93 if (
bdat->GetNbinsX() !=
bini->GetNbinsX() ||
94 bdat->GetNbinsX() !=
xini->GetNbinsX() ||
95 bdat->GetNbinsX() !=
Adet->GetNbinsX() ||
96 bdat->GetNbinsX() !=
Adet->GetNbinsY()) {
97 TString msg =
"All histograms must have equal dimension.\n";
98 msg +=
Form(
" Found: dim(bdat)=%i\n",
bdat->GetNbinsX() );
99 msg +=
Form(
" Found: dim(bini)=%i\n",
bini->GetNbinsX() );
100 msg +=
Form(
" Found: dim(xini)=%i\n",
xini->GetNbinsX() );
101 msg +=
Form(
" Found: dim(Adet)=%i,%i\n",
Adet->GetNbinsX(),
Adet->GetNbinsY() );
102 msg +=
"Please start again!";
109 for(
int i=1; i<=
fBdat->GetNbinsX(); i++){
111 for(
int j=1;
j<=
fBdat->GetNbinsX();
j++){
146 if (
bdat->GetNbinsX() !=
bini->GetNbinsX() ||
147 bdat->GetNbinsX() !=
xini->GetNbinsX() ||
148 bdat->GetNbinsX() !=
Bcov->GetNbinsX() ||
149 bdat->GetNbinsX() !=
Bcov->GetNbinsY() ||
150 bdat->GetNbinsX() !=
Adet->GetNbinsX() ||
151 bdat->GetNbinsX() !=
Adet->GetNbinsY()) {
152 TString msg =
"All histograms must have equal dimension.\n";
153 msg +=
Form(
" Found: dim(bdat)=%i\n",
bdat->GetNbinsX() );
154 msg +=
Form(
" Found: dim(Bcov)=%i,%i\n",
Bcov->GetNbinsX(),
Bcov->GetNbinsY() );
155 msg +=
Form(
" Found: dim(bini)=%i\n",
bini->GetNbinsX() );
156 msg +=
Form(
" Found: dim(xini)=%i\n",
xini->GetNbinsX() );
157 msg +=
Form(
" Found: dim(Adet)=%i,%i\n",
Adet->GetNbinsX(),
Adet->GetNbinsY() );
158 msg +=
"Please start again!";
175fNormalize (
other.fNormalize),
177fDHist (
other.fDHist),
178fSVHist (
other.fSVHist),
186fToyhisto (
other.fToyhisto),
187fToymat (
other.fToymat),
188fToyMode (
other.fToyMode),
189fMatToyMode (
other.fMatToyMode)
283 for(
int i=0; i<
fNdim; i++){
290 for(
int i=0; i<
fNdim; i++){
383 Info(
"Unfold",
"Unfolding param: %i",k+1 );
388 for(
int i=1; i<=
fNdim; i++){
389 h->SetBinContent(i,0.);
390 h->SetBinError(i,0.);
410 unfcov->SetTitle(
"Toy covariance matrix");
411 for(
int i=1; i<=
fNdim; i++)
446 for (
int i=1; i<=
ntoys; i++) {
474 for (
int i=1; i<=
ntoys; i++) {
516 unfcov->SetTitle(
"Toy covariance matrix");
517 for(
int i=1; i<=
fNdim; i++)
528 for (
int i=1; i<=
ntoys; i++) {
531 if (
fAdet->GetBinContent(k,
m)) {
549 for (
int i=1; i<=
ntoys; i++) {
552 if (
fAdet->GetBinContent(k,
m))
659 for (
Int_t i=0; i<
mat.GetNrows(); i++) {
671 for (
Int_t i=0; i<
vec1.GetNrows(); i++) {
687 for (
Int_t i=0; i<
mat.GetNrows(); i++) {
729 if (
fDdim == 0)
for (
Int_t i=0; i<ndim; i++)
tC(i,i) = 1;
730 else if (
fDdim == 1) {
731 for (
Int_t i=0; i<ndim; i++) {
732 if (i < ndim-1)
tC(i,i+1) = 1.0;
736 else if (
fDdim == 2) {
737 for (
Int_t i=0; i<ndim; i++) {
738 if (i > 0)
tC(i,i-1) = 1.0;
739 if (i < ndim-1)
tC(i,i+1) = 1.0;
743 tC(ndim-1,ndim-1) = -1.0;
745 else if (
fDdim == 3) {
746 for (
Int_t i=1; i<ndim-2; i++) {
754 for (
Int_t i=0; i<ndim; i++) {
755 if (i > 0)
tC(i,i-1) = -4.0;
756 if (i < ndim-1)
tC(i,i+1) = -4.0;
757 if (i > 1)
tC(i,i-2) = 1.0;
758 if (i < ndim-2)
tC(i,i+2) = 1.0;
762 tC(ndim-1,ndim-1) = 2.0;
764 tC(ndim-2,ndim-1) = -3.0;
766 tC(ndim-1,ndim-2) = -3.0;
768 tC(ndim-2,ndim-2) = 6.0;
770 else if (
fDdim == 5) {
771 for (
Int_t i=2; i < ndim-3; i++) {
780 else if (
fDdim == 6) {
781 for (
Int_t i = 3; i < ndim - 3; i++) {
793 for (
Int_t i=0; i<ndim; i++)
tC(i,i) =
tC(i,i) + eps;
796 for (
Int_t i=0; i<ndim; i++) {
798 for (
Int_t k=0; k<ndim; k++) {
851 for (
UInt_t in=0; in<nn; in++) {
867 for (
UInt_t in=0; in<nn; in++) {
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
TMatrixT< Double_t > TMatrixD
char * Form(const char *fmt,...)
