Logo ROOT  
Reference Guide
TSVDUnfold.cxx
Go to the documentation of this file.
1// Author: Kerstin Tackmann, Andreas Hoecker, Heiko Lacker
2
3/**********************************************************************************
4 * *
5 * Project: TSVDUnfold - data unfolding based on Singular Value Decomposition *
6 * Package: ROOT *
7 * Class : TSVDUnfold *
8 * *
9 * Description: *
10 * Single class implementation of SVD data unfolding based on: *
11 * A. Hoecker, V. Kartvelishvili, *
12 * "SVD approach to data unfolding" *
13 * NIM A372, 469 (1996) [hep-ph/9509307] *
14 * *
15 * Authors: *
16 * Kerstin Tackmann <Kerstin.Tackmann@cern.ch> - CERN, Switzerland *
17 * Andreas Hoecker <Andreas.Hoecker@cern.ch> - CERN, Switzerland *
18 * Heiko Lacker <lacker@physik.hu-berlin.de> - Humboldt U, Germany *
19 * *
20 * Copyright (c) 2010: *
21 * CERN, Switzerland *
22 * Humboldt University, Germany *
23 * *
24 **********************************************************************************/
25
26////////////////////////////////////////////////////////////////////////////////
27
28/** \class TSVDUnfold
29 \ingroup Hist
30 SVD Approach to Data Unfolding
31 <p>
32 Reference: <a href="http://arXiv.org/abs/hep-ph/9509307">Nucl. Instrum. Meth. A372, 469 (1996) [hep-ph/9509307]</a>
33 <p>
34 TSVDUnfold implements the singular value decomposition based unfolding method (see reference). Currently, the unfolding of one-dimensional histograms is supported, with the same number of bins for the measured and the unfolded spectrum.
35 <p>
36 The unfolding procedure is based on singular value decomposition of the response matrix. The regularisation of the unfolding is implemented via a discrete minimum-curvature condition.
37 <p>
38 Monte Carlo inputs:
39 <ul>
40 <li><tt>xini</tt>: true underlying spectrum (TH1D, n bins)
41 <li><tt>bini</tt>: reconstructed spectrum (TH1D, n bins)
42 <li><tt>Adet</tt>: response matrix (TH2D, nxn bins)
43 </ul>
44 Consider the unfolding of a measured spectrum <tt>bdat</tt> with covariance matrix <tt>Bcov</tt> (if not passed explicitly, a diagonal covariance will be built given the errors of <tt>bdat</tt>). The corresponding spectrum in the Monte Carlo is given by <tt>bini</tt>, with the true underlying spectrum given by <tt>xini</tt>. The detector response is described by <tt>Adet</tt>, with <tt>Adet</tt> filled with events (not probabilities) with the true observable on the y-axis and the reconstructed observable on the x-axis.
45 <p>
46 The measured distribution can be unfolded for any combination of resolution, efficiency and acceptance effects, provided an appropriate definition of <tt>xini</tt> and <tt>Adet</tt>.<br><br>
47 <p>
48 The unfolding can be performed by
49 <ul>
50 <pre>
51 TSVDUnfold *tsvdunf = new TSVDUnfold( bdat, Bcov, bini, xini, Adet );
52 TH1D* unfresult = tsvdunf->Unfold( kreg );
53 </pre>
54 </ul>
55 where <tt>kreg</tt> determines the regularisation of the unfolding. In general, overregularisation (too small <tt>kreg</tt>) will bias the unfolded spectrum towards the Monte Carlo input, while underregularisation (too large <tt>kreg</tt>) will lead to large fluctuations in the unfolded spectrum. The optimal regularisation can be determined following guidelines in <a href="http://arXiv.org/abs/hep-ph/9509307">Nucl. Instrum. Meth. A372, 469 (1996) [hep-ph/9509307]</a> using the distribution of the <tt>|d_i|<\tt> that can be obtained by <tt>tsvdunf->GetD()</tt> and/or using pseudo-experiments.
56 <p>
57 Covariance matrices on the measured spectrum (for either the total uncertainties or individual sources of uncertainties) can be propagated to covariance matrices using the <tt>GetUnfoldCovMatrix</tt> method, which uses pseudo experiments for the propagation. In addition, <tt>GetAdetCovMatrix</tt> allows for the propagation of the statistical uncertainties on the response matrix using pseudo experiments. The covariance matrix corresponding to <tt>Bcov</tt> is also computed as described in <a href="http://arXiv.org/abs/hep-ph/9509307">Nucl. Instrum. Meth. A372, 469 (1996) [hep-ph/9509307]</a> and can be obtained from <tt>tsvdunf->GetXtau()</tt> and its (regularisation independent) inverse from <tt>tsvdunf->GetXinv()</tt>. The distribution of singular values can be retrieved using <tt>tsvdunf->GetSV()</tt>.
