74 template <
class FitObject>
77 template <
class FitObject>
80 template <
class FitObject>
90 Error(
"Fit",
"function may not be null pointer");
94 Error(
"Fit",
"function is zombie");
100 Error(
"Fit",
"function %s has illegal number of parameters = %d",
f1->
GetName(), npar);
106 Error(
"Fit",
"function %s dimension, %d, is greater than fit object dimension, %d",
111 Error(
"Fit",
"function %s dimension, %d, is smaller than fit object dimension -1, %d",
123 Double_t fxmin, fymin, fzmin, fxmax, fymax, fzmax;
124 f1.
GetRange(fxmin, fymin, fzmin, fxmax, fymax, fzmax);
133template<
class FitObject>
140 printf(
"fit function %s\n",
f1->
GetName() );
146 if (iret != 0)
return iret;
152 if (fitOption.
Integral)
Info(
"Fit",
"Ignore Integral option. Model function dimension is less than the data object dimension");
153 if (fitOption.
Like)
Info(
"Fit",
"Ignore Likelihood option. Model function dimension is less than the data object dimension");
161 if (special==299+npar) linear =
kTRUE;
167 std::shared_ptr<TFitResult> tfr(
new TFitResult() );
169 std::shared_ptr<ROOT::Fit::Fitter> fitter(
new ROOT::Fit::Fitter(std::static_pointer_cast<ROOT::Fit::FitResult>(tfr) ) );
190 printf(
"use range \n" );
195 printf(
"range size %d\n", range.
Size(0) );
198 printf(
" range in x = [%f,%f] \n",
x1,
x2);
205 if (fitdata->Size() == 0 ) {
206 Warning(
"Fit",
"Fit data is empty ");
211 printf(
"HFit:: data size is %d \n",fitdata->Size());
212 for (
unsigned int i = 0; i < fitdata->Size(); ++i) {
213 if (fitdata->NDim() == 1) printf(
" x[%d] = %f - value = %f \n", i,*(fitdata->Coords(i)),fitdata->Value(i) );
223 if (special != 0 && !fitOption.
Bound && !linear) {
236 if ( (linear || fitOption.
Gradient) )
248 if (
int(fitdata->NDim()) == hdim -1 ) fitConfig.
SetNormErrors(
true);
256 for (
int i = 0; i < npar; ++i) {
262 if (plow*pup != 0 && plow >= pup) {
265 else if (plow < pup ) {
280 double step = 0.1 * (pup - plow);
282 if ( parSettings.
Value() < pup && pup - parSettings.
Value() < 2 * step )
283 step = (pup - parSettings.
Value() ) / 2;
284 else if ( parSettings.
Value() > plow && parSettings.
Value() - plow < 2 * step )
285 step = (parSettings.
Value() - plow ) / 2;
314 std::string
type =
"Robust";
340 if (fitOption.
Like) printf(
"do likelihood fit...\n");
341 if (linear) printf(
"do linear fit...\n");
342 printf(
"do now fit...\n");
357 if (fitOption.
User && userFcn)
358 fitok = fitter->FitFCN( userFcn );
359 else if (fitOption.
Like) {
361 bool weight = ((fitOption.
Like & 2) == 2);
363 bool extended = ((fitOption.
Like & 4 ) != 4 );
367 fitok = fitter->LikelihoodFit(fitdata, extended, fitOption.
ExecPolicy);
370 fitok = fitter->Fit(fitdata, fitOption.
ExecPolicy);
372 if ( !fitok && !fitOption.
Quiet )
373 Warning(
"Fit",
"Abnormal termination of minimization.");
379 iret = fitResult.
Status();
403 if (!fitOption.
Quiet) {
404 if (fitter->GetMinimizer() && fitConfig.
MinimizerType() ==
"Minuit" &&
406 fitter->GetMinimizer()->PrintResults();
411 fitResult.
Print(std::cout);
426 bcfitter->
SetFCN(userFcn);
452 tfr->SetTitle(title);
467 if (range.
Size(0) == 0) {
478 if (range.
Size(1) == 0) {
489 if (range.
