38 #ifndef ROOT_TMVA_MsgLogger
41 #ifndef ROOT_TMVA_VariableDecorrTransform
44 #ifndef ROOT_TMVA_Tools
47 #ifndef ROOT_TMVA_DataSet
56 TMVA::VariableDecorrTransform::VariableDecorrTransform( DataSetInfo& dsi )
67 if ((*it) != 0)
delete (*it);
85 if (!IsEnabled() || IsCreated())
return kTRUE;
87 Log() <<
kINFO <<
"Preparing the Decorrelation transformation..." <<
Endl;
89 Int_t inputSize = fGet.size();
90 SetNVariables(inputSize);
92 if (inputSize > 200) {
93 Log() <<
kINFO <<
"----------------------------------------------------------------------------"
96 <<
": More than 200 variables, will not calculate decorrelation matrix "
98 Log() <<
kINFO <<
"----------------------------------------------------------------------------"
103 CalcSQRMats( events, GetNClasses() );
115 Int_t whichMatrix = cls;
119 if (cls < 0 || cls > GetNClasses()) whichMatrix = GetNClasses();
121 TMatrixD*
m = fDecorrMatrices.at(whichMatrix);
123 if (whichMatrix == GetNClasses() )
124 Log() <<
kFATAL <<
"Transformation matrix all classes is not defined"
127 Log() <<
kFATAL <<
"Transformation matrix for class " << whichMatrix <<
" is not defined"
131 const Int_t nvar = fGet.size();
132 std::vector<TString>* strVec =
new std::vector<TString>;
135 for (
Int_t ivar=0; ivar<nvar; ivar++) {
137 for (
Int_t jvar=0; jvar<nvar; jvar++) {
138 str += ((*m)(ivar,jvar) > 0) ?
" + " :
" - ";
141 Int_t idx = fGet.at(jvar).second;
145 str +=
Form(
"%10.5g*[%s]",
TMath::Abs((*m)(ivar,jvar)), Variables()[idx].GetLabel().
Data() );
148 str +=
Form(
"%10.5g*[%s]",
TMath::Abs((*m)(ivar,jvar)), Targets()[idx].GetLabel().
Data() );
151 str +=
Form(
"%10.5g*[%s]",
TMath::Abs((*m)(ivar,jvar)), Spectators()[idx].GetLabel().
Data() );
154 Log() <<
kFATAL <<
"VariableDecorrTransform::GetTransformationStrings : unknown type '" << type <<
"'." <<
Endl;
157 strVec->push_back( str );
169 Log() <<
kFATAL <<
"Transformation matrix not yet created"
172 Int_t whichMatrix = cls;
175 if (cls < 0 || cls >= (
int) fDecorrMatrices.size()) whichMatrix = fDecorrMatrices.size()-1;
182 TMatrixD*
m = fDecorrMatrices.at(whichMatrix);
184 if (whichMatrix == GetNClasses() )
185 Log() <<
kFATAL <<
"Transformation matrix all classes is not defined"
188 Log() <<
kFATAL <<
"Transformation matrix for class " << whichMatrix <<
" is not defined"
192 if (fTransformedEvent==0 || fTransformedEvent->GetNVariables()!=ev->
GetNVariables()) {
193 if (fTransformedEvent!=0) {
delete fTransformedEvent; fTransformedEvent = 0; }
194 fTransformedEvent =
new Event();
198 const Int_t nvar = fGet.size();
200 std::vector<Float_t> input;
201 std::vector<Char_t> mask;
202 Bool_t hasMaskedEntries = GetInput( ev, input, mask );
204 if( hasMaskedEntries ){
207 if( numMasked>0 && numOK>0 ){
208 Log() <<
kFATAL <<
"You mixed variables and targets in the decorrelation transformation. This is not possible." <<
Endl;
210 SetOutput( fTransformedEvent, input, mask, ev );
211 return fTransformedEvent;
215 for (
Int_t ivar=0; ivar<nvar; ivar++) vec(ivar) = input.at(ivar);
221 for (
Int_t ivar=0; ivar<nvar; ivar++) input.push_back( vec(ivar) );
223 SetOutput( fTransformedEvent, input, mask, ev );
225 return fTransformedEvent;
234 Log() <<
kFATAL <<
"Inverse transformation for decorrelation transformation not yet implemented. Hence, this transformation cannot be applied together with regression if targets should be transformed. Please contact the authors if necessary." <<
Endl;
237 return fBackTransformedEvent;
247 for (std::vector<TMatrixD*>::iterator it = fDecorrMatrices.begin();
248 it != fDecorrMatrices.end(); it++)
249 if (0 != (*it) ) {
delete (*it); *it=0; }
253 const UInt_t matNum = (maxCls<=1)?maxCls:maxCls+1;
254 fDecorrMatrices.resize( matNum, (
TMatrixD*) 0 );
259 for (
UInt_t cls=0; cls<matNum; cls++) {
262 Log() <<
kFATAL <<
"<GetSQRMats> Zero pointer returned for SQR matrix" <<
Endl;
263 fDecorrMatrices[cls] = sqrMat;
264 delete (*covMat)[cls];
275 Int_t dp = o.precision();
276 for (std::vector<TMatrixD*>::const_iterator itm = fDecorrMatrices.begin(); itm != fDecorrMatrices.end(); itm++) {
277 o <<
"# correlation matrix " << std::endl;
279 o << cls <<
" " << mat->