58 <p>
59 See also the tutorial for a toy example.
60*/
61
62#include <iostream>
63
64#include "TSVDUnfold.h"
65#include "TH1D.h"
66#include "TH2D.h"
67#include "TDecompSVD.h"
68#include "TRandom3.h"
69#include "TMath.h"
70
72
73using namespace std;
74
75////////////////////////////////////////////////////////////////////////////////
76/// Alternative constructor
77/// User provides data and MC test spectra, as well as detector response matrix, diagonal covariance matrix of measured spectrum built from the uncertainties on measured spectrum
78
79TSVDUnfold::TSVDUnfold( const TH1D *bdat, const TH1D *bini, const TH1D *xini, const TH2D *Adet )
80: TObject (),
81fNdim (0),
82fDdim (2),
83fNormalize (kFALSE),
84fKReg (-1),
85fDHist (NULL),
86fSVHist (NULL),
87fXtau (NULL),
88fXinv (NULL),
89fBdat (bdat),
90fBini (bini),
91fXini (xini),
92fAdet (Adet),
93fToyhisto (NULL),
94fToymat (NULL),
95fToyMode (kFALSE),
96fMatToyMode (kFALSE)
97{
98 if (bdat->GetNbinsX() != bini->GetNbinsX() ||
99 bdat->GetNbinsX() != xini->GetNbinsX() ||
100 bdat->GetNbinsX() != Adet->GetNbinsX() ||
101 bdat->GetNbinsX() != Adet->GetNbinsY()) {
102 TString msg = "All histograms must have equal dimension.\n";
103 msg += Form( " Found: dim(bdat)=%i\n", bdat->GetNbinsX() );
104 msg += Form( " Found: dim(bini)=%i\n", bini->GetNbinsX() );
105 msg += Form( " Found: dim(xini)=%i\n", xini->GetNbinsX() );
106 msg += Form( " Found: dim(Adet)=%i,%i\n", Adet->GetNbinsX(), Adet->GetNbinsY() );
107 msg += "Please start again!";
108
109 Fatal( "Init", msg, "%s" );
110 }
111
112 fBcov = (TH2D*)fAdet->Clone("bcov");
113
114 for(int i=1; i<=fBdat->GetNbinsX(); i++){
116 for(int j=1; j<=fBdat->GetNbinsX(); j++){
117 if(i==j) continue;
118 fBcov->SetBinContent(i,j,0.);
119 }
120 }
121 // Get the input histos
122 fNdim = bdat->GetNbinsX();
123 fDdim = 2; // This is the derivative used to compute the curvature matrix
124}
125
126
127////////////////////////////////////////////////////////////////////////////////
128/// Default constructor
129/// Initialisation of TSVDUnfold
130/// User provides data and MC test spectra, as well as detector response matrix and the covariance matrix of the measured distribution
131
132TSVDUnfold::TSVDUnfold( const TH1D *bdat, TH2D* Bcov, const TH1D *bini, const TH1D *xini, const TH2D *Adet )
133: TObject (),
134fNdim (0),
135fDdim (2),
136fNormalize (kFALSE),
137fKReg (-1),
138fDHist (NULL),
139fSVHist (NULL),
140fXtau (NULL),
141fXinv (NULL),
142fBdat (bdat),
143fBcov (Bcov),
144fBini (bini),
145fXini (xini),
146fAdet (Adet),
147fToyhisto (NULL),
148fToymat (NULL),
149fToyMode (kFALSE),
150fMatToyMode (kFALSE)
151{
152 if (bdat->GetNbinsX() != bini->GetNbinsX() ||
153 bdat->GetNbinsX() != xini->GetNbinsX() ||
154 bdat->GetNbinsX() != Bcov->GetNbinsX() ||
155 bdat->GetNbinsX() != Bcov->GetNbinsY() ||
156 bdat->GetNbinsX() != Adet->GetNbinsX() ||
157 bdat->GetNbinsX() != Adet->GetNbinsY()) {
158 TString msg = "All histograms must have equal dimension.\n";
159 msg += Form( " Found: dim(bdat)=%i\n", bdat->GetNbinsX() );
160 msg += Form( " Found: dim(Bcov)=%i,%i\n", Bcov->GetNbinsX(), Bcov->GetNbinsY() );
161 msg += Form( " Found: dim(bini)=%i\n", bini->GetNbinsX() );
162 msg += Form( " Found: dim(xini)=%i\n", xini->GetNbinsX() );
163 msg += Form( " Found: dim(Adet)=%i,%i\n", Adet->GetNbinsX(), Adet->GetNbinsY() );
164 msg += "Please start again!";
165
166 Fatal( "Init", msg, "%s" );
167 }
168
169 // Get the input histos
170 fNdim = bdat->GetNbinsX();
171 fDdim = 2; // This is the derivative used to compute the curvature matrix
172}
173
174////////////////////////////////////////////////////////////////////////////////
175/// Copy constructor
176
178: TObject ( other ),
179fNdim (other.fNdim),
180fDdim (other.fDdim),
181fNormalize (other.fNormalize),
182fKReg (other.fKReg),
183fDHist (other.fDHist),
184fSVHist (other.fSVHist),
185fXtau (other.fXtau),
186fXinv (other.fXinv),
187fBdat (other.fBdat),
188fBcov (other.fBcov),
189fBini (other.fBini),
190fXini (other.fXini),
191fAdet (other.fAdet),
192fToyhisto (other.fToyhisto),
193fToymat (other.fToymat),
194fToyMode (other.fToyMode),
195fMatToyMode (other.fMatToyMode)
196{
197}
198
199////////////////////////////////////////////////////////////////////////////////
200/// Destructor
201
203{
204 if(fToyhisto){
205 delete fToyhisto;
206 fToyhisto = 0;
207 }
208
209 if(fToymat){
210 delete fToymat;
211 fToymat = 0;
212 }
213
214 if(fDHist){
215 delete fDHist;
216 fDHist = 0;
217 }
218
219 if(fSVHist){
220 delete fSVHist;
221 fSVHist = 0;
222 }
223
224 if(fXtau){
225 delete fXtau;
226 fXtau = 0;
227 }
228
229 if(fXinv){
230 delete fXinv;
231 fXinv = 0;
232 }
233
