73 template <
class FitObject>
76 template <
class FitObject>
79 template <
class FitObject>
89 Error(
"Fit",
"function may not be null pointer");
93 Error(
"Fit",
"function is zombie");
99 Error(
"Fit",
"function %s has illegal number of parameters = %d",
f1->
GetName(), npar);
105 Error(
"Fit",
"function %s dimension, %d, is greater than fit object dimension, %d",
110 Error(
"Fit",
"function %s dimension, %d, is smaller than fit object dimension -1, %d",
122 Double_t fxmin, fymin, fzmin, fxmax, fymax, fzmax;
123 f1.
GetRange(fxmin, fymin, fzmin, fxmax, fymax, fzmax);
132template<
class FitObject>
139 printf(
"fit function %s\n",
f1->
GetName() );
145 if (iret != 0)
return iret;
151 if (fitOption.
Integral)
Info(
"Fit",
"Ignore Integral option. Model function dimension is less than the data object dimension");
152 if (fitOption.
Like)
Info(
"Fit",
"Ignore Likelihood option. Model function dimension is less than the data object dimension");
160 if (special==299+npar) linear =
kTRUE;
166 std::shared_ptr<TFitResult> tfr(
new TFitResult() );
168 std::shared_ptr<ROOT::Fit::Fitter> fitter(
new ROOT::Fit::Fitter(std::static_pointer_cast<ROOT::Fit::FitResult>(tfr) ) );
181 if (fitOption.
PChi2 == 1) {
183 }
else if (fitOption.
PChi2 == 2) {
194 printf(
"use range \n" );
199 printf(
"range size %d\n", range.
Size(0) );
202 printf(
" range in x = [%f,%f] \n",
x1,
x2);
209 if (fitdata->Size() == 0 ) {
210 Warning(
"Fit",
"Fit data is empty ");
215 printf(
"HFit:: data size is %d \n",fitdata->Size());
216 for (
unsigned int i = 0; i < fitdata->Size(); ++i) {
217 if (fitdata->NDim() == 1) printf(
" x[%d] = %f - value = %f \n", i,*(fitdata->Coords(i)),fitdata->Value(i) );
227 if (special != 0 && !fitOption.
Bound && !linear) {
240 if ( (linear || fitOption.
Gradient) )
254 if (
int(fitdata->NDim()) == hdim -1 ) fitConfig.
SetNormErrors(
true);
262 for (
int i = 0; i < npar; ++i) {
268 if (plow*pup != 0 && plow >= pup) {
271 else if (plow < pup ) {
286 double step = 0.1 * (pup - plow);
288 if ( parSettings.
Value() < pup && pup - parSettings.
Value() < 2 * step )
289 step = (pup - parSettings.
Value() ) / 2;
290 else if ( parSettings.
Value() > plow && parSettings.
Value() - plow < 2 * step )
291 step = (parSettings.
Value() - plow ) / 2;
320 std::string
type =
"Robust";
346 if (fitOption.
Like) printf(
"do likelihood fit...\n");
347 if (linear) printf(
"do linear fit...\n");
348 printf(
"do now fit...\n");
363 if (fitOption.
User && userFcn)
364 fitok = fitter->FitFCN( userFcn );
365 else if (fitOption.
Like) {
367 bool weight = ((fitOption.
Like & 2) == 2);
369 bool extended = ((fitOption.
Like & 4 ) != 4 );
373 fitok = fitter->LikelihoodFit(fitdata, extended, fitOption.
ExecPolicy);
376 fitok = fitter->Fit(fitdata, fitOption.
ExecPolicy);
378 if ( !fitok && !fitOption.
Quiet )
379 Warning(
"Fit",
"Abnormal termination of minimization.");
385 iret = fitResult.
Status();
409 if (!fitOption.
Quiet) {
411 if (fitter->GetMinimizer() && fitConfig.
MinimizerType() ==
"Minuit" &&
413 fitter->GetMinimizer()->PrintResults();
418 fitResult.
Print(std::cout);
432 bcfitter->
SetFCN(userFcn);
454 tfr->SetTitle(title);
469 if (range.
Size(0) == 0) {
480 if (range.
Size(1) == 0) {
491 if (range.
Size(2) == 0) {
502 std::cout <<
"xmin,xmax" <<
xmin <<
" " <<
xmax << std::endl;
521 else if (range.