Size(2) == 0) {
500 std::cout <<
"xmin,xmax" <<
xmin <<
" " <<
xmax << std::endl;
519 else if (range.
Size(0) == 0) {
521 double xmin = std::numeric_limits<double>::infinity();
522 double xmax = -std::numeric_limits<double>::infinity();
523 TIter next(
mg->GetListOfGraphs() );
525 while ( (
g = (
TGraph*) next() ) ) {
526 double x1 = 0,
x2 = 0, y1 = 0, y2 = 0;
527 g->ComputeRange(
x1,y1,
x2,y2);
541 if (range.
Size(0) == 0) {
542 double xmin =
gr->GetXmin();
543 double xmax =
gr->GetXmax();
546 if (range.
Size(1) == 0) {
547 double ymin =
gr->GetYmin();
548 double ymax =
gr->GetYmax();
559 for (
int i = 0; i < ndim; ++i ) {
560 if ( range.
Size(i) == 0 ) {
567template<
class FitObject>
573 std::cout <<
"draw and store fit function " <<
f1->
GetName() << std::endl;
585 std::cout <<
"draw and store fit function " <<
f1->
GetName()
586 <<
" Range in x = [ " <<
xmin <<
" , " <<
xmax <<
" ]" << std::endl;
591 Error(
"StoreAndDrawFitFunction",
"Function list has not been created - cannot store the fitted function");
599 bool reuseOldFunction =
false;
600 if (delOldFunction) {
603 while ((obj = next())) {
610 reuseOldFunction =
true;
622 if (!reuseOldFunction) {
623 fnew1 = (
TF1*)
f1->IsA()->New();
626 funcList->
Add(fnew1);
636 }
else if (ndim < 3) {
637 if (!reuseOldFunction) {
638 fnew2 = (
TF2*)
f1->IsA()->New();
641 funcList->
Add(fnew2);
644 fnew2 =
dynamic_cast<TF2*
>(
f1);
653 if (!reuseOldFunction) {
654 fnew3 = (
TF3*)
f1->IsA()->New();
657 funcList->
Add(fnew3);
660 fnew2 =
dynamic_cast<TF3*
>(
f1);
671 if (drawFunction && ndim < 3 && h1->InheritsFrom(
TH1::Class() ) ) {
674 if (!
gPad || (
gPad &&
gPad->GetListOfPrimitives()->FindObject(
h1) == NULL ) )
690 if (option == 0)
return;
691 if (!option[0])
return;
739 int start = opt.
Index(
"H=0.");
740 int numpos = start + strlen(
"H=0.");
743 while( (numpos+numlen<len) && isdigit(opt[numpos+numlen]) ) numlen++;
744 TString num = opt(numpos,numlen);
745 opt.
Remove(start+strlen(
"H"),strlen(
"=0.")+numlen);
746 h = atof(num.
Data());
764 if (fitOption.
Like == 1) {
768 if (fitOption.
Like == 2) fitOption.
Like = 6;
769 else fitOption.
Like = 4;
774 if (fitOption.
Chi2 == 1 || fitOption.
PChi2 == 1)
775 Warning(
"Fit",
"Cannot use P or X option in combination of L. Ignore the chi2 option and perform a likelihood fit");
799 Info(
"CheckGraphFitOptions",
"L (Log Likelihood fit) is an invalid option when fitting a graph. It is ignored");
803 Info(
"CheckGraphFitOptions",
"I (use function integral) is an invalid option when fitting a graph. It is ignored");
815 std::shared_ptr<ROOT::Fit::UnBinData> fitdata(data);
818 printf(
"tree data size is %d \n",fitdata->Size());
819 for (
unsigned int i = 0; i < fitdata->Size(); ++i) {
820 if (fitdata->NDim() == 1) printf(
" x[%d] = %f \n", i,*(fitdata->Coords(i) ) );
823 if (fitdata->Size() == 0 ) {
824 Warning(
"Fit",
"Fit data is empty ");
829 std::shared_ptr<TFitResult> tfr(
new TFitResult() );
835 unsigned int dim = fitdata->NDim();
841 assert ( (
int) dim == fitfunc->
GetNdim() );
850 for (
int i = 0; i < npar; ++i) {
855 if (plow*pup != 0 && plow >= pup) {
858 else if (plow < pup ) {
873 double step = 0.1 * (pup - plow);
875 if ( parSettings.