234 if(fBcov){
235 delete fBcov;
236 fBcov = 0;
237 }
238}
239
240////////////////////////////////////////////////////////////////////////////////
241/// Perform the unfolding with regularisation parameter kreg
242
244{
245 fKReg = kreg;
246
247 // Make the histos
248 if (!fToyMode && !fMatToyMode) InitHistos( );
249
250 // Create vectors and matrices
251 TVectorD vb(fNdim), vbini(fNdim), vxini(fNdim), vberr(fNdim);
252 TMatrixD mB(fNdim, fNdim), mA(fNdim, fNdim), mCurv(fNdim, fNdim), mC(fNdim, fNdim);
253
254 Double_t eps = 1e-12;
255 Double_t sreg;
256
257 // Copy histogams entries into vector
258 if (fToyMode) { H2V( fToyhisto, vb ); H2Verr( fToyhisto, vberr ); }
259 else { H2V( fBdat, vb ); H2Verr( fBdat, vberr ); }
260
261 H2M( fBcov, mB);
262 H2V( fBini, vbini );
263 H2V( fXini, vxini );
264 if (fMatToyMode) H2M( fToymat, mA );
265 else H2M( fAdet, mA );
266
267 // Fill and invert the second derivative matrix
268 FillCurvatureMatrix( mCurv, mC );
269
270 // Inversion of mC by help of SVD
271 TDecompSVD CSVD(mC);
272 TMatrixD CUort = CSVD.GetU();
273 TMatrixD CVort = CSVD.GetV();
274 TVectorD CSV = CSVD.GetSig();
275
276 TMatrixD CSVM(fNdim, fNdim);
277 for (Int_t i=0; i<fNdim; i++) CSVM(i,i) = 1/CSV(i);
278
279 CUort.Transpose( CUort );
280 TMatrixD mCinv = (CVort*CSVM)*CUort;
281
282 //Rescale using the data covariance matrix
283 TDecompSVD BSVD( mB );
284 TMatrixD QT = BSVD.GetU();
285 QT.Transpose(QT);
286 TVectorD B2SV = BSVD.GetSig();
287 TVectorD BSV(B2SV);
288
289 for(int i=0; i<fNdim; i++){
290 BSV(i) = TMath::Sqrt(B2SV(i));
291 }
292 TMatrixD mAtmp(fNdim,fNdim);
293 TVectorD vbtmp(fNdim);
294 mAtmp *= 0;
295 vbtmp *= 0;
296 for(int i=0; i<fNdim; i++){
297 for(int j=0; j<fNdim; j++){
298 if(BSV(i)){
299 vbtmp(i) += QT(i,j)*vb(j)/BSV(i);
300 }
301 for(int m=0; m<fNdim; m++){
302 if(BSV(i)){
303 mAtmp(i,j) += QT(i,m)*mA(m,j)/BSV(i);
304 }
305 }
306 }
307 }
308 mA = mAtmp;
309 vb = vbtmp;
310
311 // Singular value decomposition and matrix operations
312 TDecompSVD ASVD( mA*mCinv );
313 TMatrixD Uort = ASVD.GetU();
314 TMatrixD Vort = ASVD.GetV();
315 TVectorD ASV = ASVD.GetSig();
316
317 if (!fToyMode && !fMatToyMode) {
318 V2H(ASV, *fSVHist);
319 }
320
321 TMatrixD Vreg = mCinv*Vort;
322
323 Uort.Transpose(Uort);
324 TVectorD vd = Uort*vb;
325
326 if (!fToyMode && !fMatToyMode) {
327 V2H(vd, *fDHist);
328 }
329
330 // Damping coefficient
331 Int_t k = GetKReg()-1;
332
333 TVectorD vx(fNdim); // Return variable
334
335 // Damping factors
336 TVectorD vdz(fNdim);
337 TMatrixD Z(fNdim, fNdim);
338 for (Int_t i=0; i<fNdim; i++) {
339 if (ASV(i)<ASV(0)*eps) sreg = ASV(0)*eps;
340 else sreg = ASV(i);
341 vdz(i) = sreg/(sreg*sreg + ASV(k)*ASV(k));
342 Z(i,i) = vdz(i)*vdz(i);
343 }
344 TVectorD vz = CompProd( vd, vdz );
345
346 TMatrixD VortT(Vort);
347 VortT.Transpose(VortT);
348 TMatrixD W = mCinv*Vort*Z*VortT*mCinv;
349
350 TMatrixD Xtau(fNdim, fNdim);
351 TMatrixD Xinv(fNdim, fNdim);
352 Xtau *= 0;
353 Xinv *= 0;
354 for (Int_t i=0; i<fNdim; i++) {
355 for (Int_t j=0; j<fNdim; j++) {
356 Xtau(i,j) = vxini(i) * vxini(j) * W(i,j);
357
358 double a=0;
359 for (Int_t m=0; m<fNdim; m++) {
360 a += mA(m,i)*mA(m,j);
361 }
362 if(vxini(i) && vxini(j))
363 Xinv(i,j) = a/vxini(i)/vxini(j);
364 }
365 }
366
367 // Compute the weights
368 TVectorD vw = Vreg*vz;
369
370 // Rescale by xini
371 vx = CompProd( vw, vxini );
372
373 if(fNormalize){ // Scale result to unit area
374 Double_t scale = vx.Sum();
375 if (scale > 0){
376 vx *= 1.0/scale;
377 Xtau *= 1./scale/scale;
378 Xinv *= scale*scale;
379 }
380 }
381
382 if (!fToyMode && !fMatToyMode) {
383 M2H(Xtau, *fXtau);
384 M2H(Xinv, *fXinv);
385 }
386
387 // Get Curvature and also chi2 in case of MC unfolding
388 if (!fToyMode && !fMatToyMode) {
389 Info( "Unfold", "Unfolding param: %i",k+1 );
390 Info( "Unfold", "Curvature of weight distribution: %f", GetCurvature( vw, mCurv ) );
391 }
392
393 TH1D* h = (TH1D*)fBdat->Clone("unfoldingresult");
394 for(int i=1; i<=fNdim; i++){
395 h->SetBinContent(i,0.);
396 h->SetBinError(i,0.);
397 }
398 V2H( vx, *h );
399
400 return h;
401}
402
403////////////////////////////////////////////////////////////////////////////////
404/// Determine for given input error matrix covariance matrix of unfolded
405/// spectrum from toy simulation given the passed covariance matrix on measured spectrum
406/// "cov" - covariance matrix on the measured spectrum, to be propagated
407/// "ntoys" - number of pseudo experiments used for the propagation
408/// "seed" - seed for pseudo experiments
409/// Note that this covariance matrix will contain effects of forced normalisation if spectrum is normalised to unit area.
