Logo ROOT  
Reference Guide
 
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
Loading...
Searching...
No Matches
RooHist.cxx
Go to the documentation of this file.
1/*****************************************************************************
2 * Project: RooFit *
3 * Package: RooFitCore *
4 * @(#)root/roofitcore:$Id$
5 * Authors: *
6 * WV, Wouter Verkerke, UC Santa Barbara, verkerke@slac.stanford.edu *
7 * DK, David Kirkby, UC Irvine, dkirkby@uci.edu *
8 * *
9 * Copyright (c) 2000-2005, Regents of the University of California *
10 * and Stanford University. All rights reserved. *
11 * *
12 * Redistribution and use in source and binary forms, *
13 * with or without modification, are permitted according to the terms *
14 * listed in LICENSE (http://roofit.sourceforge.net/license.txt) *
15 *****************************************************************************/
16
17/**
18\file RooHist.cxx
19\class RooHist
20\ingroup Roofitcore
21
22Graphical representation of binned data based on the
23TGraphAsymmErrors class. Error bars are calculated using either Poisson
24or Binomial statistics. A RooHist is used to represent histograms in
25a RooPlot.
26**/
27
28#include "RooHist.h"
29
30#include "RooAbsRealLValue.h"
31#include "RooHistError.h"
32#include "RooCurve.h"
33#include "RooMsgService.h"
34#include "RooProduct.h"
35#include "RooConstVar.h"
36
37#include "TH1.h"
38#include "Riostream.h"
39#include <iomanip>
40
41
42
43////////////////////////////////////////////////////////////////////////////////
44/// Create an empty histogram that can be filled with the addBin()
45/// and addAsymmetryBin() methods. Use the optional parameter to
46/// specify the confidence level in units of sigma to use for
47/// calculating error bars. The nominal bin width specifies the
48/// default used by addBin(), and is used to set the relative
49/// normalization of bins with different widths.
50
51RooHist::RooHist(double nominalBinWidth, double nSigma, double /*xErrorFrac*/, double /*scaleFactor*/)
52 : _nominalBinWidth(nominalBinWidth), _nSigma(nSigma), _rawEntries(-1)
53{
54 initialize();
55}
56
57
58////////////////////////////////////////////////////////////////////////////////
59/// Create a histogram from the contents of the specified TH1 object
60/// which may have fixed or variable bin widths. Error bars are
61/// calculated using Poisson statistics. Prints a warning and rounds
62/// any bins with non-integer contents. Use the optional parameter to
63/// specify the confidence level in units of sigma to use for
64/// calculating error bars. The nominal bin width specifies the
65/// default used by addBin(), and is used to set the relative
66/// normalization of bins with different widths. If not set, the
67/// nominal bin width is calculated as range/nbins.
68
70 bool correctForBinWidth, double scaleFactor)
71 : _nominalBinWidth(nominalBinWidth), _nSigma(nSigma), _rawEntries(-1)
72{
73 if(etype == RooAbsData::Poisson && correctForBinWidth == false) {
74 throw std::invalid_argument(
75 "To ensure consistent behavior prior releases, it's not possible to create a RooHist from a TH1 with no bin width correction when using Poisson errors.");
76 }
77
78 initialize();
79 // copy the input histogram's name and title
80 SetName(data.GetName());
81 SetTitle(data.GetTitle());
82 // calculate our nominal bin width if necessary
83 if(_nominalBinWidth == 0) {
84 const TAxis *axis= ((TH1&)data).GetXaxis();
85 if(axis->GetNbins() > 0) _nominalBinWidth= (axis->GetXmax() - axis->GetXmin())/axis->GetNbins();
86 }
87 setYAxisLabel(data.GetYaxis()->GetTitle());
88
89 // initialize our contents from the input histogram's contents
90 Int_t nbin= data.GetNbinsX();
91 for(Int_t bin= 1; bin <= nbin; bin++) {
92 Axis_t x= data.GetBinCenter(bin);
93 Stat_t y= data.GetBinContent(bin);
94 Stat_t dy = data.GetBinError(bin) ;
95 if (etype==RooAbsData::Poisson) {
96 addBin(x,y,data.GetBinWidth(bin),xErrorFrac,scaleFactor);
97 } else if (etype==RooAbsData::SumW2) {
98 addBinWithError(x,y,dy,dy,data.GetBinWidth(bin),xErrorFrac,correctForBinWidth,scaleFactor);
99 } else {
100 addBinWithError(x,y,0,0,data.GetBinWidth(bin),xErrorFrac,correctForBinWidth,scaleFactor);
101 }
102 }
103 // add over/underflow bins to our event count
104 _entries+= data.GetBinContent(0) + data.GetBinContent(nbin+1);
105}
106
107
108
109////////////////////////////////////////////////////////////////////////////////
110/// Create a histogram from the asymmetry between the specified TH1 objects
111/// which may have fixed or variable bin widths, but which must both have
112/// the same binning. The asymmetry is calculated as (1-2)/(1+2). Error bars are
113/// calculated using Binomial statistics. Prints a warning and rounds
114/// any bins with non-integer contents. Use the optional parameter to
115/// specify the confidence level in units of sigma to use for
116/// calculating error bars. The nominal bin width specifies the
117/// default used by addAsymmetryBin(), and is used to set the relative
118/// normalization of bins with different widths. If not set, the
119/// nominal bin width is calculated as range/nbins.
