58 fDz = fDx1 = fDx2 = fDy = 0;
59 SetShapeBit(kGeoTrd1);
73 if ((dx1<0) || (dx2<0) || (dy<0) || (dz<0)) {
75 printf(
"trd1 : dx1=%f, dx2=%f, dy=%f, dz=%f\n",
92 if ((dx1<0) || (dx2<0) || (dy<0) || (dz<0)) {
94 printf(
"trd1 : dx1=%f, dx2=%f, dy=%f, dz=%f\n",
154 norm[0] = norm[1] = 0;
155 norm[2] = (dir[2]>=0)?1:-1;
156 if (safe<1
E-6)
return;
163 norm[0] = (point[0]>0)?calf:(-calf);
166 Double_t dot = norm[0]*dir[0]+norm[1]*dir[1]+norm[2]*dir[2];
171 if (safe<1
E-6)
return;
177 norm[0] = norm[2] = 0;
178 norm[1] = (dir[1]>=0)?1:-1;
204 if (iact<3 && safe) {
220 dist[0]=-(point[2]+
fDz)/dir[2];
221 }
else if (dir[2]>0) {
222 dist[0]=(
fDz-point[2])/dir[2];
224 if (dist[0]<=0)
return 0.0;
226 cn = -dir[0]+fx*dir[2];
228 dist[1] = point[0]+distx;
229 if (dist[1]<=0)
return 0.0;
232 cn = dir[0]+fx*dir[2];
235 if (s<=0)
return 0.0;
237 if (s<dist[1]) dist[1] = s;
241 dist[2]=-(point[1]+
fDy)/dir[1];
242 }
else if (dir[1]>0) {
243 dist[2]=(
fDy-point[1])/dir[1];
245 if (dist[2]<=0)
return 0.0;
260 memset(normals, 0, 9*
sizeof(
Double_t));
262 if (point[0]>distx) {
300 normals[0]=-normals[0];
305 normals[4]=-normals[4];
310 normals[8]=-normals[8];
322 if (iact<3 && safe) {
340 if (point[2]<=-
fDz) {
343 snxt = -(
fDz+point[2])/dir[2];
345 xnew = point[0]+snxt*dir[0];
346 if (TMath::Abs(xnew) <=
fDx1) {
347 ynew = point[1]+snxt*dir[1];
348 if (TMath::Abs(ynew) <=
fDy)
return snxt;
350 }
else if (point[2]>=
fDz) {
353 snxt = (
fDz-point[2])/dir[2];
355 xnew = point[0]+snxt*dir[0];
356 if (TMath::Abs(xnew) <=
fDx2) {
357 ynew = point[1]+snxt*dir[1];
358 if (TMath::Abs(ynew) <=
fDy)
return snxt;
362 if (point[0]<=-distx) {
363 cn = -dir[0]+fx*dir[2];
366 snxt = (point[0]+distx)/cn;
368 ynew = point[1]+snxt*dir[1];
369 if (TMath::Abs(ynew) <=
fDy) {
370 znew = point[2]+snxt*dir[2];
371 if (TMath::Abs(znew) <=
fDz)
return snxt;
374 if (point[0]>=distx) {
375 cn = dir[0]+fx*dir[2];
378 snxt = (distx-point[0])/cn;
380 ynew = point[1]+snxt*dir[1];
381 if (TMath::Abs(ynew) <
fDy) {
382 znew = point[2]+snxt*dir[2];
383 if (TMath::Abs(znew) <
fDz)
return snxt;
387 if (point[1]<=-
fDy) {
391 snxt = (point[1]+
fDy)/cn;
393 znew = point[2]+snxt*dir[2];
394 if (TMath::Abs(znew) <
fDz) {
395 xnew = point[0]+snxt*dir[0];
397 if (TMath::Abs(xnew) < dx)
return snxt;
399 }
else if (point[1]>=
fDy) {
403 snxt = (
fDy-point[1])/cn;
405 znew = point[2]+snxt*dir[2];
406 if (TMath::Abs(znew) <
fDz) {
407 xnew = point[0]+snxt*dir[0];
409 if (TMath::Abs(xnew) < dx)
return snxt;
414 if (safz<safx && safz<safy) {
447 Warning(
"Divide",
"dividing a Trd1 on X not implemented");
456 vmulti->AddVolume(vol);
458 for (
id=0;
id<ndiv;
id++) {
468 for (
id=0;
id<ndiv;
id++) {
469 zmin = start+
id*step;
470 zmax = start+(
id+1)*step;
475 vmulti->AddVolume(vol);
482 Error(
"Divide",
"Wrong axis type for division");
526 Error(
"GetFittingBox",
"cannot handle parametrized rotated volumes");
533 Error(
"GetFittingBox",
"wrong matrix - parametrized box is outside this");
538 dd[0] = parambox->
GetDX();
539 dd[1] = parambox->
GetDY();
540 dd[2] = parambox->
GetDZ();
545 Error(
"GetFittingBox",
"wrong matrix");
553 Error(
"GetFittingBox",