410
412{
413 fToyMode = true;
414 TH1D* unfres = 0;
415 TH2D* unfcov = (TH2D*)fAdet->Clone("unfcovmat");
416 unfcov->SetTitle("Toy covariance matrix");
417 for(int i=1; i<=fNdim; i++)
418 for(int j=1; j<=fNdim; j++)
419 unfcov->SetBinContent(i,j,0.);
420
421 // Code for generation of toys (taken from RooResult and modified)
422 // Calculate the elements of the upper-triangular matrix L that
423 // gives Lt*L = C, where Lt is the transpose of L (the "square-root method")
424 TMatrixD L(fNdim,fNdim); L *= 0;
425
426 for (Int_t iPar= 0; iPar < fNdim; iPar++) {
427
428 // Calculate the diagonal term first
429 L(iPar,iPar) = cov->GetBinContent(iPar+1,iPar+1);
430 for (Int_t k=0; k<iPar; k++) L(iPar,iPar) -= TMath::Power( L(k,iPar), 2 );
431 if (L(iPar,iPar) > 0.0) L(iPar,iPar) = TMath::Sqrt(L(iPar,iPar));
432 else L(iPar,iPar) = 0.0;
433
434 // ...then the off-diagonal terms
435 for (Int_t jPar=iPar+1; jPar<fNdim; jPar++) {
436 L(iPar,jPar) = cov->GetBinContent(iPar+1,jPar+1);
437 for (Int_t k=0; k<iPar; k++) L(iPar,jPar) -= L(k,iPar)*L(k,jPar);
438 if (L(iPar,iPar)!=0.) L(iPar,jPar) /= L(iPar,iPar);
439 else L(iPar,jPar) = 0;
440 }
441 }
442
443 // Remember it
445 TRandom3 random(seed);
446
447 fToyhisto = (TH1D*)fBdat->Clone("toyhisto");
448 TH1D *toymean = (TH1D*)fBdat->Clone("toymean");
449 for (Int_t j=1; j<=fNdim; j++) toymean->SetBinContent(j,0.);
450
451 // Get the mean of the toys first
452 for (int i=1; i<=ntoys; i++) {
453
454 // create a vector of unit Gaussian variables
456 for (Int_t k= 0; k < fNdim; k++) g(k) = random.Gaus(0.,1.);
457
458 // Multiply this vector by Lt to introduce the appropriate correlations
459 g *= (*Lt);
460
461 // Add the mean value offsets and store the results
462 for (int j=1; j<=fNdim; j++) {
465 }
466
467 unfres = Unfold(GetKReg());
468
469 for (Int_t j=1; j<=fNdim; j++) {
470 toymean->SetBinContent(j, toymean->GetBinContent(j) + unfres->GetBinContent(j)/ntoys);
471 }
472 delete unfres;
473 unfres = 0;
474 }
475
476 // Reset the random seed
477 random.SetSeed(seed);
478
479 //Now the toys for the covariance matrix
480 for (int i=1; i<=ntoys; i++) {
481
482 // Create a vector of unit Gaussian variables
484 for (Int_t k= 0; k < fNdim; k++) g(k) = random.Gaus(0.,1.);
485
486 // Multiply this vector by Lt to introduce the appropriate correlations
487 g *= (*Lt);
488
489 // Add the mean value offsets and store the results
490 for (int j=1; j<=fNdim; j++) {
493 }
494 unfres = Unfold(GetKReg());
495
496 for (Int_t j=1; j<=fNdim; j++) {
497 for (Int_t k=1; k<=fNdim; k++) {
498 unfcov->SetBinContent(j,k,unfcov->GetBinContent(j,k) + ( (unfres->GetBinContent(j) - toymean->GetBinContent(j))* (unfres->GetBinContent(k) - toymean->GetBinContent(k))/(ntoys-1)) );
499 }
500 }
501 delete unfres;
502 unfres = 0;
503 }
504 delete Lt;
505 delete toymean;
507
508 return unfcov;
509}
510
511////////////////////////////////////////////////////////////////////////////////
512/// Determine covariance matrix of unfolded spectrum from finite statistics in
513/// response matrix using pseudo experiments
514/// "ntoys" - number of pseudo experiments used for the propagation
515/// "seed" - seed for pseudo experiments
516
518{
519 fMatToyMode = true;
520 TH1D* unfres = 0;
521 TH2D* unfcov = (TH2D*)fAdet->Clone("unfcovmat");
522 unfcov->SetTitle("Toy covariance matrix");
523 for(int i=1; i<=fNdim; i++)
524 for(int j=1; j<=fNdim; j++)
525 unfcov->SetBinContent(i,j,0.);
526
527 //Now the toys for the detector response matrix
528 TRandom3 random(seed);
529
530 fToymat = (TH2D*)fAdet->Clone("toymat");
531 TH1D *toymean = (TH1D*)fXini->Clone("toymean");
532 for (Int_t j=1; j<=fNdim; j++) toymean->SetBinContent(j,0.);
533
534 for (int i=1; i<=ntoys; i++) {
535 for (Int_t k=1; k<=fNdim; k++) {
536 for (Int_t m=1; m<=fNdim; m++) {
537 if (fAdet->GetBinContent(k,m)) {
539 }
540 }
541 }
542
543 unfres = Unfold(GetKReg());
544
545 for (Int_t j=1; j<=fNdim; j++) {
546 toymean->SetBinContent(j, toymean->GetBinContent(j) + unfres->GetBinContent(j)/ntoys);
547 }
548 delete unfres;
549 unfres = 0;
550 }
551
552 // Reset the random seed
553 random.SetSeed(seed);
554
555 for (int i=1; i<=ntoys; i++) {
556 for (Int_t k=1; k<=fNdim; k++) {
557 for (Int_t m=1; m<=fNdim; m++) {
558 if (fAdet->GetBinContent(k,m))
560 }
561 }
562
563 unfres = Unfold(GetKReg());
564
565 for (Int_t j=1; j<=fNdim; j++) {