GetNrows() <<
" x " << mat->
GetNcols() << std::endl;
282 o << std::setprecision(12) << std::setw(20) << (*mat)[row][col] <<
" ";
288 o <<
"##" << std::endl;
289 o << std::setprecision(dp);
302 for (std::vector<TMatrixD*>::const_iterator itm = fDecorrMatrices.begin(); itm != fDecorrMatrices.end(); itm++) {
325 for( std::vector<TMatrixD*>::iterator it = fDecorrMatrices.begin(); it != fDecorrMatrices.end(); it++ )
326 if( (*it) != 0 )
delete (*it);
327 fDecorrMatrices.clear();
331 void* inpnode =
NULL;
354 std::stringstream s(content);
355 for (
Int_t row = 0; row<nrows; row++) {
356 for (
Int_t col = 0; col<ncols; col++) {
357 s >> (*mat)[row][col];
360 fDecorrMatrices.push_back(mat);
373 istr.getline(buf,512);
375 Int_t nrows(0), ncols(0);
377 while (!(buf[0]==
'#'&& buf[1]==
'#')) {
379 while (*p==
' ' || *p==
'\t') p++;
380 if (*p==
'#' || *p==
'\0') {
381 istr.getline(buf,512);
384 std::stringstream sstr(buf);
387 if (strvar==
"signal" || strvar==
"background") {
389 if(strvar==
"background") cls=1;
390 if(strvar==classname) classIdx = cls;
392 sstr >> nrows >> dummy >> ncols;
393 if (fDecorrMatrices.size() <= cls ) fDecorrMatrices.resize(cls+1);
394 if (fDecorrMatrices.at(cls) != 0)
delete fDecorrMatrices.at(cls);
399 istr >> (*mat)[row][col];
403 istr.getline(buf,512);
406 fDecorrMatrices.push_back(
new TMatrixD(*fDecorrMatrices[classIdx]) );
417 for (std::vector<TMatrixD*>::iterator itm = fDecorrMatrices.begin(); itm != fDecorrMatrices.end(); itm++) {
418 Log() <<
kINFO <<
"Transformation matrix "<< cls <<
":" <<
Endl;
428 Int_t dp = fout.precision();
430 UInt_t numC = fDecorrMatrices.size();
433 TMatrixD* mat = fDecorrMatrices.at(0);
435 fout <<
" double fDecTF_"<<trCounter<<
"["<<numC<<
"]["<<mat->
GetNrows()<<
"]["<<mat->
GetNcols()<<
"];" << std::endl;
440 fout <<
"//_______________________________________________________________________" << std::endl;
441 fout <<
"inline void " << fcncName <<
"::InitTransform_"<<trCounter<<
"()" << std::endl;
442 fout <<
"{" << std::endl;
443 fout <<
" // Decorrelation transformation, initialisation" << std::endl;
444 for (
UInt_t icls = 0; icls < numC; icls++){
445 TMatrixD* matx = fDecorrMatrices.at(icls);
446 for (
int i=0; i<matx->
GetNrows(); i++) {
447 for (
int j=0; j<matx->
GetNcols(); j++) {
448 fout <<
" fDecTF_"<<trCounter<<
"["<<icls<<
"]["<<i<<
"]["<<j<<
"] = " << std::setprecision(12) << (*matx)[i][j] <<
";" << std::endl;
452 fout <<
"}" << std::endl;
454 TMatrixD* matx = fDecorrMatrices.at(0);
455 fout <<
"//_______________________________________________________________________" << std::endl;
456 fout <<
"inline void " << fcncName <<
"::Transform_"<<trCounter<<
"( std::vector<double>& iv, int cls) const" << std::endl;
457 fout <<
"{" << std::endl;
458 fout <<
" // Decorrelation transformation" << std::endl;
459 fout <<
" if (cls < 0 || cls > "<<GetNClasses()<<
") {"<< std::endl;
460 fout <<
" if ("<<GetNClasses()<<
" > 1 ) cls = "<<GetNClasses()<<
";"<< std::endl;
461 fout <<
" else cls = "<<(fDecorrMatrices.size()==1?0:2)<<
";"<< std::endl;
462 fout <<
" }"<< std::endl;
466 fout <<
" std::vector<double> tv;" << std::endl;
467 fout <<
" for (int i=0; i<"<<matx->
GetNrows()<<
";i++) {" << std::endl;
468 fout <<
" double v = 0;" << std::endl;
469 fout <<
" for (int j=0; j<"<<matx->
GetNcols()<<
"; j++)" << std::endl;
470 fout <<
" v += iv[indicesGet.at(j)] * fDecTF_"<<trCounter<<
"[cls][i][j];" << std::endl;
471 fout <<
" tv.push_back(v);" << std::endl;
472 fout <<
" }" << std::endl;
473 fout <<
" for (int i=0; i<"<<matx->
GetNrows()<<
";i++) iv[indicesPut.at(i)] = tv[i];" << std::endl;
474 fout <<
"}" << std::endl;
477 fout << std::setprecision(dp);
MsgLogger & Endl(MsgLogger &ml)
std::vector< std::vector< double > > Data
UInt_t GetNVariables() const
accessor to the number of variables
virtual void Print(Option_t *option="") const
This method must be overridden when a class wants to print itself.
TMatrixT< Double_t > TMatrixD
void Initialize(Bool_t useTMVAStyle=kTRUE)
char * Form(const char *fmt,...)
static RooMathCoreReg dummy
Abstract ClassifierFactory template that handles arbitrary types.