Formats a string in a circular formatting buffer.
Single Value Decomposition class.
1-D histogram with a double per channel (see TH1 documentation)
void SetTitle(const char *title) override
Change/set the title.
virtual Int_t GetNbinsY() const
virtual Double_t GetBinError(Int_t bin) const
Return value of error associated to bin number bin.
virtual Int_t GetNbinsX() const
virtual void SetBinError(Int_t bin, Double_t error)
Set the bin Error Note that this resets the bin eror option to be of Normal Type and for the non-empt...
virtual void SetBinContent(Int_t bin, Double_t content)
Set bin content see convention for numbering bins in TH1::GetBin In case the bin number is greater th...
virtual Double_t GetBinContent(Int_t bin) const
Return content of bin number bin.
virtual void Sumw2(Bool_t flag=kTRUE)
Create structure to store sum of squares of weights.
2-D histogram with a double per channel (see TH1 documentation)
void SetBinContent(Int_t bin, Double_t content) override
Set bin content.
Double_t GetBinContent(Int_t binx, Int_t biny) const override
Mother of all ROOT objects.
virtual void Fatal(const char *method, const char *msgfmt,...) const
Issue fatal error message.
Random number generator class based on M.
SVD Approach to Data Unfolding.
TH1D * GetSV() const
Returns singular values vector.
TH2D * GetBCov() const
Returns the covariance matrix.
TH1D * fSVHist
! Distribution of singular values
TH2D * GetXtau() const
Returns the computed regularized covariance matrix corresponding to total uncertainties on measured s...
Bool_t fToyMode
! Internal switch for covariance matrix propagation
static void V2H(const TVectorD &vec, TH1D &histo)
Fill vector into 1D histogram.
static void H2M(const TH2D *histo, TMatrixD &mat)
Fill 2D histogram into matrix.
static void RegularisedSymMatInvert(TMatrixDSym &mat, Double_t eps=1e-3)
naive regularised inversion cuts off small elements
static TVectorD CompProd(const TVectorD &vec1, const TVectorD &vec2)
Multiply entries of two vectors.
static void M2H(const TMatrixD &mat, TH2D &histo)
Fill 2D histogram into matrix.
Bool_t fMatToyMode
! Internal switch for evaluation of statistical uncertainties from response matrix
TSVDUnfold(const TH1D *bdat, const TH1D *bini, const TH1D *xini, const TH2D *Adet)
Alternative constructor User provides data and MC test spectra, as well as detector response matrix,...
Bool_t fNormalize
! Normalize unfolded spectrum to 1
const TH1D * fBini
Reconstructed distribution (MC)
TH1D * Unfold(Int_t kreg)
Perform the unfolding with regularisation parameter kreg.
Double_t ComputeChiSquared(const TH1D &truspec, const TH1D &unfspec)
Helper routine to compute chi-squared between distributions using the computed inverse of the covaria...
TH2D * fToymat
! Toy MC detector response matrix
static Double_t GetCurvature(const TVectorD &vec, const TMatrixD &curv)
Compute curvature of vector.
const TH1D * fBdat
Measured distribution (data)
~TSVDUnfold() override
Destructor.
static TMatrixD MatDivVec(const TMatrixD &mat, const TVectorD &vec, Int_t zero=0)
Divide matrix entries by vector.
TH2D * fXinv
! Computed inverse of covariance matrix
static TVectorD VecDiv(const TVectorD &vec1, const TVectorD &vec2, Int_t zero=0)
Divide entries of two vectors.
void FillCurvatureMatrix(TMatrixD &tCurv, TMatrixD &tC) const
TH1D * GetD() const
Returns d vector (for choosing appropriate regularisation)
TH2D * fXtau
! Computed regularized covariance matrix
TH1D * fDHist
! Distribution of d (for checking regularization)
static void H2Verr(const TH1D *histo, TVectorD &vec)
Fill 1D histogram errors into vector.
Int_t fDdim
! Derivative for curvature matrix
TH2D * GetUnfoldCovMatrix(const TH2D *cov, Int_t ntoys, Int_t seed=1)
Determine for given input error matrix covariance matrix of unfolded spectrum from toy simulation giv...
TH2D * GetAdetCovMatrix(Int_t ntoys, Int_t seed=1)
Determine covariance matrix of unfolded spectrum from finite statistics in response matrix using pseu...
const TH2D * fAdet
Detector response matrix.
TH2D * GetXinv() const
Returns the computed inverse of the covariance matrix.
static void H2V(const TH1D *histo, TVectorD &vec)
Fill 1D histogram into vector.
Int_t fKReg
! Regularisation parameter
TH1D * fToyhisto
! Toy MC histogram
TH2D * fBcov
Covariance matrix of measured distribution (data)
const TH1D * fXini
Truth distribution (MC)
Int_t fNdim
! Truth and reconstructed dimensions
Double_t Sqrt(Double_t x)
Returns the square root of x.
LongDouble_t Power(LongDouble_t x, LongDouble_t y)
Returns x raised to the power y.
Short_t Abs(Short_t d)
Returns the absolute value of parameter Short_t d.