566 for (Int_t k=1; k<=fNdim; k++) {
567 unfcov->SetBinContent(j,k,unfcov->GetBinContent(j,k) + ( (unfres->GetBinContent(j) - toymean->GetBinContent(j))*(unfres->GetBinContent(k) - toymean->GetBinContent(k))/(ntoys-1)) );
568 }
569 }
570 delete unfres;
571 unfres = 0;
572 }
573 delete toymean;
575
576 return unfcov;
577}
578
579////////////////////////////////////////////////////////////////////////////////
580/// Returns d vector (for choosing appropriate regularisation)
581
583{
584 for (int i=1; i<=fDHist->GetNbinsX(); i++) {
586 }
587 return fDHist;
588}
589
590////////////////////////////////////////////////////////////////////////////////
591/// Returns singular values vector
592
594{
595 return fSVHist;
596}
597
598////////////////////////////////////////////////////////////////////////////////
599/// Returns the computed regularized covariance matrix corresponding to total uncertainties on measured spectrum as passed in the constructor.
600/// Note that this covariance matrix will not contain the effects of forced normalization if spectrum is normalized to unit area.
601
603{
604 return fXtau;
605}
606
607////////////////////////////////////////////////////////////////////////////////
608/// Returns the computed inverse of the covariance matrix
609
611{
612 return fXinv;
613}
614
615////////////////////////////////////////////////////////////////////////////////
616/// Returns the covariance matrix
617
619{
620 return fBcov;
621}
622
623////////////////////////////////////////////////////////////////////////////////
624/// Fill 1D histogram into vector
625
626void TSVDUnfold::H2V( const TH1D* histo, TVectorD& vec )
627{
628 for (Int_t i=0; i<histo->GetNbinsX(); i++) vec(i) = histo->GetBinContent(i+1);
629}
630
631////////////////////////////////////////////////////////////////////////////////
632/// Fill 1D histogram errors into vector
633
634void TSVDUnfold::H2Verr( const TH1D* histo, TVectorD& vec )
635{
636 for (Int_t i=0; i<histo->GetNbinsX(); i++) vec(i) = histo->GetBinError(i+1);
637}
638
639////////////////////////////////////////////////////////////////////////////////
640/// Fill vector into 1D histogram
641
642void TSVDUnfold::V2H( const TVectorD& vec, TH1D& histo )
643{
644 for(Int_t i=0; i<vec.GetNrows(); i++) histo.SetBinContent(i+1, vec(i));
645}
646
647////////////////////////////////////////////////////////////////////////////////
648/// Fill 2D histogram into matrix
649
650void TSVDUnfold::H2M( const TH2D* histo, TMatrixD& mat )
651{
652 for (Int_t j=0; j<histo->GetNbinsX(); j++) {
653 for (Int_t i=0; i<histo->GetNbinsY(); i++) {
654 mat(i,j) = histo->GetBinContent(i+1,j+1);
655 }
656 }
657}
658
659////////////////////////////////////////////////////////////////////////////////
660/// Fill 2D histogram into matrix
661
662void TSVDUnfold::M2H( const TMatrixD& mat, TH2D& histo )
663{
664 for (Int_t j=0; j<mat.GetNcols(); j++) {
665 for (Int_t i=0; i<mat.GetNrows(); i++) {
666 histo.SetBinContent(i+1,j+1, mat(i,j));
667 }
668 }
669}
670
671////////////////////////////////////////////////////////////////////////////////
672/// Divide entries of two vectors
673
674TVectorD TSVDUnfold::VecDiv( const TVectorD& vec1, const TVectorD& vec2, Int_t zero )
675{
676 TVectorD quot(vec1.GetNrows());
677 for (Int_t i=0; i<vec1.GetNrows(); i++) {
678 if (vec2(i) != 0) quot(i) = vec1(i) / vec2(i);
679 else {
680 if (zero) quot(i) = 0;
681 else quot(i) = vec1(i);
682 }
683 }
684 return quot;
685}
686
687////////////////////////////////////////////////////////////////////////////////
688/// Divide matrix entries by vector
689
690TMatrixD TSVDUnfold::MatDivVec( const TMatrixD& mat, const TVectorD& vec, Int_t zero )
691{
692 TMatrixD quotmat(mat.GetNrows(), mat.GetNcols());
693 for (Int_t i=0; i<mat.GetNrows(); i++) {
694 for (Int_t j=0; j<mat.GetNcols(); j++) {
695 if (vec(i) != 0) quotmat(i,j) = mat(i,j) / vec(i);
696 else {
697 if (zero) quotmat(i,j) = 0;
698 else quotmat(i,j) = mat(i,j);
699 }
700 }
701 }
702 return quotmat;
703}
704
705////////////////////////////////////////////////////////////////////////////////
706/// Multiply entries of two vectors
707
709{
710 TVectorD res(vec1.GetNrows());
711 for (Int_t i=0; i<vec1.GetNrows(); i++) res(i) = vec1(i) * vec2(i);
712 return res;
713}
714
715////////////////////////////////////////////////////////////////////////////////