Size(0) == 0) {
523 double xmin = std::numeric_limits<double>::infinity();
524 double xmax = -std::numeric_limits<double>::infinity();
527 while ( (
g = (
TGraph*) next() ) ) {
528 double x1 = 0,
x2 = 0,
y1 = 0,
y2 = 0;
543 if (range.
Size(0) == 0) {
544 double xmin =
gr->GetXmin();
545 double xmax =
gr->GetXmax();
548 if (range.
Size(1) == 0) {
549 double ymin =
gr->GetYmin();
550 double ymax =
gr->GetYmax();
561 for (
int i = 0; i < ndim; ++i ) {
562 if ( range.
Size(i) == 0 ) {
569template<
class FitObject>
575 std::cout <<
"draw and store fit function " <<
f1->
GetName() << std::endl;
587 std::cout <<
"draw and store fit function " <<
f1->
GetName()
588 <<
" Range in x = [ " <<
xmin <<
" , " <<
xmax <<
" ]" << std::endl;
592 if (funcList ==
nullptr){
593 Error(
"StoreAndDrawFitFunction",
"Function list has not been created - cannot store the fitted function");
601 bool reuseOldFunction =
false;
602 if (delOldFunction) {
605 while ((obj = next())) {
612 reuseOldFunction =
true;
618 TF1 *fnew1 =
nullptr;
619 TF2 *fnew2 =
nullptr;
620 TF3 *fnew3 =
nullptr;
624 if (!reuseOldFunction) {
628 funcList->
Add(fnew1);
638 }
else if (ndim < 3) {
639 if (!reuseOldFunction) {
643 funcList->
Add(fnew2);
646 fnew2 =
dynamic_cast<TF2*
>(
f1);
655 if (!reuseOldFunction) {
659 funcList->
Add(fnew3);
662 fnew3 =
dynamic_cast<TF3*
>(
f1);
673 if (drawFunction && ndim < 3 && h1->InheritsFrom(
TH1::Class() ) ) {
676 if (!
gPad || (
gPad &&
gPad->GetListOfPrimitives()->FindObject(
h1) ==
nullptr ) )
692 if (
option ==
nullptr)
return;
699 if (
type == EFitObjectType::kHistogram) {
742 if (fitOption.
Like == 1) {
746 if (fitOption.
Like == 2) fitOption.
Like = 6;
747 else fitOption.
Like = 4;
752 Warning(
"Fit",
"Cannot use P or X option in combination of L. Ignore the chi2 option and perform a likelihood fit");
756 else if (
type == EFitObjectType::kGraph) {
764 int start = opt.
Index(
"H=0.");
765 int numpos = start + strlen(
"H=0.");
768 while( (numpos+numlen<
len) && isdigit(opt[numpos+numlen]) ) numlen++;
769 TString num = opt(numpos,numlen);
770 opt.
Remove(start+strlen(
"H"),strlen(
"=0.")+numlen);
771 h = atof(num.
Data());
785 Warning(
"FitOptionsMake",
"Cannot use User (U) fit option when running in multi-thread mode. The option is ignored");
809 Info(
"CheckGraphFitOptions",
"L (Log Likelihood fit) is an invalid option when fitting a graph. It is ignored");
813 Info(
"CheckGraphFitOptions",
"I (use function integral) is an invalid option when fitting a graph. It is ignored");
825 std::shared_ptr<ROOT::Fit::UnBinData> fitdata(
data);
828 printf(
"tree data size is %d \n",fitdata->Size());
829 for (
unsigned int i = 0; i < fitdata->Size(); ++i) {
830 if (fitdata->NDim() == 1) printf(
" x[%d] = %f \n", i,*(fitdata->Coords(i) ) );
833 if (fitdata->Size() == 0 ) {
834 Warning(
"Fit",
"Fit data is empty ");
839 std::shared_ptr<TFitResult> tfr(
new TFitResult() );
845 unsigned int dim = fitdata->NDim();
851 assert ( (
int) dim == fitfunc->
GetNdim() );
860 for (
int i = 0; i < npar; ++i) {
865 if (plow*pup != 0 && plow >= pup) {
868 else if (plow < pup ) {
883 double step = 0.1 * (pup - plow);
885 if ( parSettings.
Value() < pup && pup - parSettings.
Value() < 2 * step )
886 step = (pup - parSettings.
Value() ) / 2;
887 else if ( parSettings.
Value() > plow && parSettings.
Value() - plow < 2 * step )
888 step = (parSettings.
Value() - plow ) / 2;
910 if ( (fitOption.
Like & 2) == 2)
913 bool extended = (fitOption.