120
122 double xErrorFrac, bool efficiency, double scaleFactor)
123 : _nominalBinWidth(nominalBinWidth), _nSigma(nSigma), _rawEntries(-1)
124{
125 initialize();
126 // copy the first input histogram's name and title
127 SetName(data1.GetName());
128 SetTitle(data1.GetTitle());
129 // calculate our nominal bin width if necessary
130 if(_nominalBinWidth == 0) {
131 const TAxis *axis= data1.GetXaxis();
132 if(axis->GetNbins() > 0) _nominalBinWidth= (axis->GetXmax() - axis->GetXmin())/axis->GetNbins();
133 }
134
135 if (!efficiency) {
136 setYAxisLabel(Form("Asymmetry (%s - %s)/(%s + %s)",
137 data1.GetName(),data2.GetName(),data1.GetName(),data2.GetName()));
138 } else {
139 setYAxisLabel(Form("Efficiency (%s)/(%s + %s)",
140 data1.GetName(),data1.GetName(),data2.GetName()));
141 }
142 // initialize our contents from the input histogram contents
143 Int_t nbin= data1.GetNbinsX();
144 if(data2.GetNbinsX() != nbin) {
145 coutE(InputArguments) << "RooHist::RooHist: histograms have different number of bins" << std::endl;
146 return;
147 }
148 for(Int_t bin= 1; bin <= nbin; bin++) {
149 Axis_t x= data1.GetBinCenter(bin);
150 if(std::abs(data2.GetBinCenter(bin)-x)>1e-10) {
151 coutW(InputArguments) << "RooHist::RooHist: histograms have different centers for bin " << bin << std::endl;
152 }
153 Stat_t y1= data1.GetBinContent(bin);
154 Stat_t y2= data2.GetBinContent(bin);
155 if (!efficiency) {
156
157 if (etype==RooAbsData::Poisson) {
158 addAsymmetryBin(x,roundBin(y1),roundBin(y2),data1.GetBinWidth(bin),xErrorFrac,scaleFactor);
159 } else if (etype==RooAbsData::SumW2) {
160 Stat_t dy1= data1.GetBinError(bin);
161 Stat_t dy2= data2.GetBinError(bin);
162 addAsymmetryBinWithError(x,y1,y2,dy1,dy2,data1.GetBinWidth(bin),xErrorFrac,scaleFactor);
163 } else {
164 addAsymmetryBinWithError(x,y1,y2,0,0,data1.GetBinWidth(bin),xErrorFrac,scaleFactor);
165 }
166
167 } else {
168
169 if (etype==RooAbsData::Poisson) {
170 addEfficiencyBin(x,roundBin(y1),roundBin(y2),data1.GetBinWidth(bin),xErrorFrac,scaleFactor);
171 } else if (etype==RooAbsData::SumW2) {
172 Stat_t dy1= data1.GetBinError(bin);
173 Stat_t dy2= data2.GetBinError(bin);
174 addEfficiencyBinWithError(x,y1,y2,dy1,dy2,data1.GetBinWidth(bin),xErrorFrac,scaleFactor);
175 } else {
176 addEfficiencyBinWithError(x,y1,y2,0,0,data1.GetBinWidth(bin),xErrorFrac,scaleFactor);
177 }
178
179 }
180
181 }
182 // we do not have a meaningful number of entries
183 _entries= -1;
184}
185
186
187
188////////////////////////////////////////////////////////////////////////////////
189/// Create histogram as sum of two existing histograms. If Poisson errors are selected the histograms are
190/// added and Poisson confidence intervals are calculated for the summed content. If wgt1 and wgt2 are not
191/// 1 in this mode, a warning message is printed. If SumW2 errors are selected the histograms are added
192/// and the histograms errors are added in quadrature, taking the weights into account.