Value() < pup && pup - parSettings.
Value() < 2 * step )
876 step = (pup - parSettings.
Value() ) / 2;
877 else if ( parSettings.
Value() > plow && parSettings.
Value() - plow < 2 * step )
878 step = (parSettings.
Value() - plow ) / 2;
900 if ( (fitOption.
Like & 2) == 2)
903 bool extended = (fitOption.
Like & 1) == 1;
906 fitok = fitter->LikelihoodFit(fitdata, extended, fitOption.
ExecPolicy);
907 if ( !fitok && !fitOption.
Quiet )
908 Warning(
"UnBinFit",
"Abnormal termination of minimization.");
912 int iret = fitResult.
Status();
937 if (lastFitter)
delete lastFitter;
947 else if (!fitOption.
Quiet) fitResult.
Print(std::cout);
956 tfr->SetTitle(title);
971 Warning(
"HFit::FitObject",
"A weighted likelihood fit is requested but histogram is not weighted - do a standard Likelihood fit");
1028template<
class FitObject>
1040 if (data.
Size() == 0 ) {
1041 Warning(
"Chisquare",
"data set is empty - return -1");
static const double x2[5]
static const double x1[5]
const Bool_t kIterBackward
void Info(const char *location, const char *msgfmt,...)
void Error(const char *location, const char *msgfmt,...)
void Warning(const char *location, const char *msgfmt,...)
R__EXTERN TVirtualMutex * gGlobalMutex
Class describing the binned data sets : vectors of x coordinates, y values and optionally error on y ...
Chi2FCN class for binnned fits using the least square methods.
class describing the range in the coordinates it supports multiple range in a coordinate.
void AddRange(unsigned int icoord, double xmin, double xmax)
add a range [xmin,xmax] for the new coordinate icoord Adding a range does not delete existing one,...
unsigned int Size(unsigned int icoord=0) const
return range size for coordinate icoord (starts from zero) Size == 0 indicates no range is present [-...
void GetRange(unsigned int irange, unsigned int icoord, double &xmin, double &xmax) const
get the i-th range for given coordinate.
Class describing the configuration of the fit, options and parameter settings using the ROOT::Fit::Pa...
void SetMinosErrors(bool on=true)
set Minos erros computation to be performed after fitting
void SetNormErrors(bool on=true)
set the option to normalize the error on the result according to chi2/ndf
void SetMinimizer(const char *type, const char *algo=0)
set minimizer type
bool NormalizeErrors() const
flag to check if resulting errors are be normalized according to chi2/ndf
void SetMinimizerOptions(const ROOT::Math::MinimizerOptions &minopt)
set all the minimizer options using class MinimizerOptions
void SetWeightCorrection(bool on=true)
apply the weight correction for error matric computation
void SetParabErrors(bool on=true)
set parabolic erros
const std::string & MinimizerType() const
return type of minimizer package
const ParameterSettings & ParSettings(unsigned int i) const
get the parameter settings for the i-th parameter (const method)
ROOT::Math::MinimizerOptions & MinimizerOptions()
access to the minimizer control parameter (non const method)
unsigned int Size() const
return number of fit points
class containg the result of the fit and all the related information (fitted parameter values,...
bool IsEmpty() const
True if a fit result does not exist (even invalid) with parameter values.
const std::vector< double > & Errors() const
parameter errors (return st::vector)
const std::vector< double > & Parameters() const
parameter values (return std::vector)
unsigned int Ndf() const
Number of degree of freedom.
double Chi2() const
Chi2 fit value in case of likelihood must be computed ?
void Print(std::ostream &os, bool covmat=false) const
print the result and optionaly covariance matrix and correlations
void PrintCovMatrix(std::ostream &os) const
print error matrix and correlations
int Status() const
minimizer status code
Fitter class, entry point for performing all type of fits.