Like & 1) == 1;
916 fitok = fitter->LikelihoodFit(fitdata, extended, fitOption.
ExecPolicy);
917 if ( !fitok && !fitOption.
Quiet )
918 Warning(
"UnBinFit",
"Abnormal termination of minimization.");
922 int iret = fitResult.
Status();
946 if (lastFitter)
delete lastFitter;
951 else if (!fitOption.
Quiet) fitResult.
Print(std::cout);
962 tfr->SetTitle(title);
977 Warning(
"HFit::FitObject",
"A weighted likelihood fit is requested but histogram is not weighted - do a standard Likelihood fit");
1035template<
class FitObject>
1050 if (
data.Size() == 0 ) {
1051 Warning(
"Chisquare",
"data set is empty - return -1");
const Bool_t kIterBackward
void Info(const char *location, const char *msgfmt,...)
Use this function for informational messages.
void Error(const char *location, const char *msgfmt,...)
Use this function in case an error occurred.
void Warning(const char *location, const char *msgfmt,...)
Use this function in warning situations.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t UChar_t len
Option_t Option_t TPoint TPoint const char x2
Option_t Option_t TPoint TPoint const char x1
Option_t Option_t TPoint TPoint const char y2
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
Option_t Option_t TPoint TPoint const char y1
R__EXTERN TVirtualMutex * gROOTMutex
R__EXTERN TVirtualMutex * gGlobalMutex
#define R__LOCKGUARD(mutex)
Class describing the binned data sets : vectors of x coordinates, y values and optionally error on y ...
Chi2FCN class for binned fits using the least square methods.
class describing the range in the coordinates it supports multiple range in a coordinate.
void AddRange(unsigned int icoord, double xmin, double xmax)
add a range [xmin,xmax] for the new coordinate icoord Adding a range does not delete existing one,...
unsigned int Size(unsigned int icoord=0) const
return range size for coordinate icoord (starts from zero) Size == 0 indicates no range is present [-...
void GetRange(unsigned int irange, unsigned int icoord, double &xmin, double &xmax) const
get the i-th range for given coordinate.
Class describing the configuration of the fit, options and parameter settings using the ROOT::Fit::Pa...
void SetMinimizer(const char *type, const char *algo=nullptr)
set minimizer type
void SetMinosErrors(bool on=true)
set Minos errors computation to be performed after fitting
void SetNormErrors(bool on=true)
set the option to normalize the error on the result according to chi2/ndf
bool NormalizeErrors() const
flag to check if resulting errors are be normalized according to chi2/ndf
void SetMinimizerOptions(const ROOT::Math::MinimizerOptions &minopt)
set all the minimizer options using class MinimizerOptions
void SetWeightCorrection(bool on=true)
apply the weight correction for error matrix computation
void SetParabErrors(bool on=true)
set parabolic errors
const std::string & MinimizerType() const
return type of minimizer package
const ParameterSettings & ParSettings(unsigned int i) const
get the parameter settings for the i-th parameter (const method)
ROOT::Math::MinimizerOptions & MinimizerOptions()
access to the minimizer control parameter (non const method)
class containing the result of the fit and all the related information (fitted parameter values,...
bool IsEmpty() const
True if a fit result does not exist (even invalid) with parameter values.
const std::vector< double > & Errors() const
parameter errors (return st::vector)
const std::vector< double > & Parameters() const
parameter values (return std::vector)
unsigned int Ndf() const
Number of degree of freedom.
double Chi2() const
Return the Chi2 value after fitting In case of unbinned fits (or not defined one, see the documentati...
void Print(std::ostream &os, bool covmat=false) const
print the result and optionally covariance matrix and correlations
void PrintCovMatrix(std::ostream &os) const
print error matrix and correlations
int Status() const
minimizer status code
Fitter class, entry point for performing all type of fits.
Class, describing value, limits and step size of the parameters Provides functionality also to set/re...
void SetStepSize(double err)
set the step size
void SetLimits(double low, double up)
set a double side limit, if low == up the parameter is fixed if low > up the limits are removed The c...
double Value() const
copy constructor and assignment operators (leave them to the compiler)
void SetUpperLimit(double up)
set a single upper limit
void Fix()
fix the parameter
void SetLowerLimit(double low)
set a single lower limit
class evaluating the log likelihood for binned Poisson likelihood fits it is template to distinguish ...
Class describing the un-binned data sets (just x coordinates values) of any dimensions.
