128 fDataHist->get(
bin1);
129 double n1 = fDataHist->weight();
130 fDataHist->get(
bin2);
131 double n2 = fDataHist->weight();
140 double n1 = fSparseHist->GetBinContent(
bin1);
141 double n2 = fSparseHist->GetBinContent(
bin2);
149 fChain(
chain), fParam(param) {}
151 double xi = fChain->Get(i)->getRealValue(fParam->GetName());
152 double xj = fChain->Get(
j)->getRealValue(fParam->GetName());
190 x[i] =
fAxes[i]->getVal();
219 <<
"Interval type not set. Returning false." << std::endl;
260 "number of variables in axes (" <<
size <<
261 ") doesn't match number of parameters ("
278 <<
"parameters have not been set." << std::endl;
284 "MCMCInterval::CreateKeysPdf: creation of Keys PDF failed: " <<
285 "Number of burn-in steps (num steps to ignore) >= number of steps " <<
286 "in Markov chain." << std::endl;
316 coutE(
Eval) <<
"* Error in MCMCInterval::CreateHist(): " <<
317 "Crucial data member was nullptr." << std::endl;
318 coutE(
Eval) <<
"Make sure to fully construct/initialize." << std::endl;
321 if (
fHist !=
nullptr) {
328 "MCMCInterval::CreateHist: creation of histogram failed: " <<
329 "Number of burn-in steps (num steps to ignore) >= number of steps " <<
330 "in Markov chain." << std::endl;
335 fHist =
new TH1F(
"posterior",
"MCMC Posterior Histogram",
339 fHist =
new TH2F(
"posterior",
"MCMC Posterior Histogram",
344 fHist =
new TH3F(
"posterior",
"MCMC Posterior Histogram",
350 coutE(
Eval) <<
"* Error in MCMCInterval::CreateHist() : " <<
351 "TH1* couldn't handle dimension: " <<
fDimension << std::endl;
388 <<
"Crucial data member was nullptr." << std::endl;
405 fDimension, bins.data(), min.data(), max.data());
414 "MCMCInterval::CreateSparseHist: creation of histogram failed: " <<
415 "Number of burn-in steps (num steps to ignore) >= number of steps " <<
416 "in Markov chain." << std::endl;
436 coutE(
Eval) <<
"* Error in MCMCInterval::CreateDataHist(): " <<
437 "Crucial data member was nullptr or empty." << std::endl;
438 coutE(
Eval) <<
"Make sure to fully construct/initialize." << std::endl;
444 "MCMCInterval::CreateDataHist: creation of histogram failed: " <<
445 "Number of burn-in steps (num steps to ignore) >= number of steps " <<
446 "in Markov chain." << std::endl;
464 "Crucial data member (Markov chain) was nullptr." << std::endl;
472 "MCMCInterval::CreateVector: creation of vector failed: " <<
473 "Number of burn-in steps (num steps to ignore) >= number of steps " <<
474 "in Markov chain." << std::endl;
482 for (i = 0; i <
size; i++) {
499 if (
fAxes !=
nullptr)
504 if (
dynamic_cast<RooRealVar *
>(obj) !=
nullptr) {
507 coutE(
Eval) <<
"* Error in MCMCInterval::SetParameters: " << obj->
GetName() <<
" not a RooRealVar*"
527 "Error: Interval type not set" << std::endl;
549 <<
"Fraction must be in the range [0, 1]. "
556 <<
"Error: Can only find a tail-fraction interval for 1-D intervals"
561 if (
fAxes ==
nullptr) {
563 <<
"Crucial data member was nullptr." << std::endl;
600 double ll = param->
getMin();
669 coutW(
Eval) <<
"Warning: Integral of Keys PDF came out to " << full
670 <<
" instead of expected value 1. Will continue using this "
671 <<
"factor to normalize further integrals of this PDF." << std::endl;
681 volume *= (var->getMax() - var->getMin());
786 std::vector<Long_t> bins(numBins);
796 for (i = numBins - 1; i >= 0; i--) {
814 for ( ; i >= 0; i--) {
824 for ( ; i < numBins; i++) {
831 if (i == numBins - 1) {
858 std::vector<Int_t> bins(numBins);
867 for (i = numBins - 1; i >= 0; i--) {
886 for ( ; i >= 0; i--) {
897 for ( ; i < numBins; i++) {
905 if (i == numBins - 1) {
930 <<
"not implemented for this type of interval. Returning 0." << std::endl;
946 "Error: Interval type not set" << std::endl;
962 "Error: Interval type not set" << std::endl;
1043 <<
"Sorry, will not compute lower limit unless dimension == 1" << std::endl;
1051 coutE(
Eval) <<
"In MCMCInterval::LowerLimitBySparseHist: "