193
195 double xErrorFrac)
196 : _nominalBinWidth(hist1._nominalBinWidth), _nSigma(hist1._nSigma), _rawEntries(-1)
197{
198 // Initialize the histogram
199 initialize() ;
200
201 // Copy all non-content properties from hist1
202 SetName(hist1.GetName()) ;
203 SetTitle(hist1.GetTitle()) ;
204
205 setYAxisLabel(hist1.getYAxisLabel()) ;
206
207 if (!hist1.hasIdenticalBinning(hist2)) {
208 coutE(InputArguments) << "RooHist::RooHist input histograms have incompatible binning, combined histogram will remain empty" << std::endl ;
209 return ;
210 }
211
212 if (etype==RooAbsData::Poisson) {
213 // Add histograms with Poisson errors
214
215 // Issue warning if weights are not 1
216 if (wgt1!=1.0 || wgt2 != 1.0) {
217 coutW(InputArguments) << "RooHist::RooHist: WARNING: Poisson errors of weighted sum of two histograms is not well defined! " << std::endl
218 << " Summed histogram bins will rounded to nearest integer for Poisson confidence interval calculation" << std::endl ;
219 }
220
221 // Add histograms, calculate Poisson confidence interval on sum value
222 Int_t i;
223 Int_t n = hist1.GetN();
224 for(i=0 ; i<n ; i++) {
225 double x1;
226 double y1;
227 double x2;
228 double y2;
229 double dx1;
230 hist1.GetPoint(i,x1,y1) ;
231 dx1 = hist1.GetErrorX(i) ;
232 hist2.GetPoint(i,x2,y2) ;
234 }
235
236 } else {
237 // Add histograms with SumW2 errors
238
239 // Add histograms, calculate combined sum-of-weights error
240 Int_t i;
241 Int_t n = hist1.GetN();
242 for(i=0 ; i<n ; i++) {
243 double x1;
244 double y1;
245 double x2;
246 double y2;
247 double dx1;
248 double dy1;
249 double dy2;
250 hist1.GetPoint(i,x1,y1) ;
251 dx1 = hist1.GetErrorX(i) ;
252 dy1 = hist1.GetErrorY(i) ;
253 dy2 = hist2.GetErrorY(i) ;
254 hist2.GetPoint(i,x2,y2) ;
255 double dy = sqrt(wgt1*wgt1*dy1*dy1+wgt2*wgt2*dy2*dy2) ;
257 }
258 }
259
260}
261
262
263////////////////////////////////////////////////////////////////////////////////
264/// Create histogram from a pdf or function. Errors are computed based on the fit result provided.
265///
266/// This signature is intended for unfolding/deconvolution scenarios,
267/// where a pdf is constructed as "data minus background" and is thus
268/// intended to be displayed as "data" (or at least data-like).
269/// Usage of this signature is triggered by the draw style "P" in RooAbsReal::plotOn.
270///
271/// More details.
272/// \param[in] f The function to be plotted.
273/// \param[in] x The variable on the x-axis
274/// \param[in] xErrorFrac Size of the error in x as a fraction of the bin width
275/// \param[in] scaleFactor arbitrary scaling of the y-values
276/// \param[in] normVars variables over which to normalize
277/// \param[in] fr fit result
278RooHist::RooHist(const RooAbsReal &f, RooAbsRealLValue &x, double xErrorFrac, double scaleFactor,
279 const RooArgSet *normVars, const RooFitResult *fr)
280 : _nSigma(1), _rawEntries(-1)
281{
282 // grab the function's name and title
283 SetName(f.GetName());
284 std::string title{f.GetTitle()};
285 SetTitle(title.c_str());
286 // append " ( [<funit> ][/ <xunit> ])" to our y-axis label if necessary
287 if(0 != strlen(f.getUnit()) || 0 != strlen(x.getUnit())) {
288 title += " ( ";
289 if(0 != strlen(f.getUnit())) {
290 title += f.getUnit();
291 title += " ";
292 }
293 if(0 != strlen(x.getUnit())) {
294 title += "/ ";
295 title += x.getUnit();
296 title += " ";
297 }
298 title += ")";
299 }
300 setYAxisLabel(title.c_str());
301
302 RooProduct scaledFunc{"scaled_func", "scaled_func", {f, RooFit::RooConst(scaleFactor)}};
303 std::unique_ptr<RooAbsFunc> funcPtr{scaledFunc.bindVars(x, normVars, true)};
304
305 // calculate the points to add to our curve
306 int xbins = x.numBins();
307 RooArgSet nset;
308 if(normVars) nset.add(*normVars);
309 for(int i=0; i<xbins; ++i){
310 double xval = x.getBinning().binCenter(i);
311 double xwidth = x.getBinning().binWidth(i);
313 double yval = (*funcPtr)(&xval);
314 double yerr = std::sqrt(yval);
315 if(fr) yerr = f.getPropagatedError(*fr,nset);
317 _entries += yval;
318 }
319 _nominalBinWidth = 1.;
320}
321
322
323////////////////////////////////////////////////////////////////////////////////
324/// Perform common initialization for all constructors.
325
327{
329}
330
331
332////////////////////////////////////////////////////////////////////////////////
333/// Return the number of events of the dataset associated with this RooHist.
334/// This is the number of events in the RooHist itself, unless a different
335/// value was specified through setRawEntries()
336
338{
339 return (_rawEntries==-1 ? _entries : _rawEntries) ;
340}
341
342
343////////////////////////////////////////////////////////////////////////////////
344/// Calculate integral of histogram in given range
345
346double RooHist::getFitRangeNEvt(double xlo, double xhi) const
347{
348 double sum(0) ;
349 for (int i=0 ; i<GetN() ; i++) {
350 double x;
351 double y;
352
353 GetPoint(i,x,y) ;
354
355 if (x>=xlo && x<=xhi) {
356 // We have to use the original weights of the histogram, because the
357 // scaled points have nothing to do anymore with event weights in the
358 // case of non-uniform binning. For backwards compatibility with the
359 // RooHist version 1, we first need to check if the `_originalWeights`
360 // member is filled.