Class, describing value, limits and step size of the parameters Provides functionality also to set/re...
void SetStepSize(double err)
set the step size
void SetLimits(double low, double up)
set a double side limit, if low == up the parameter is fixed if low > up the limits are removed The c...
double Value() const
copy constructor and assignment operators (leave them to the compiler)
void SetUpperLimit(double up)
set a single upper limit
void Fix()
fix the parameter
void SetLowerLimit(double low)
set a single lower limit
class evaluating the log likelihood for binned Poisson likelihood fits it is template to distinguish ...
Class describing the unbinned data sets (just x coordinates values) of any dimensions.
IParamFunction interface (abstract class) describing multi-dimensional parameteric functions It is a ...
void SetPrintLevel(int level)
set print level
void SetTolerance(double tol)
set the tolerance
Class to Wrap a ROOT Function class (like TF1) in a IParamMultiFunction interface of multi-dimensions...
Class to manage histogram axis.
virtual Double_t GetBinLowEdge(Int_t bin) const
Return low edge of bin.
Int_t GetLast() const
Return last bin on the axis i.e.
virtual Double_t GetBinWidth(Int_t bin) const
Return bin width.
Int_t GetFirst() const
Return first bin on the axis i.e.
Backward compatible implementation of TVirtualFitter.
virtual void SetMethodCall(TMethodCall *m)
virtual void SetFCN(void(*fcn)(Int_t &, Double_t *, Double_t &f, Double_t *, Int_t))
Override setFCN to use the Adapter to Minuit2 FCN interface To set the address of the minimization fu...
virtual Int_t GetNumber() const
virtual void GetParLimits(Int_t ipar, Double_t &parmin, Double_t &parmax) const
Return limits for parameter ipar.
virtual void SetNDF(Int_t ndf)
Set the number of degrees of freedom ndf should be the number of points used in a fit - the number of...
virtual Double_t GetParError(Int_t ipar) const
Return value of parameter number ipar.
virtual void SetChisquare(Double_t chi2)
virtual void Copy(TObject &f1) const
Copy this F1 to a new F1.
virtual void SetRange(Double_t xmin, Double_t xmax)
Initialize the upper and lower bounds to draw the function.
virtual void SetParent(TObject *p=0)
virtual Int_t GetNpar() const
virtual void SetParErrors(const Double_t *errors)
Set errors for all active parameters when calling this function, the array errors must have at least ...
virtual Double_t * GetParameters() const
virtual void SetNumberFitPoints(Int_t npfits)
virtual void GetRange(Double_t *xmin, Double_t *xmax) const
Return range of a generic N-D function.
virtual Bool_t IsLinear() const
virtual void SetParameters(const Double_t *params)
virtual void Save(Double_t xmin, Double_t xmax, Double_t ymin, Double_t ymax, Double_t zmin, Double_t zmax)
Save values of function in array fSave.
virtual Int_t GetNdim() const
virtual Bool_t AddToGlobalList(Bool_t on=kTRUE)
Add to global list of functions (gROOT->GetListOfFunctions() ) return previous status (true if the fu...
A 2-Dim function with parameters.
virtual void Save(Double_t xmin, Double_t xmax, Double_t ymin, Double_t ymax, Double_t zmin, Double_t zmax)
Save values of function in array fSave.
virtual void SetRange(Double_t xmin, Double_t xmax)
Initialize the upper and lower bounds to draw the function.
A 3-Dim function with parameters.
virtual void SetRange(Double_t xmin, Double_t xmax)
Initialize the upper and lower bounds to draw the function.
virtual void Save(Double_t xmin, Double_t xmax, Double_t ymin, Double_t ymax, Double_t zmin, Double_t zmax)
Save values of function in array fSave.
Provides an indirection to the TFitResult class and with a semantics identical to a TFitResult pointe...
Extends the ROOT::Fit::Result class with a TNamed inheritance providing easy possibility for I/O.
Graphics object made of three arrays X, Y and Z with the same number of points each.