"wrong matrix");
567 dd[0] = dx0-fx*z-origin[0];
569 dd[0] =
TMath::Min(dd[0], dx0-fx*z-origin[0]);
571 Error(
"GetFittingBox",
"wrong matrix");
588 Error(
"GetMakeRuntimeShape",
"invalid mother");
601 return (
new TGeoTrd1(dx1, dx2, dy, dz));
614 printf(
" Bounding box:\n");
633 else saf[1]=(distx-
TMath::Abs(point[0]))*calf;
637 for (
Int_t i=0; i<3; i++) saf[i]=-saf[i];
648 out <<
" dx1 = " <<
fDx1 <<
";" << std::endl;
649 out <<
" dx2 = " <<
fDx2 <<
";" << std::endl;
650 out <<
" dy = " <<
fDy <<
";" << std::endl;
651 out <<
" dz = " <<
fDZ <<
";" << std::endl;
652 out <<
" TGeoShape *" <<
GetPointerName() <<
" = new TGeoTrd1(\"" <<
GetName() <<
"\", dx1,dx2,dy,dz);" << std::endl;
702 points[ 0] = -
fDx1; points[ 1] = -
fDy; points[ 2] = -
fDz;
703 points[ 3] = -
fDx1; points[ 4] =
fDy; points[ 5] = -
fDz;
704 points[ 6] =
fDx1; points[ 7] =
fDy; points[ 8] = -
fDz;
705 points[ 9] =
fDx1; points[10] = -
fDy; points[11] = -
fDz;
706 points[12] = -
fDx2; points[13] = -
fDy; points[14] =
fDz;
707 points[15] = -
fDx2; points[16] =
fDy; points[17] =
fDz;
708 points[18] =
fDx2; points[19] =
fDy; points[20] =
fDz;
709 points[21] =
fDx2; points[22] = -
fDy; points[23] =
fDz;
718 points[ 0] = -
fDx1; points[ 1] = -
fDy; points[ 2] = -
fDz;
719 points[ 3] = -
fDx1; points[ 4] =
fDy; points[ 5] = -
fDz;
720 points[ 6] =
fDx1; points[ 7] =
fDy; points[ 8] = -
fDz;
721 points[ 9] =
fDx1; points[10] = -
fDy; points[11] = -
fDz;
722 points[12] = -
fDx2; points[13] = -
fDy; points[14] =
fDz;
723 points[15] = -
fDx2; points[16] =
fDy; points[17] =
fDz;
724 points[18] =
fDx2; points[19] =
fDy; points[20] =
fDz;
725 points[21] =
fDx2; points[22] = -
fDy; points[23] =
fDz;
743 for (
Int_t i=0; i<vecsize; i++) inside[i] =
Contains(&points[3*i]);
761 for (
Int_t i=0; i<vecsize; i++) dists[i] =
DistFromInside(&points[3*i], &dirs[3*i], 3, step[i]);
769 for (
Int_t i=0; i<vecsize; i++) dists[i] =
DistFromOutside(&points[3*i], &dirs[3*i], 3, step[i]);
779 for (
Int_t i=0; i<vecsize; i++) safe[i] =
Safety(&points[3*i], inside[i]);
TGeoVolumeMulti * MakeVolumeMulti(const char *name, TGeoMedium *medium)
Make a TGeoVolumeMulti handling a list of volumes.
virtual ~TGeoTrd1()
destructor
double dist(Rotation3D const &r1, Rotation3D const &r2)
virtual void InspectShape() const
print shape parameters
virtual void DistFromOutside_v(const Double_t *points, const Double_t *dirs, Double_t *dists, Int_t vecsize, Double_t *step) const
Compute distance from array of input points having directions specisied by dirs. Store output in dist...
Long64_t LocMax(Long64_t n, const T *a)
void SetFinder(TGeoPatternFinder *finder)
void AddNodeOffset(TGeoVolume *vol, Int_t copy_no, Double_t offset=0, Option_t *option="")
Add a division node to the list of nodes.
virtual Double_t Safety(const Double_t *point, Bool_t in=kTRUE) const
computes the closest distance from given point to this shape, according to option.
virtual void ComputeBBox()
compute bounding box for a trd1
virtual TGeoShape * GetMakeRuntimeShape(TGeoShape *mother, TGeoMatrix *mat) const
in case shape has some negative parameters, these has to be computed in order to fit the mother ...