361 sum += _originalWeights.empty() ? y : _originalWeights[i];
362 }
363 }
364
365 if (_rawEntries!=-1) {
366 coutW(Plotting) << "RooHist::getFitRangeNEvt() WARNING: The number of normalisation events associated to histogram " << GetName() << " is not equal to number of events in this histogram."
367 << "\n\t\t This is due a cut being applied while plotting the data. Automatic normalisation over a sub-range of a plot variable assumes"
368 << "\n\t\t that the effect of that cut is uniform across the plot, which may be an incorrect assumption. To obtain a correct normalisation, it needs to be passed explicitly:"
369 << "\n\t\t\t data->plotOn(frame01,CutRange(\"SB1\"));"
370 << "\n\t\t\t const double nData = data->sumEntries(\"\", \"SB1\"); //or the cut string such as sumEntries(\"x > 0.\");"
371 << "\n\t\t\t model.plotOn(frame01, RooFit::Normalization(nData, RooAbsReal::NumEvent), ProjectionRange(\"SB1\"));" << std::endl ;
373 }
374
375 return sum ;
376}
377
378
379////////////////////////////////////////////////////////////////////////////////
380/// Return the nearest positive integer to the input value
381/// and print a warning if an adjustment is required.
382
384{
385 if(y < 0) {
386 coutW(Plotting) << fName << "::roundBin: rounding negative bin contents to zero: " << y << std::endl;
387 return 0;
388 }
389 Int_t n= (Int_t)(y+0.5);
390 if(std::abs(y-n)>1e-6) {
391 coutW(Plotting) << fName << "::roundBin: rounding non-integer bin contents: " << y << std::endl;
392 }
393 return n;
394}
395
396
397void RooHist::addPoint(Axis_t binCenter, double y, double yscale, double exlow, double exhigh, double eylow, double eyhigh)
398{
399 const int index = GetN();
400 SetPoint(index, binCenter, y*yscale);
401
402 // If the scale is negative, the low and high errors must be swapped
403 if(std::abs(yscale) < 0) {
404 std::swap(eylow, eyhigh);
405 }
406
407 SetPointError(index, exlow, exhigh, std::abs(yscale) * eylow, std::abs(yscale) * eyhigh);
408
411
412 // We also track the original weights of the histogram, because if we only
413 // have info on the scaled points it's not possible anymore to compute the
414 // number of events in a subrange of the RooHist.
415 _originalWeights.resize(index + 1);
417}
418
419
420////////////////////////////////////////////////////////////////////////////////
421/// Add a bin to this histogram with the specified integer bin contents
422/// and using an error bar calculated with Poisson statistics. The bin width
423/// is used to set the relative scale of bins with different widths.
424
425void RooHist::addBin(Axis_t binCenter, double n, double binWidth, double xErrorFrac, double scaleFactor)
426{
427 if (n<0) {
428 coutW(Plotting) << "RooHist::addBin(" << GetName() << ") WARNING: negative entry set to zero when Poisson error bars are requested" << std::endl ;
429 }
430
431 double scale= 1;
432 if(binWidth > 0) {
433 scale= _nominalBinWidth/binWidth;
434 }
435 _entries+= n;
436
437 // calculate Poisson errors for this bin
438 double ym;
439 double yp;
440 double dx(0.5 * binWidth);
441
442 if (std::abs((double)((n-Int_t(n))>1e-5))) {
443 // need interpolation
444 double ym1(0);
445 double yp1(0);
446 double ym2(0);
447 double yp2(0);
448 Int_t n1 = Int_t(n) ;
449 Int_t n2 = n1+1 ;
450 if(!RooHistError::instance().getPoissonInterval(n1,ym1,yp1,_nSigma) ||
451 !RooHistError::instance().getPoissonInterval(n2,ym2,yp2,_nSigma)) {
452 coutE(Plotting) << "RooHist::addBin: unable to add bin with " << n << " events" << std::endl;
453 }
454 ym = ym1 + (n-n1)*(ym2-ym1) ;
455 yp = yp1 + (n-n1)*(yp2-yp1) ;
456 coutW(Plotting) << "RooHist::addBin(" << GetName()
457 << ") WARNING: non-integer bin entry " << n << " with Poisson errors, interpolating between Poisson errors of adjacent integer" << std::endl ;
458 } else {
459 // integer case
460 if(!RooHistError::instance().getPoissonInterval(Int_t(n),ym,yp,_nSigma)) {
461 coutE(Plotting) << "RooHist::addBin: unable to add bin with " << n << " events" << std::endl;
462 return;
463 }
464 }
465
466 addPoint(binCenter,n, scale*scaleFactor,dx*xErrorFrac,dx*xErrorFrac, n-ym, yp-n);
467}
468
469
470
471////////////////////////////////////////////////////////////////////////////////
472/// Add a bin to this histogram with the specified bin contents
473/// and error. The bin width is used to set the relative scale of
474/// bins with different widths.