1052 <<
"couldn't determine cutoff. Check that num burn in steps < num "
1053 <<
"steps in the Markov chain. Returning param.getMin()." << std::endl;
1063 for (
Long_t i = 0; i < numBins; i++) {
1087 coutE(
Eval) <<
"In MCMCInterval::LowerLimitByDataHist: "
1088 <<
"couldn't determine cutoff. Check that num burn in steps < num "
1089 <<
"steps in the Markov chain. Returning param.getMin()." << std::endl;
1098 for (
Int_t i = 0; i < numBins; i++) {
1120 <<
"Sorry, will not compute upper limit unless dimension == 1" << std::endl;
1128 coutE(
Eval) <<
"In MCMCInterval::UpperLimitBySparseHist: "
1129 <<
"couldn't determine cutoff. Check that num burn in steps < num "
1130 <<
"steps in the Markov chain. Returning param.getMax()." << std::endl;
1140 for (
Long_t i = 0; i < numBins; i++) {
1164 coutE(
Eval) <<
"In MCMCInterval::UpperLimitByDataHist: "
1165 <<
"couldn't determine cutoff. Check that num burn in steps < num "
1166 <<
"steps in the Markov chain. Returning param.getMax()." << std::endl;
1175 for (
Int_t i = 0; i < numBins; i++) {
1203 coutE(
Eval) <<
"in MCMCInterval::LowerLimitByKeys(): "
1204 <<
"couldn't find lower limit, check that the number of burn in "
1205 <<
"steps < number of total steps in the Markov chain. Returning "
1206 <<
"param.getMin()" << std::endl;
1215 for (
Int_t i = 0; i < numBins; i++) {
1243 coutE(
Eval) <<
"in MCMCInterval::UpperLimitByKeys(): "
1244 <<
"couldn't find upper limit, check that the number of burn in "
1245 <<
"steps < number of total steps in the Markov chain. Returning "
1246 <<
"param.getMax()" << std::endl;
1255 for (
Int_t i = 0; i < numBins; i++) {
1282 coutE(
Eval) <<
"in MCMCInterval::KeysMax(): "
1283 <<
"couldn't find Keys max value, check that the number of burn in "
1284 <<
"steps < number of total steps in the Markov chain. Returning 0"
1292 for (
Int_t i = 0; i < numBins; i++) {
1343 <<
"confidence level not set " << std::endl;
1345 if (
fHist ==
nullptr)
1348 if (
fHist ==
nullptr) {
1353 return static_cast<TH1*
>(
fHist->
Clone(
"MCMCposterior_hist"));
1362 <<
"confidence level not set " << std::endl;
1381 <<
"confidence level not set " << std::endl;
1415 return (std::abs(
a -
b) < std::abs(
fDelta * (
a +
b)/2));
1422 if (
fAxes ==
nullptr)
1451 if (!
fAxes[i]->getBinning(
nullptr,
false,
false).isUniform()) {
1475 "Keys PDF & Heaviside Product Data Hist",
fParameters);
1495 coutE(
Eval) <<
"MCMCInterval: size is wrong, parameters don't match" << std::endl;
1499 coutE(
Eval) <<
"MCMCInterval: size is ok, but parameters don't match" << std::endl;
size_t size(const MatrixT &matrix)
retrieve the size of a square matrix
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
THnSparseT< TArrayF > THnSparseF
TRObject operator()(const T1 &t1) const
TObject * Clone(const char *newname=nullptr) const override
Make a clone of an object using the Streamer facility.
double getRealValue(const char *name, double defVal=0.0, bool verbose=false) const
Get value of a RooAbsReal stored in set with given name.
virtual void removeAll()
Remove all arguments from our set, deleting them if we own them.
virtual bool add(const RooAbsArg &var, bool silent=false)
Add the specified argument to list.
Storage_t::size_type size() const
virtual Int_t numEntries() const
Return number of entries in dataset, i.e., count unweighted entries.
Int_t numBins(const char *rangeName=nullptr) const override
virtual double getMax(const char *name=nullptr) const
Get maximum of currently defined range.
virtual double getMin(const char *name=nullptr) const
Get minimum of currently defined range.
RooDataHist * fillDataHist(RooDataHist *hist, const RooArgSet *nset, double scaleFactor, bool correctForBinVolume=false, bool showProgress=false) const
Fill a RooDataHist with values sampled from this function at the bin centers.
double getVal(const RooArgSet *normalisationSet=nullptr) const
Evaluate object.