716/// Compute curvature of vector
717
719{
720 return vec*(curv*vec);
721}
722
723////////////////////////////////////////////////////////////////////////////////
724
726{
727 Double_t eps = 0.00001;
728
729 Int_t ndim = tCurv.GetNrows();
730
731 // Init
732 tCurv *= 0;
733 tC *= 0;
734
735 if (fDdim == 0) for (Int_t i=0; i<ndim; i++) tC(i,i) = 1;
736 else if (fDdim == 1) {
737 for (Int_t i=0; i<ndim; i++) {
738 if (i < ndim-1) tC(i,i+1) = 1.0;
739 tC(i,i) = 1.0;
740 }
741 }
742 else if (fDdim == 2) {
743 for (Int_t i=0; i<ndim; i++) {
744 if (i > 0) tC(i,i-1) = 1.0;
745 if (i < ndim-1) tC(i,i+1) = 1.0;
746 tC(i,i) = -2.0;
747 }
748 tC(0,0) = -1.0;
749 tC(ndim-1,ndim-1) = -1.0;
750 }
751 else if (fDdim == 3) {
752 for (Int_t i=1; i<ndim-2; i++) {
753 tC(i,i-1) = 1.0;
754 tC(i,i) = -3.0;
755 tC(i,i+1) = 3.0;
756 tC(i,i+2) = -1.0;
757 }
758 }
759 else if (fDdim==4) {
760 for (Int_t i=0; i<ndim; i++) {
761 if (i > 0) tC(i,i-1) = -4.0;
762 if (i < ndim-1) tC(i,i+1) = -4.0;
763 if (i > 1) tC(i,i-2) = 1.0;
764 if (i < ndim-2) tC(i,i+2) = 1.0;
765 tC(i,i) = 6.0;
766 }
767 tC(0,0) = 2.0;
768 tC(ndim-1,ndim-1) = 2.0;
769 tC(0,1) = -3.0;
770 tC(ndim-2,ndim-1) = -3.0;
771 tC(1,0) = -3.0;
772 tC(ndim-1,ndim-2) = -3.0;
773 tC(1,1) = 6.0;
774 tC(ndim-2,ndim-2) = 6.0;
775 }
776 else if (fDdim == 5) {
777 for (Int_t i=2; i < ndim-3; i++) {
778 tC(i,i-2) = 1.0;
779 tC(i,i-1) = -5.0;
780 tC(i,i) = 10.0;
781 tC(i,i+1) = -10.0;
782 tC(i,i+2) = 5.0;
783 tC(i,i+3) = -1.0;
784 }
785 }
786 else if (fDdim == 6) {
787 for (Int_t i = 3; i < ndim - 3; i++) {
788 tC(i,i-3) = 1.0;
789 tC(i,i-2) = -6.0;
790 tC(i,i-1) = 15.0;
791 tC(i,i) = -20.0;
792 tC(i,i+1) = 15.0;
793 tC(i,i+2) = -6.0;
794 tC(i,i+3) = 1.0;
795 }
796 }
797
798 // Add epsilon to avoid singularities
799 for (Int_t i=0; i<ndim; i++) tC(i,i) = tC(i,i) + eps;
800
801 //Get curvature matrix
802 for (Int_t i=0; i<ndim; i++) {
803 for (Int_t j=0; j<ndim; j++) {
804 for (Int_t k=0; k<ndim; k++) {
805 tCurv(i,j) = tCurv(i,j) + tC(k,i)*tC(k,j);
806 }
807 }
808 }
809}
810
811////////////////////////////////////////////////////////////////////////////////
812
814{
815 fDHist = new TH1D( "dd", "d vector after orthogonal transformation", fNdim, 0, fNdim );
816 fDHist->Sumw2();
817
818 fSVHist = new TH1D( "sv", "Singular values of AC^-1", fNdim, 0, fNdim );
819 fSVHist->Sumw2();
820
821 fXtau = (TH2D*)fAdet->Clone("Xtau");
822 fXtau->SetTitle("Regularized covariance matrix");
823 fXtau->Sumw2();
824
825 fXinv = (TH2D*)fAdet->Clone("Xinv");
826 fXinv->SetTitle("Inverse covariance matrix");
827 fXinv->Sumw2();
828}
829
830////////////////////////////////////////////////////////////////////////////////
831/// naive regularised inversion cuts off small elements
832
834{
835 // init reduced matrix
836 const UInt_t n = mat.GetNrows();
837 UInt_t nn = 0;
838
839 UInt_t *ipos = new UInt_t[n];
840 // UInt_t ipos[n];
841
842 // find max diagonal entries
843 Double_t ymax = 0;
844 for (UInt_t i=0; i<n; i++) if (TMath::Abs(mat[i][i]) > ymax) ymax = TMath::Abs(mat[i][i]);
845
846 for (UInt_t i=0; i<n; i++) {
847
848 // save position of accepted entries
849 if (TMath::Abs(mat[i][i])/ymax > eps) ipos[nn++] = i;
850 }
851
852 // effective matrix
853 TMatrixDSym matwork( nn );
854 for (UInt_t in=0; in<nn; in++) for (UInt_t jn=0; jn<nn; jn++) matwork(in,jn) = 0;
855
856 // fill non-zero effective working matrix
857 for (UInt_t in=0; in<nn; in++) {
858
859 matwork[in][in] = mat[ipos[in]][ipos[in]];
860 for (UInt_t jn=in+1; jn<nn; jn++) {
861 matwork[in][jn] = mat[ipos[in]][ipos[jn]];
862 matwork[jn][in] = matwork[in][jn];
863 }
864 }
865
866 // invert
867 matwork.Invert();
868
869 // reinitialise old matrix
870 for (UInt_t i=0; i<n; i++) for (UInt_t j=0; j<n; j++) mat[i][j] = 0;
871
872 // refill inverted matrix in old one
873 for (UInt_t in=0; in<nn; in++) {
874 mat[ipos[in]][ipos[in]] = matwork[in][in];
875 for (UInt_t jn=in+1; jn<nn; jn++) {
876 mat[ipos[in]][ipos[jn]] = matwork[in][jn];
877 mat[ipos[jn]][ipos[in]] = mat[ipos[in]][ipos[jn]];
878 }
879 }
880 delete [] ipos;
881}
882
883////////////////////////////////////////////////////////////////////////////////
884/// Helper routine to compute chi-squared between distributions using the computed inverse of the covariance matrix for the unfolded spectrum as given in paper.