475
476void RooHist::addBinWithError(Axis_t binCenter, double n, double elow, double ehigh, double binWidth,
477 double xErrorFrac, bool correctForBinWidth, double scaleFactor)
478{
479 double scale= 1;
480 if(binWidth > 0 && correctForBinWidth) {
481 scale= _nominalBinWidth/binWidth;
482 }
483 _entries+= n;
484
485 double dx(0.5*binWidth) ;
486 addPoint(binCenter,n, scale*scaleFactor,dx*xErrorFrac,dx*xErrorFrac, elow, ehigh);
487}
488
489
490
491
492////////////////////////////////////////////////////////////////////////////////
493/// Add a bin to this histogram with the specified bin contents
494/// and error. The bin width is used to set the relative scale of
495/// bins with different widths.
496
497void RooHist::addBinWithXYError(Axis_t binCenter, double n, double exlow, double exhigh, double eylow, double eyhigh,
498 double scaleFactor)
499{
500 _entries+= n;
501
502 addPoint(binCenter, n, scaleFactor,exlow,exhigh, eylow, eyhigh);
503}
504
505
506
507
508
509////////////////////////////////////////////////////////////////////////////////
510/// Add a bin to this histogram with the value (n1-n2)/(n1+n2)
511/// using an error bar calculated with Binomial statistics.
512
513void RooHist::addAsymmetryBin(Axis_t binCenter, Int_t n1, Int_t n2, double binWidth, double xErrorFrac, double scaleFactor)
514{
515 // calculate Binomial errors for this bin
516 double ym;
517 double yp;
518 double dx(0.5 * binWidth);
519 if(!RooHistError::instance().getBinomialIntervalAsym(n1,n2,ym,yp,_nSigma)) {
520 coutE(Plotting) << "RooHist::addAsymmetryBin: unable to calculate binomial error for bin with " << n1 << "," << n2 << " events" << std::endl;
521 return;
522 }
523
524 const Int_t denominator = n1 + n2;
525 double a = 0 == denominator ? 0. : (double)(n1 - n2) / (denominator);
526 addPoint(binCenter, a, scaleFactor,dx*xErrorFrac,dx*xErrorFrac, a-ym, yp-a);
527}
528
529
530
531////////////////////////////////////////////////////////////////////////////////
532/// Add a bin to this histogram with the value (n1-n2)/(n1+n2)
533/// using an error bar calculated with Binomial statistics.
534
535void RooHist::addAsymmetryBinWithError(Axis_t binCenter, double n1, double n2, double en1, double en2, double binWidth, double xErrorFrac, double scaleFactor)
536{
537 // calculate Binomial errors for this bin
538 double ym;
539 double yp;
540 double dx(0.5 * binWidth);
541 double a= (double)(n1-n2)/(n1+n2);
542
543 double error = 2*sqrt( pow(en1,2)*pow(n2,2) + pow(en2,2)*pow(n1,2) ) / pow(n1+n2,2) ;
544 ym=a-error ;
545 yp=a+error ;
546
547 addPoint(binCenter,a, scaleFactor, dx*xErrorFrac,dx*xErrorFrac, a-ym, yp-a);
548}
549
550
551
552////////////////////////////////////////////////////////////////////////////////
553/// Add a bin to this histogram with the value n1/(n1+n2)
554/// using an error bar calculated with Binomial statistics.
555
556void RooHist::addEfficiencyBin(Axis_t binCenter, Int_t n1, Int_t n2, double binWidth, double xErrorFrac, double scaleFactor)
557{
558 double a= (double)(n1)/(n1+n2);
559
560 // calculate Binomial errors for this bin
561 double ym;
562 double yp;
563 double dx(0.5 * binWidth);
564 if(!RooHistError::instance().getBinomialIntervalEff(n1,n2,ym,yp,_nSigma)) {
565 coutE(Plotting) << "RooHist::addEfficiencyBin: unable to calculate binomial error for bin with " << n1 << "," << n2 << " events" << std::endl;
566 return;
567 }
568
569 addPoint(binCenter,a, scaleFactor,dx*xErrorFrac,dx*xErrorFrac, a-ym, yp-a);
570}
571
572
573
574////////////////////////////////////////////////////////////////////////////////
575/// Add a bin to this histogram with the value n1/(n1+n2)
576/// using an error bar calculated with Binomial statistics.