IParamFunction interface (abstract class) describing multi-dimensional parametric functions It is a d...
void SetPrintLevel(int level)
set print level
void SetTolerance(double tol)
set the tolerance
Class to Wrap a ROOT Function class (like TF1) in a IParamMultiFunction interface of multi-dimensions...
Class to manage histogram axis.
virtual Double_t GetBinLowEdge(Int_t bin) const
Return low edge of bin.
Int_t GetLast() const
Return last bin on the axis i.e.
virtual Double_t GetBinWidth(Int_t bin) const
Return bin width.
Int_t GetFirst() const
Return first bin on the axis i.e.
Backward compatible implementation of TVirtualFitter.
virtual void SetMethodCall(TMethodCall *m)
For using interpreted function passed by the user.
void SetFCN(void(*fcn)(Int_t &, Double_t *, Double_t &f, Double_t *, Int_t)) override
Override setFCN to use the Adapter to Minuit2 FCN interface To set the address of the minimization fu...
void * New(ENewType defConstructor=kClassNew, Bool_t quiet=kFALSE) const
Return a pointer to a newly allocated object of this class.
virtual Int_t GetNumber() const
virtual void GetParLimits(Int_t ipar, Double_t &parmin, Double_t &parmax) const
Return limits for parameter ipar.
virtual void SetNDF(Int_t ndf)
Set the number of degrees of freedom ndf should be the number of points used in a fit - the number of...
virtual Double_t GetParError(Int_t ipar) const
Return value of parameter number ipar.
virtual void SetChisquare(Double_t chi2)
virtual void SetRange(Double_t xmin, Double_t xmax)
Initialize the upper and lower bounds to draw the function.
virtual Int_t GetNpar() const
virtual void SetParErrors(const Double_t *errors)
Set errors for all active parameters when calling this function, the array errors must have at least ...
virtual void SetParent(TObject *p=nullptr)
virtual Double_t * GetParameters() const
void Copy(TObject &f1) const override
Copy this F1 to a new F1.
virtual void SetNumberFitPoints(Int_t npfits)
virtual void GetRange(Double_t *xmin, Double_t *xmax) const
Return range of a generic N-D function.
virtual Bool_t IsLinear() const
virtual void SetParameters(const Double_t *params)
virtual void Save(Double_t xmin, Double_t xmax, Double_t ymin, Double_t ymax, Double_t zmin, Double_t zmax)
Save values of function in array fSave.
TClass * IsA() const override
virtual Int_t GetNdim() const
virtual Bool_t AddToGlobalList(Bool_t on=kTRUE)
Add to global list of functions (gROOT->GetListOfFunctions() ) return previous status (true if the fu...
A 2-Dim function with parameters.
void Save(Double_t xmin, Double_t xmax, Double_t ymin, Double_t ymax, Double_t zmin, Double_t zmax) override
Save values of function in array fSave.
void SetRange(Double_t xmin, Double_t xmax) override
Initialize the upper and lower bounds to draw the function.
A 3-Dim function with parameters.
void Save(Double_t xmin, Double_t xmax, Double_t ymin, Double_t ymax, Double_t zmin, Double_t zmax) override
Save values of function in array fSave.
void SetRange(Double_t xmin, Double_t xmax) override
Initialize the upper and lower bounds to draw the function.
Provides an indirection to the TFitResult class and with a semantics identical to a TFitResult pointe...
Extends the ROOT::Fit::Result class with a TNamed inheritance providing easy possibility for I/O.
Graphics object made of three arrays X, Y and Z with the same number of points each.
A TGraph is an object made of two arrays X and Y with npoints each.
virtual TH1F * GetHistogram() const
Returns a pointer to the histogram used to draw the axis Takes into account the two following cases.
TH1 is the base class of all histogram classes in ROOT.
virtual Int_t GetDimension() const
void Draw(Option_t *option="") override
Draw this histogram with options.
TList * GetListOfFunctions() const
virtual Int_t GetSumw2N() const
Multidimensional histogram base.
void Add(TObject *obj) override
TObject * Remove(TObject *obj) override
Remove object from the list.
A TMultiGraph is a collection of TGraph (or derived) objects.
TList * GetListOfGraphs() const
TH1F * GetHistogram()
Returns a pointer to the histogram used to draw the axis.
const char * GetName() const override
Returns name of object.
const char * GetTitle() const override
Returns title of object.
Mother of all ROOT objects.