885
886Double_t TSVDUnfold::ComputeChiSquared( const TH1D& truspec, const TH1D& unfspec)
887{
888 UInt_t n = truspec.GetNbinsX();
889
890 // compute chi2
891 Double_t chi2 = 0;
892 for (UInt_t i=0; i<n; i++) {
893 for (UInt_t j=0; j<n; j++) {
894 chi2 += ( (truspec.GetBinContent( i+1 )-unfspec.GetBinContent( i+1 )) *
895 (truspec.GetBinContent( j+1 )-unfspec.GetBinContent( j+1 )) * fXinv->GetBinContent(i+1,j+1) );
896 }
897 }
898
899 return chi2;
900}
901
#define g(i)
Definition: RSha256.hxx:105
#define h(i)
Definition: RSha256.hxx:106
#define e(i)
Definition: RSha256.hxx:103
const Bool_t kFALSE
Definition: RtypesCore.h:90
#define ClassImp(name)
Definition: Rtypes.h:361
float ymax
Definition: THbookFile.cxx:93
TMatrixT< Double_t > TMatrixD
Definition: TMatrixDfwd.h:22
char * Form(const char *fmt,...)
Single Value Decomposition class.
Definition: TDecompSVD.h:24
const TVectorD & GetSig()
Definition: TDecompSVD.h:59
const TMatrixD & GetV()
Definition: TDecompSVD.h:57
const TMatrixD & GetU()
Definition: TDecompSVD.h:55
1-D histogram with a double per channel (see TH1 documentation)}
Definition: TH1.h:614
virtual void SetTitle(const char *title)
See GetStatOverflows for more information.
Definition: TH1.cxx:6345
virtual Int_t GetNbinsY() const
Definition: TH1.h:293
virtual Double_t GetBinError(Int_t bin) const
Return value of error associated to bin number bin.
Definition: TH1.cxx:8519
TObject * Clone(const char *newname=0) const
Make a complete copy of the underlying object.
Definition: TH1.cxx:2665
virtual Int_t GetNbinsX() const
Definition: TH1.h:292
virtual void SetBinError(Int_t bin, Double_t error)
Set the bin Error Note that this resets the bin eror option to be of Normal Type and for the non-empt...
Definition: TH1.cxx:8662
virtual void SetBinContent(Int_t bin, Double_t content)
Set bin content see convention for numbering bins in TH1::GetBin In case the bin number is greater th...
Definition: TH1.cxx:8678
virtual Double_t GetBinContent(Int_t bin) const
Return content of bin number bin.
Definition: TH1.cxx:4907
virtual void Sumw2(Bool_t flag=kTRUE)
Create structure to store sum of squares of weights.
Definition: TH1.cxx:8476
2-D histogram with a double per channel (see TH1 documentation)}
Definition: TH2.h:292
virtual Double_t GetBinContent(Int_t bin) const
Return content of bin number bin.
Definition: TH2.h:88
virtual void SetBinContent(Int_t bin, Double_t content)
Set bin content.
Definition: TH2.cxx:2480
Int_t GetNrows() const
Definition: TMatrixTBase.h:124
Int_t GetNcols() const
Definition: TMatrixTBase.h:127
TMatrixTSym< Element > & Invert(Double_t *det=0)
Invert the matrix and calculate its determinant Notice that the LU decomposition is used instead of B...
TMatrixT< Element > & Transpose(const TMatrixT< Element > &source)
Transpose matrix source.
Definition: TMatrixT.cxx:1472
Mother of all ROOT objects.
Definition: TObject.h:37
virtual void Fatal(const char *method, const char *msgfmt,...) const
Issue fatal error message.
Definition: TObject.cxx:919
virtual void Info(const char *method, const char *msgfmt,...) const
Issue info message.
Definition: TObject.cxx:865
Random number generator class based on M.
Definition: TRandom3.h:27
virtual void SetSeed(ULong_t seed=0)
Set the random generator sequence if seed is 0 (default value) a TUUID is generated and used to fill ...
Definition: TRandom3.cxx:207
virtual Double_t Gaus(Double_t mean=0, Double_t sigma=1)
Samples a random number from the standard Normal (Gaussian) Distribution with the given mean and sigm...
Definition: TRandom.cxx:263
virtual Int_t Poisson(Double_t mean)
Generates a random integer N according to a Poisson law.
Definition: TRandom.cxx:391
SVD Approach to Data Unfolding.
Definition: TSVDUnfold.h:46
TH1D * GetSV() const
Returns singular values vector.
Definition: TSVDUnfold.cxx:593
TH2D * GetBCov() const
Returns the covariance matrix.