577
578void RooHist::addEfficiencyBinWithError(Axis_t binCenter, double n1, double n2, double en1, double en2, double binWidth, double xErrorFrac, double scaleFactor)
579{
580 double a= (double)(n1)/(n1+n2);
581
582 double error = sqrt( pow(en1,2)*pow(n2,2) + pow(en2,2)*pow(n1,2) ) / pow(n1+n2,2) ;
583
584 // calculate Binomial errors for this bin
585 double ym;
586 double yp;
587 double dx(0.5 * binWidth);
588 ym=a-error ;
589 yp=a+error ;
590
591
592 addPoint(binCenter,a, scaleFactor,dx*xErrorFrac,dx*xErrorFrac, a-ym, yp-a);
593}
594
595
596////////////////////////////////////////////////////////////////////////////////
597/// Return true if binning of this RooHist is identical to that of 'other'
598
600{
601 // First check if number of bins is the same
602 if (GetN() != other.GetN()) {
603 return false ;
604 }
605
606 // Next require that all bin centers are the same
607 Int_t i ;
608 for (i=0 ; i<GetN() ; i++) {
609 double x1;
610 double x2;
611 double y1;
612 double y2;
613
614 GetPoint(i,x1,y1) ;
615 other.GetPoint(i,x2,y2) ;
616
617 if (std::abs(x1-x2) > 1e-10 * _nominalBinWidth) {
618 return false ;
619 }
620
621 }
622
623 return true ;
624}
625
626
627
628////////////////////////////////////////////////////////////////////////////////
629/// Return true if contents of this RooHist is identical within given
630/// relative tolerance to that of 'other'
631
632bool RooHist::isIdentical(const RooHist& other, double tol, bool verbose) const
633{
634 // Make temporary TH1s output of RooHists to perform Kolmogorov test
635 TH1::AddDirectory(false) ;
636 TH1F h_self("h_self","h_self",GetN(),0,1) ;
637 TH1F h_other("h_other","h_other",GetN(),0,1) ;
638 TH1::AddDirectory(true) ;
639
640 for (Int_t i=0 ; i<GetN() ; i++) {
641 h_self.SetBinContent(i+1,GetY()[i]) ;
642 h_other.SetBinContent(i+1,other.GetY()[i]) ;
643 }
644
645 double M = h_self.KolmogorovTest(&h_other,"M") ;
646 if (M>tol) {
647 double kprob = h_self.KolmogorovTest(&h_other) ;
648 if(verbose) std::cout << "RooHist::isIdentical() tolerance exceeded M=" << M << " (tol=" << tol << "), corresponding prob = " << kprob << std::endl ;
649 return false ;
650 }
651
652 return true ;
653}
654
655
656
657////////////////////////////////////////////////////////////////////////////////
658/// Print info about this histogram to the specified output stream.
659///
660/// Standard: number of entries
661/// Shape: error CL and maximum value
662/// Verbose: print our bin contents and errors
663
664void RooHist::printMultiline(std::ostream& os, Int_t contents, bool verbose, TString indent) const
665{
666 RooPlotable::printMultiline(os,contents,verbose,indent);
667 os << indent << "--- RooHist ---" << std::endl;
668 Int_t n= GetN();
669 os << indent << " Contains " << n << " bins" << std::endl;
670 if(verbose) {
671 os << indent << " Errors calculated at" << _nSigma << "-sigma CL" << std::endl;
672 os << indent << " Bin Contents:" << std::endl;
673 for(Int_t i= 0; i < n; i++) {
674 os << indent << std::setw(3) << i << ") x= " << fX[i];
675 if(fEXhigh[i] > 0 || fEXlow[i] > 0) {
676 os << " +" << fEXhigh[i] << " -" << fEXlow[i];
677 }
678 os << " , y = " << fY[i] << " +" << fEYhigh[i] << " -" << fEYlow[i] << std::endl;
679 }
680 }
681}
682
683
684
685////////////////////////////////////////////////////////////////////////////////
686/// Print name of RooHist
687
688void RooHist::printName(std::ostream& os) const
689{
690 os << GetName() ;
691}
692
693
694
695////////////////////////////////////////////////////////////////////////////////
696/// Print title of RooHist
697
698void RooHist::printTitle(std::ostream& os) const
699{
700 os << GetTitle() ;
701}
702
703
704
705////////////////////////////////////////////////////////////////////////////////
706/// Print class name of RooHist
707
708void RooHist::printClassName(std::ostream& os) const
709{
710 os << ClassName() ;
711}
712
713
714std::unique_ptr<RooHist> RooHist::createEmptyResidHist(const RooCurve& curve, bool normalize) const
715{
716 // Copy all non-content properties from hist1
717 auto hist = std::make_unique<RooHist>(_nominalBinWidth) ;
718 const std::string name = GetName() + std::string("_") + curve.GetName();
719 const std::string title = GetTitle() + std::string(" and ") + curve.GetTitle();
720 hist->SetName(((normalize ? "pull_" : "resid_") + name).c_str()) ;
721 hist->SetTitle(((normalize ? "Pull of " : "Residual of ") + title).c_str()) ;
722
723 return hist;
724}
725
726
727void RooHist::fillResidHist(RooHist & residHist, const RooCurve& curve,bool normalize, bool useAverage) const
728{
729 // Determine range of curve
730 double xstart;
731 double xstop;
732 double y;
733 curve.GetPoint(0,xstart,y) ;
734 curve.GetPoint(curve.GetN()-1,xstop,y) ;
735
736 // Add histograms, calculate Poisson confidence interval on sum value
737 for(Int_t i=0 ; i<GetN() ; i++) {
738 double x;
739 double point;
740 GetPoint(i,x,point) ;
741
742 // Only calculate pull for bins inside curve range
744
745 double yy ;
746 if (useAverage) {
747 double exl = GetErrorXlow(i);
748 double exh = GetErrorXhigh(i) ;
749 if (exl<=0 ) exl = GetErrorX(i);
750 if (exh<=0 ) exh = GetErrorX(i);
751 if (exl<=0 ) exl = 0.5*getNominalBinWidth();
752 if (exh<=0 ) exh = 0.5*getNominalBinWidth();
753 yy = point - curve.average(x-exl,x+exh) ;
754 } else {
755 yy = point - curve.interpolate(x) ;
756 }
757
758 double dyl = GetErrorYlow(i) ;
759 double dyh = GetErrorYhigh(i) ;
760 if (normalize) {
761 double norm = (yy>0?dyl:dyh);
762 if (norm==0.) {
763 coutW(Plotting) << "RooHist::makeResisHist(" << GetName() << ") WARNING: point " << i << " has zero error, setting residual to zero" << std::endl;
764 yy=0 ;
765 dyh=0 ;
766 dyl=0 ;
767 } else {
768 yy /= norm;
769 dyh /= norm;
770 dyl /= norm;
771 }
772 }
773 residHist.addBinWithError(x,yy,dyl,dyh);
774 }
775}
776
777
778////////////////////////////////////////////////////////////////////////////////
779/// Create and return RooHist containing residuals w.r.t to given curve.
