with a proxy class ROOT::Math::RootFinder which creates behing the chosen algorithms which are implemented using the ROOT::Math::IRootFinderMethod interface

Classes

class  ROOT::Math::Roots::Bisection
Roots::Bisection Bisection algorithm, simplest algorithm for bracketing the roots of a function, but slowest one. More...

class  ROOT::Math::Roots::Brent
Brent-Dekker algorithm which combines an interpolation strategy with the bisection algorithm See the GSL manual for more information. More...

class  ROOT::Math::BrentRootFinder
Class for finding the root of a one dimensional function using the Brent algorithm. More...

class  ROOT::Math::Roots::FalsePos
False Position algorithm based on linear interpolation. More...

class  ROOT::Math::GSLRootFdFSolver
Root-Finder with derivatives implementation class using GSL. More...

class  ROOT::Math::GSLRootFinder
Base class for GSL Root-Finding algorithms for one dimensional functions which do not use function derivatives. More...

class  ROOT::Math::GSLRootFinderDeriv
Base class for GSL Root-Finding algorithms for one dimensional functions which use function derivatives. More...

class  ROOT::Math::GSLRootFSolver
Root-Finder implementation class using GSL. More...

class  ROOT::Math::IRootFinderMethod
Interface for finding function roots of one-dimensional functions. More...

class  ROOT::Math::Roots::Newton
a Newton algorithm, which computes the derivative at each iteration See the GSL manual for more information More...

class  ROOT::Math::RootFinder
User Class to find the Root of one dimensional functions. More...

class  ROOT::Math::Roots::Secant
Secant algorithm, simplified version of Newton method, which does not require the derivative at every step. More...

class  ROOT::Math::Roots::Steffenson
Steffenson method, providing the fastes convergence. More...