RooFit::OwningPtr< RooAbsReal > createIntegral(const RooArgSet &iset, const RooCmdArg &arg1, const RooCmdArg &arg2={}, const RooCmdArg &arg3={}, const RooCmdArg &arg4={}, const RooCmdArg &arg5={}, const RooCmdArg &arg6={}, const RooCmdArg &arg7={}, const RooCmdArg &arg8={}) const
Create an object that represents the integral of the function over one or more observables listed in ...
RooArgList is a container object that can hold multiple RooAbsArg objects.
RooAbsArg * at(Int_t idx) const
Return object at given index, or nullptr if index is out of range.
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Container class to hold N-dimensional binned data.
double sum(bool correctForBinSize, bool inverseCorr=false) const
Return the sum of the weights of all bins in the histogram.
Int_t getIndex(const RooAbsCollection &coord, bool fast=false) const
Calculate bin number of the given coordinates.
double weight(std::size_t i) const
Return weight of i-th bin.
const RooArgSet * get() const override
Get bin centre of current bin.
Container class to hold unbinned data.
RooFit::OwningPtr< RooDataHist > binnedClone(const char *newName=nullptr, const char *newTitle=nullptr) const
Return binned clone of this dataset.
Generic N-dimensional implementation of a kernel estimation p.d.f.
Provides numeric constants used in RooFit.
static constexpr double infinity()
Return internal infinity representation.
Represents the product of a given set of RooAbsReal objects.
Variable that can be changed from the outside.
void setVal(double value) override
Set value of variable to 'value'.
const RooAbsBinning & getBinning(const char *name=nullptr, bool verbose=true, bool createOnTheFly=false) const override
Return binning definition with name.
void setBins(Int_t nBins, const char *name=nullptr)
Create a uniform binning under name 'name' for this variable.
ConfInterval is an interface class for a generic interval in the RooStats framework.
Represents the Heaviside function.
virtual void CreateDataHist()
virtual void DetermineByDataHist()
virtual void DetermineShortestInterval()
virtual double GetActualConfidenceLevel()
virtual double GetKeysPdfCutoff() { return fKeysCutoff; }
double fKeysConfLevel
the actual conf level determined by keys
virtual void CreateVector(RooRealVar *param)
RooDataHist * fDataHist
the binned Markov Chain data
virtual double LowerLimitByDataHist(RooRealVar ¶m)
determine lower limit using histogram
double fDelta
topCutoff (a) considered == bottomCutoff (b) iff (std::abs(a - b) < std::abs(fDelta * (a + b)/2)); Th...
double fConfidenceLevel
Requested confidence level (eg. 0.95 for 95% CL)
TH1 * fHist
the binned Markov Chain data
virtual double UpperLimitBySparseHist(RooRealVar ¶m)
determine upper limit using histogram
enum IntervalType fIntervalType
virtual double UpperLimit(RooRealVar ¶m)
get the highest value of param that is within the confidence interval
RooRealVar * fCutoffVar
cutoff variable to use for integrating keys pdf
virtual void SetAxes(RooArgList &axes)
Set which parameters go on which axis.
virtual void DetermineByKeys()
double fTFLower
lower limit of the tail-fraction interval
bool fUseSparseHist
whether to use sparse hist (vs. RooDataHist)
double fVecWeight
sum of weights of all entries in fVector
double fLeftSideTF
left side tail-fraction for interval
bool AcceptableConfLevel(double confLevel)
virtual void DetermineBySparseHist()
double GetKeysMax()
Determine the approximate maximum value of the Keys PDF.
RooProduct * fProduct
the (keysPdf * heaviside) product
virtual double LowerLimitBySparseHist(RooRealVar ¶m)
determine lower limit using histogram
bool WithinDeltaFraction(double a, double b)
double fKeysCutoff
cutoff keys pdf value to be in interval
virtual double LowerLimitShortest(RooRealVar ¶m)
get the lower limit of param in the shortest confidence interval Note that this works better for some...
virtual double LowerLimitTailFraction(RooRealVar ¶m)
determine lower limit of the lower confidence interval
virtual TH1 * GetPosteriorHist()
set the number of bins to use (same for all axes, for now) virtual void SetNumBins(Int_t numBins);
Int_t fDimension
number of variables
void SetConfidenceLevel(double cl) override
set the desired confidence level (see GetActualConfidenceLevel()) Note: calling this function trigger...