780/// If normalize is true, the residuals are normalized by the histogram
781/// errors creating a RooHist with pull values
782
783RooHist* RooHist::makeResidHist(const RooCurve& curve, bool normalize, bool useAverage) const
784{
785 RooHist* hist = createEmptyResidHist(curve, normalize).release();
786 fillResidHist(*hist, curve, normalize, useAverage);
787 return hist ;
788}
#define f(i)
Definition RSha256.hxx:104
#define a(i)
Definition RSha256.hxx:99
#define e(i)
Definition RSha256.hxx:103
#define coutW(a)
#define coutE(a)
int Int_t
Definition RtypesCore.h:45
static void indent(ostringstream &buf, int indent_level)
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t index
Option_t Option_t TPoint TPoint const char x2
Option_t Option_t TPoint TPoint const char x1
Option_t Option_t TPoint TPoint const char y2
Option_t Option_t SetMarkerStyle
Option_t Option_t TPoint TPoint const char y1
char name[80]
Definition TGX11.cxx:110
char * Form(const char *fmt,...)
Formats a string in a circular formatting buffer.
Definition TString.cxx:2489
virtual bool add(const RooAbsArg &var, bool silent=false)
Add the specified argument to list.
Abstract base class for objects that represent a real value that may appear on the left hand side of ...
Abstract base class for objects that represent a real value and implements functionality common to al...
Definition RooAbsReal.h:59
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition RooArgSet.h:24
One-dimensional graphical representation of a real-valued function.
Definition RooCurve.h:36
RooFitResult is a container class to hold the input and output of a PDF fit to a dataset.
static const RooHistError & instance()
Return a reference to a singleton object that is created the first time this method is called.
Graphical representation of binned data based on the TGraphAsymmErrors class.
Definition RooHist.h:29
RooHist * makeResidHist(const RooCurve &curve, bool normalize=false, bool useAverage=false) const
Create and return RooHist containing residuals w.r.t to given curve.
Definition RooHist.cxx:783
double _nominalBinWidth
Average bin width.
Definition RooHist.h:98
double _rawEntries
Number of entries in source dataset.
Definition RooHist.h:101
void printClassName(std::ostream &os) const override
Print class name of RooHist.
Definition RooHist.cxx:708
void addEfficiencyBin(Axis_t binCenter, Int_t n1, Int_t n2, double binWidth=0, double xErrorFrac=1.0, double scaleFactor=1.0)
Add a bin to this histogram with the value n1/(n1+n2) using an error bar calculated with Binomial sta...
Definition RooHist.cxx:556
void fillResidHist(RooHist &residHist, const RooCurve &curve, bool normalize=false, bool useAverage=false) const
Definition RooHist.cxx:727
void initialize()
Perform common initialization for all constructors.
Definition RooHist.cxx:326
void addBinWithError(Axis_t binCenter, double n, double elow, double ehigh, double binWidth=0, double xErrorFrac=1.0, bool correctForBinWidth=true, double scaleFactor=1.0)
Add a bin to this histogram with the specified bin contents and error.
Definition RooHist.cxx:476
void addEfficiencyBinWithError(Axis_t binCenter, double n1, double n2, double en1, double en2, double binWidth=0, double xErrorFrac=1.0, double scaleFactor=1.0)
Add a bin to this histogram with the value n1/(n1+n2) using an error bar calculated with Binomial sta...
Definition RooHist.cxx:578
RooHist()
Definition RooHist.h:31
void printName(std::ostream &os) const override
Print name of RooHist.
Definition RooHist.cxx:688
void printMultiline(std::ostream &os, Int_t content, bool verbose=false, TString indent="") const override
Print info about this histogram to the specified output stream.
Definition RooHist.cxx:664
std::unique_ptr< RooHist > createEmptyResidHist(const RooCurve &curve, bool normalize=false) const
Definition RooHist.cxx:714
void printTitle(std::ostream &os) const override
Print title of RooHist.
Definition RooHist.cxx:698
std::vector< double > _originalWeights
The original bin weights that were passed to the RooHist::addBin functions before scaling and bin wid...