Definition: TSVDUnfold.cxx:618
TH1D * fSVHist
Distribution of d (for checking regularization)
Definition: TSVDUnfold.h:132
TH2D * GetXtau() const
Returns the computed regularized covariance matrix corresponding to total uncertainties on measured s...
Definition: TSVDUnfold.cxx:602
Bool_t fToyMode
Toy MC detector response matrix.
Definition: TSVDUnfold.h:146
static void V2H(const TVectorD &vec, TH1D &histo)
Fill vector into 1D histogram.
Definition: TSVDUnfold.cxx:642
static void H2M(const TH2D *histo, TMatrixD &mat)
Fill 2D histogram into matrix.
Definition: TSVDUnfold.cxx:650
static void RegularisedSymMatInvert(TMatrixDSym &mat, Double_t eps=1e-3)
naive regularised inversion cuts off small elements
Definition: TSVDUnfold.cxx:833
static TVectorD CompProd(const TVectorD &vec1, const TVectorD &vec2)
Multiply entries of two vectors.
Definition: TSVDUnfold.cxx:708
static void M2H(const TMatrixD &mat, TH2D &histo)
Fill 2D histogram into matrix.
Definition: TSVDUnfold.cxx:662
Bool_t fMatToyMode
Internal switch for covariance matrix propagation.
Definition: TSVDUnfold.h:147
TSVDUnfold(const TH1D *bdat, const TH1D *bini, const TH1D *xini, const TH2D *Adet)
Alternative constructor User provides data and MC test spectra, as well as detector response matrix,...
Definition: TSVDUnfold.cxx:79
Bool_t fNormalize
Derivative for curvature matrix.
Definition: TSVDUnfold.h:129
const TH1D * fBini
Definition: TSVDUnfold.h:139
TH1D * Unfold(Int_t kreg)
Perform the unfolding with regularisation parameter kreg.
Definition: TSVDUnfold.cxx:243
Double_t ComputeChiSquared(const TH1D &truspec, const TH1D &unfspec)
Helper routine to compute chi-squared between distributions using the computed inverse of the covaria...
Definition: TSVDUnfold.cxx:886
TH2D * fToymat
Toy MC histogram.
Definition: TSVDUnfold.h:145
static Double_t GetCurvature(const TVectorD &vec, const TMatrixD &curv)
Compute curvature of vector.
Definition: TSVDUnfold.cxx:718
const TH1D * fBdat
Computed inverse of covariance matrix.
Definition: TSVDUnfold.h:137
static TMatrixD MatDivVec(const TMatrixD &mat, const TVectorD &vec, Int_t zero=0)
Divide matrix entries by vector.
Definition: TSVDUnfold.cxx:690
virtual ~TSVDUnfold()
Destructor.
Definition: TSVDUnfold.cxx:202
TH2D * fXinv
Computed regularized covariance matrix.
Definition: TSVDUnfold.h:134
static TVectorD VecDiv(const TVectorD &vec1, const TVectorD &vec2, Int_t zero=0)
Divide entries of two vectors.
Definition: TSVDUnfold.cxx:674
void FillCurvatureMatrix(TMatrixD &tCurv, TMatrixD &tC) const
Definition: TSVDUnfold.cxx:725
TH1D * GetD() const
Returns d vector (for choosing appropriate regularisation)
Definition: TSVDUnfold.cxx:582
Int_t GetKReg() const
Definition: TSVDUnfold.h:86
TH2D * fXtau
Distribution of singular values.
Definition: TSVDUnfold.h:133
TH1D * fDHist
Regularisation parameter.
Definition: TSVDUnfold.h:131
static void H2Verr(const TH1D *histo, TVectorD &vec)
Fill 1D histogram errors into vector.
Definition: TSVDUnfold.cxx:634
Int_t fDdim
Truth and reconstructed dimensions.
Definition: TSVDUnfold.h:128
TH2D * GetUnfoldCovMatrix(const TH2D *cov, Int_t ntoys, Int_t seed=1)
Determine for given input error matrix covariance matrix of unfolded spectrum from toy simulation giv...
Definition: TSVDUnfold.cxx:411
TH2D * GetAdetCovMatrix(Int_t ntoys, Int_t seed=1)
Determine covariance matrix of unfolded spectrum from finite statistics in response matrix using pseu...
Definition: TSVDUnfold.cxx:517
const TH2D * fAdet
Definition: TSVDUnfold.h:141
TH2D * GetXinv() const
Returns the computed inverse of the covariance matrix.
Definition: TSVDUnfold.cxx:610
static void H2V(const TH1D *histo, TVectorD &vec)
Fill 1D histogram into vector.
Definition: TSVDUnfold.cxx:626
Int_t fKReg
Normalize unfolded spectrum to 1.
Definition: TSVDUnfold.h:130
TH1D * fToyhisto
Definition: TSVDUnfold.h:144
void InitHistos()
Definition: TSVDUnfold.cxx:813
TH2D * fBcov
Definition: TSVDUnfold.h:138
const TH1D * fXini
Definition: TSVDUnfold.h:140
Int_t fNdim
Definition: TSVDUnfold.h:127
Basic string class.
Definition: TString.h:131
Element Sum() const
Compute sum of elements.
Definition: TVectorT.cxx:638
Int_t GetNrows() const
Definition: TVectorT.h:75
const Int_t n
Definition: legend1.C:16
static constexpr double L
Double_t Sqrt(Double_t x)
Definition: TMath.h:681
LongDouble_t Power(LongDouble_t x, LongDouble_t y)
Definition: TMath.h:725
Short_t Abs(Short_t d)
Definition: TMathBase.h:120
auto * m
Definition: textangle.C:8
auto * a
Definition: textangle.C:12