virtual Int_t GetFittingBox(const TGeoBBox *parambox, TGeoMatrix *mat, Double_t &dx, Double_t &dy, Double_t &dz) const
Fills real parameters of a positioned box inside this. Returns 0 if successfull.
virtual Double_t Capacity() const
Computes capacity of the shape in [length^3].
void SetVertex(Double_t *vertex) const
set vertex of a corner according to visibility flags
virtual void ComputeNormal(const Double_t *point, const Double_t *dir, Double_t *norm)
Compute normal to closest surface from POINT.
virtual void Sizeof3D() const
fill size of this 3-D object
Short_t Min(Short_t a, Short_t b)
virtual Double_t GetDY() const
Bool_t IsRotation() const
virtual Double_t GetDZ() const
Int_t GetNdaughters() const
void SetBit(UInt_t f, Bool_t set)
Set or unset the user status bits as specified in f.
virtual Bool_t Contains(const Double_t *point) const
test if point is inside this shape check Z range
const char * Data() const
virtual void Safety_v(const Double_t *points, const Bool_t *inside, Double_t *safe, Int_t vecsize) const
Compute safe distance from each of the points in the input array.
virtual void SetPoints(Double_t *points) const
create arb8 mesh points
Double_t dot(const TVector2 &v1, const TVector2 &v2)
virtual void SavePrimitive(std::ostream &out, Option_t *option="")
Save a primitive as a C++ statement(s) on output stream "out".
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
virtual void ComputeNormal_v(const Double_t *points, const Double_t *dirs, Double_t *norms, Int_t vecsize)
Compute the normal for an array o points so that norm.dot.dir is positive Input: Arrays of point coor...
virtual const Double_t * GetOrigin() const
virtual Double_t GetDX() const
virtual Double_t DistFromOutside(const Double_t *point, const Double_t *dir, Int_t iact=1, Double_t step=TGeoShape::Big(), Double_t *safe=0) const
Compute distance from outside point to surface of the trd1 Boundary safe algorithm.
virtual const char * ClassName() const
Returns name of class to which the object belongs.
virtual void SetDimensions(Double_t *param)
set trd1 params in one step :
virtual void Contains_v(const Double_t *points, Bool_t *inside, Int_t vecsize) const
Check the inside status for each of the points in the array.
virtual void LocalToMaster(const Double_t *local, Double_t *master) const
convert a point by multiplying its column vector (x, y, z, 1) to matrix inverse
virtual void GetBoundingCylinder(Double_t *param) const
Fill vector param[4] with the bounding cylinder parameters.
Bool_t TestBit(UInt_t f) const
virtual void DistFromInside_v(const Double_t *points, const Double_t *dirs, Double_t *dists, Int_t vecsize, Double_t *step) const
Compute distance from array of input points having directions specisied by dirs. Store output in dist...
virtual TGeoVolume * Divide(TGeoVolume *voldiv, const char *divname, Int_t iaxis, Int_t ndiv, Double_t start, Double_t step)
— Divide this trd1 shape belonging to volume "voldiv" into ndiv volumes called divname, from start position with the given step.
void SetDivIndex(Int_t index)
virtual const char * GetName() const
Get the shape name.
virtual void InspectShape() const
Prints shape parameters.
R__EXTERN TGeoManager * gGeoManager
virtual Double_t GetAxisRange(Int_t iaxis, Double_t &xlo, Double_t &xhi) const
Get range of shape for a given axis.
ClassImp(TMCParticle) void TMCParticle printf(": p=(%7.3f,%7.3f,%9.3f) ;", fPx, fPy, fPz)
void GetOppositeCorner(const Double_t *point, Int_t inorm, Double_t *vertex, Double_t *normals) const
get the opposite corner of the intersected face
const char * GetPointerName() const
Provide a pointer name containing uid.
void SetShapeBit(UInt_t f, Bool_t set)
Equivalent of TObject::SetBit.
virtual void GetBoundingCylinder(Double_t *param) const
— Fill vector param[4] with the bounding cylinder parameters.
virtual Double_t DistFromInside(const Double_t *point, const Double_t *dir, Int_t iact=1, Double_t step=TGeoShape::Big(), Double_t *safe=0) const
Compute distance from inside point to surface of the trd1 Boundary safe algorithm.
Bool_t TestShapeBit(UInt_t f) const
ClassImp(TGeoTrd1) TGeoTrd1
dummy ctor
TGeoMedium * GetMedium() const
Short_t Max(Short_t a, Short_t b)
void GetVisibleCorner(const Double_t *point, Double_t *vertex, Double_t *normals) const
get the most visible corner from outside point and the normals
Double_t Sqrt(Double_t x)
TObject * At(Int_t idx) const
virtual void Sizeof3D() const
Long64_t LocMin(Long64_t n, const T *a)
double norm(double *x, double *p)
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.