MCMCInterval(const char *name=nullptr)
default constructor
RooRealVar ** fAxes
array of pointers to RooRealVars representing the axes of the histogram fAxes[0] represents x-axis,...
virtual void DetermineTailFractionInterval()
double fTFConfLevel
the actual conf level of tail-fraction interval
double fHistConfLevel
the actual conf level determined by hist
virtual void CreateSparseHist()
Heaviside * fHeaviside
the Heaviside function
double fFull
Value of intergral of fProduct.
virtual double UpperLimitByDataHist(RooRealVar ¶m)
determine upper limit using histogram
virtual void DetermineInterval()
virtual double CalcConfLevel(double cutoff, double full)
virtual double LowerLimitByHist(RooRealVar ¶m)
determine lower limit using histogram
virtual double LowerLimit(RooRealVar ¶m)
get the lowest value of param that is within the confidence interval
virtual double UpperLimitShortest(RooRealVar ¶m)
get the upper limit of param in the confidence interval Note that this works better for some distribu...
THnSparse * fSparseHist
the binned Markov Chain data
bool CheckParameters(const RooArgSet &point) const override
check if parameters are correct. (dummy implementation to start)
std::vector< Int_t > fVector
vector containing the Markov chain data
virtual double LowerLimitByKeys(RooRealVar ¶m)
determine lower limit in the shortest interval by using keys pdf
virtual RooProduct * GetPosteriorKeysProduct()
Get a clone of the (keyspdf * heaviside) product of the posterior.
double fTFUpper
upper limit of the tail-fraction interval
double fHistCutoff
cutoff bin size to be in interval
MarkovChain * fChain
the markov chain
RooArgSet * GetParameters() const override
return a set containing the parameters of this interval the caller owns the returned RooArgSet*
virtual double UpperLimitTailFraction(RooRealVar ¶m)
determine upper limit of the lower confidence interval
bool fIsHistStrict
whether the specified confidence level is a floor for the actual confidence level (strict),...
virtual RooNDKeysPdf * GetPosteriorKeysPdf()
Get a clone of the keys pdf of the posterior.
virtual double UpperLimitByHist(RooRealVar ¶m)
determine upper limit using histogram
virtual void CreateKeysPdf()
virtual double UpperLimitByKeys(RooRealVar ¶m)
determine upper limit in the shortest interval by using keys pdf
Int_t fNumBurnInSteps
number of steps to discard as burn in, starting from the first
virtual void CreateHist()
bool fUseKeys
whether to use kernel estimation
RooDataHist * fKeysDataHist
data hist representing product
RooArgSet fParameters
parameters of interest for this interval
bool IsInInterval(const RooArgSet &point) const override
determine whether this point is in the confidence interval
virtual void DetermineByHist()
virtual void SetParameters(const RooArgSet ¶meters)
Set the parameters of interest for this interval and change other internal data members accordingly.
virtual void CreateKeysDataHist()
RooNDKeysPdf * fKeysPdf
the kernel estimation pdf
double fEpsilon
acceptable error for Keys interval determination
virtual double GetKeysPdfCutoff()
get the cutoff RooNDKeysPdf value for being considered in the confidence interval
virtual double GetHistCutoff()
get the cutoff bin height for being considered in the confidence interval
Stores the steps in a Markov Chain of points.
virtual const RooArgSet * Get(Int_t i) const
get the entry at position i
virtual double Weight() const
get the weight of the current (last indexed) entry
virtual const RooDataSet * GetAsConstDataSet() const
virtual Int_t Size() const
get the number of steps in the chain
virtual Double_t GetBinCenter(Int_t bin) const
Return center of bin.
1-D histogram with a float per channel (see TH1 documentation)
TH1 is the base class of all histogram classes in ROOT.
TObject * Clone(const char *newname="") const override
Make a complete copy of the underlying object.
2-D histogram with a float per channel (see TH1 documentation)
3-D histogram with a float per channel (see TH1 documentation)
Long64_t Fill(const Double_t *x, Double_t w=1.)
TAxis * GetAxis(Int_t dim) const
Efficient multidimensional histogram.
Double_t GetBinContent(const Int_t *idx) const
Forwards to THnBase::GetBinContent() overload.
Long64_t GetBin(const Int_t *idx) const override
void Sumw2() override
Enable calculation of errors.
Long64_t GetNbins() const override
virtual void SetTitle(const char *title="")
Set the title of the TNamed.
const char * GetName() const override
Returns name of object.
RooCmdArg SelectVars(const RooArgSet &vars)
RooCmdArg EventRange(Int_t nStart, Int_t nStop)
RooCmdArg NormSet(Args_t &&... argsOrArgSet)
The namespace RooFit contains mostly switches that change the behaviour of functions of PDFs (or othe...
Namespace for the RooStats classes.
void SetParameters(const RooArgSet *desiredVals, RooArgSet *paramsToChange)
CompareDataHistBins(RooDataHist *hist)
CompareSparseHistBins(THnSparse *hist)
CompareVectorIndices(MarkovChain *chain, RooRealVar *param)
static uint64_t sum(uint64_t i)