R__ALWAYS_INLINE Bool_t TestBit(UInt_t f) const
R__ALWAYS_INLINE Bool_t IsZombie() const
void SetBit(UInt_t f, Bool_t set)
Set or unset the user status bits as specified in f.
virtual Bool_t InheritsFrom(const char *classname) const
Returns kTRUE if object inherits from class "classname".
const char * Data() const
TString & ReplaceAll(const TString &s1, const TString &s2)
void ToUpper()
Change string to upper case.
TString & Remove(Ssiz_t pos)
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
Ssiz_t Index(const char *pat, Ssiz_t i=0, ECaseCompare cmp=kExact) const
Abstract Base Class for Fitting.
virtual void SetFitOption(Foption_t option)
virtual void SetObjectFit(TObject *obj)
TMethodCall * GetMethodCall() const
void(* FCNFunc_t)(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag)
virtual void SetUserFunc(TObject *userfunc)
static TVirtualFitter * GetFitter()
static: return the current Fitter
static void SetFitter(TVirtualFitter *fitter, Int_t maxpar=25)
Static function to set an alternative fitter.
void GetDrawingRange(TH1 *h1, ROOT::Fit::DataRange &range)
void GetFunctionRange(const TF1 &f1, ROOT::Fit::DataRange &range)
int CheckFitFunction(const TF1 *f1, int hdim)
TFitResultPtr Fit(FitObject *h1, TF1 *f1, Foption_t &option, const ROOT::Math::MinimizerOptions &moption, const char *goption, ROOT::Fit::DataRange &range)
double ComputeChi2(const FitObject &h1, TF1 &f1, bool useRange, ROOT::Fit::EChisquareType type)
void FitOptionsMake(const char *option, Foption_t &fitOption)
void CheckGraphFitOptions(Foption_t &fitOption)
void StoreAndDrawFitFunction(FitObject *h1, TF1 *f1, const ROOT::Fit::DataRange &range, bool, bool, const char *goption)
int GetDimension(const TH1 *h1)
TFitResultPtr FitObject(TH1 *h1, TF1 *f1, Foption_t &option, const ROOT::Math::MinimizerOptions &moption, const char *goption, ROOT::Fit::DataRange &range)
fitting function for a TH1 (called from TH1::Fit)
double Chisquare(const TH1 &h1, TF1 &f1, bool useRange, EChisquareType type)
compute the chi2 value for an histogram given a function (see TH1::Chisquare for the documentation)
void FitOptionsMake(EFitObjectType type, const char *option, Foption_t &fitOption)
Decode list of options into fitOption.
void Init2DGaus(const ROOT::Fit::BinData &data, TF1 *f1)
compute initial parameter for 2D gaussian function given the fit data Set the sigma limits for zero t...
TFitResultPtr UnBinFit(ROOT::Fit::UnBinData *data, TF1 *f1, Foption_t &option, const ROOT::Math::MinimizerOptions &moption)
fit an unbin data set (from tree or from histogram buffer) using a TF1 pointer and fit options.
void FillData(BinData &dv, const TH1 *hist, TF1 *func=nullptr)
fill the data vector from a TH1.
void InitExpo(const ROOT::Fit::BinData &data, TF1 *f1)
compute initial parameter for an exponential function given the fit data Set the constant and slope a...
void InitGaus(const ROOT::Fit::BinData &data, TF1 *f1)
compute initial parameter for gaussian function given the fit data Set the sigma limits for zero top ...
std::string ToString(const T &val)
Utility function for conversion to strings.
Bool_t IsImplicitMTEnabled()
Returns true if the implicit multi-threading in ROOT is enabled.
Int_t Finite(Double_t x)
Check if it is finite with a mask in order to be consistent in presence of fast math.
LongDouble_t Power(LongDouble_t x, LongDouble_t y)
Returns x raised to the power y.
ROOT::EExecutionPolicy ExecPolicy
DataOptions : simple structure holding the options on how the data are filled.
bool fErrors1
use all errors equal to 1, i.e. fit without errors (default is false)
bool fNormBinVolume
normalize data by a normalized the bin volume (bin volume divided by a reference value)
bool fUseRange
use the function range when creating the fit data (default is false)
bool fUseEmpty
use empty bins (default is false) with a fixed error of 1
bool fIntegral
use integral of bin content instead of bin center (default is false)
bool fExpErrors
use expected errors from the function and not from the data
bool fBinVolume
normalize data by the bin volume (it is used in the Poisson likelihood fits)
bool fCoordErrors
use errors on the x coordinates when available (default is true)