Definition RooHist.h:103
double getNominalBinWidth() const
Definition RooHist.h:73
void addAsymmetryBinWithError(Axis_t binCenter, double n1, double n2, double en1, double en2, double binWidth=0, double xErrorFrac=1.0, double scaleFactor=1.0)
Add a bin to this histogram with the value (n1-n2)/(n1+n2) using an error bar calculated with Binomia...
Definition RooHist.cxx:535
double _entries
Number of entries in histogram.
Definition RooHist.h:100
Int_t roundBin(double y)
Return the nearest positive integer to the input value and print a warning if an adjustment is requir...
Definition RooHist.cxx:383
bool isIdentical(const RooHist &other, double tol=1e-6, bool verbose=true) const
Return true if contents of this RooHist is identical within given relative tolerance to that of 'othe...
Definition RooHist.cxx:632
void addAsymmetryBin(Axis_t binCenter, Int_t n1, Int_t n2, double binWidth=0, double xErrorFrac=1.0, double scaleFactor=1.0)
Add a bin to this histogram with the value (n1-n2)/(n1+n2) using an error bar calculated with Binomia...
Definition RooHist.cxx:513
double _nSigma
Number of 'sigmas' error bars represent.
Definition RooHist.h:99
void addBin(Axis_t binCenter, double n, double binWidth=0, double xErrorFrac=1.0, double scaleFactor=1.0)
Add a bin to this histogram with the specified integer bin contents and using an error bar calculated...
Definition RooHist.cxx:425
void addPoint(Axis_t binCenter, double y, double yscale, double exlow, double exhigh, double eylow, double eyhigh)
Definition RooHist.cxx:397
bool hasIdenticalBinning(const RooHist &other) const
Return true if binning of this RooHist is identical to that of 'other'.
Definition RooHist.cxx:599
double getFitRangeNEvt() const override
Return the number of events of the dataset associated with this RooHist.
Definition RooHist.cxx:337
void addBinWithXYError(Axis_t binCenter, double n, double exlow, double exhigh, double eylow, double eyhigh, double scaleFactor=1.0)
Add a bin to this histogram with the specified bin contents and error.
Definition RooHist.cxx:497
void printMultiline(std::ostream &os, Int_t contents, bool verbose=false, TString indent="") const override
Print detailed information.
void updateYAxisLimits(double y)
Definition RooPlotable.h:30
void setYAxisLabel(const char *label)
Definition RooPlotable.h:29
Represents the product of a given set of RooAbsReal objects.
Definition RooProduct.h:29
Class to manage histogram axis.
Definition TAxis.h:32
Double_t GetXmax() const
Definition TAxis.h:142
Double_t GetXmin() const
Definition TAxis.h:141
Int_t GetNbins() const
Definition TAxis.h:127
Double_t * fEXhigh
[fNpoints] array of X high errors
virtual void SetPointError(Double_t exl, Double_t exh, Double_t eyl, Double_t eyh)
Set ex and ey values for point pointed by the mouse.
Double_t GetErrorXhigh(Int_t i) const override
Get high error on X.
Double_t * fEYhigh
[fNpoints] array of Y high errors
Double_t GetErrorYhigh(Int_t i) const override
Get high error on Y.
Double_t GetErrorXlow(Int_t i) const override
Get low error on X.
Double_t * fEYlow
[fNpoints] array of Y low errors
Double_t * fEXlow
[fNpoints] array of X low errors
Double_t GetErrorYlow(Int_t i) const override
Get low error on Y.
Double_t GetErrorX(Int_t bin) const override
Returns the combined error along X at point i by computing the average of the lower and upper varianc...
virtual void SetPoint(Int_t i, Double_t x, Double_t y)
Set x and y values for point number i.
Definition TGraph.cxx:2337
Double_t * GetY() const
Definition TGraph.h:140
Int_t GetN() const
Definition TGraph.h:132
Double_t * fY
[fNpoints] array of Y points
Definition TGraph.h:48
void SetName(const char *name="") override
Set graph name.
Definition TGraph.cxx:2376
Double_t * fX
[fNpoints] array of X points
Definition TGraph.h:47
void SetTitle(const char *title="") override
Change (i.e.
Definition TGraph.cxx:2392
virtual Int_t GetPoint(Int_t i, Double_t &x, Double_t &y) const
Get x and y values for point number i.
Definition TGraph.cxx:1534
1-D histogram with a float per channel (see TH1 documentation)
Definition TH1.h:645
TH1 is the base class of all histogram classes in ROOT.
Definition TH1.h:59
static void AddDirectory(Bool_t add=kTRUE)
Sets the flag controlling the automatic add of histograms in memory.
Definition TH1.cxx:1263
const char * GetName() const override
Returns name of object.
Definition TNamed.h:49
const char * GetTitle() const override
Returns title of object.
Definition TNamed.h:50
TString fName
Definition TNamed.h:32
virtual const char * ClassName() const
Returns name of class to which the object belongs.
Definition TObject.cxx:225
Basic string class.
Definition TString.h:139
RooConstVar & RooConst(double val)
Double_t y[n]
Definition legend1.C:17
Double_t x[n]
Definition legend1.C:17
const Int_t n
Definition legend1.C:16
static uint64_t sum(uint64_t i)
Definition Factory.cxx:2345