A Graph is a graphics object made of two arrays X and Y with npoints each.
TH1F * GetHistogram() const
Returns a pointer to the histogram used to draw the axis Takes into account the two following cases.
virtual Int_t GetDimension() const
TAxis * GetXaxis()
Get the behaviour adopted by the object about the statoverflows. See EStatOverflows for more informat...
TList * GetListOfFunctions() const
virtual void Draw(Option_t *option="")
Draw this histogram with options.
virtual Int_t GetSumw2N() const
Multidimensional histogram base.
virtual void Add(TObject *obj)
virtual TObject * Remove(TObject *obj)
Remove object from the list.
A TMultiGraph is a collection of TGraph (or derived) objects.
virtual const char * GetTitle() const
Returns title of object.
virtual const char * GetName() const
Returns name of object.
Mother of all ROOT objects.
R__ALWAYS_INLINE Bool_t TestBit(UInt_t f) const
R__ALWAYS_INLINE Bool_t IsZombie() const
void SetBit(UInt_t f, Bool_t set)
Set or unset the user status bits as specified in f.
virtual Bool_t InheritsFrom(const char *classname) const
Returns kTRUE if object inherits from class "classname".
const char * Data() const
TString & ReplaceAll(const TString &s1, const TString &s2)
void ToUpper()
Change string to upper case.
TString & Remove(Ssiz_t pos)
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
Ssiz_t Index(const char *pat, Ssiz_t i=0, ECaseCompare cmp=kExact) const
Abstract Base Class for Fitting.
virtual void SetFitOption(Foption_t option)
virtual void SetObjectFit(TObject *obj)
TMethodCall * GetMethodCall() const
void(* FCNFunc_t)(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag)
virtual void SetUserFunc(TObject *userfunc)
static TVirtualFitter * GetFitter()
static: return the current Fitter
static void SetFitter(TVirtualFitter *fitter, Int_t maxpar=25)
Static function to set an alternative fitter.
void GetDrawingRange(TH1 *h1, ROOT::Fit::DataRange &range)
void GetFunctionRange(const TF1 &f1, ROOT::Fit::DataRange &range)
int CheckFitFunction(const TF1 *f1, int hdim)
TFitResultPtr Fit(FitObject *h1, TF1 *f1, Foption_t &option, const ROOT::Math::MinimizerOptions &moption, const char *goption, ROOT::Fit::DataRange &range)
void FitOptionsMake(const char *option, Foption_t &fitOption)
void CheckGraphFitOptions(Foption_t &fitOption)
void StoreAndDrawFitFunction(FitObject *h1, TF1 *f1, const ROOT::Fit::DataRange &range, bool, bool, const char *goption)
int GetDimension(const THnBase *s1)
double ComputeChi2(const FitObject &h1, TF1 &f1, bool useRange, bool usePL)
int GetDimension(const TH1 *h1)
TFitResultPtr FitObject(TH1 *h1, TF1 *f1, Foption_t &option, const ROOT::Math::MinimizerOptions &moption, const char *goption, ROOT::Fit::DataRange &range)
fitting function for a TH1 (called from TH1::Fit)
void FitOptionsMake(EFitObjectType type, const char *option, Foption_t &fitOption)
Decode list of options into fitOption.
void Init2DGaus(const ROOT::Fit::BinData &data, TF1 *f1)
compute initial parameter for 2D gaussian function given the fit data Set the sigma limits for zero t...
TFitResultPtr UnBinFit(ROOT::Fit::UnBinData *data, TF1 *f1, Foption_t &option, const ROOT::Math::MinimizerOptions &moption)
fit an unbin data set (from tree or from histogram buffer) using a TF1 pointer and fit options.
void FillData(BinData &dv, const TH1 *hist, TF1 *func=0)
fill the data vector from a TH1.
void InitExpo(const ROOT::Fit::BinData &data, TF1 *f1)
compute initial parameter for an exponential function given the fit data Set the constant and slope a...
void InitGaus(const ROOT::Fit::BinData &data, TF1 *f1)
compute initial parameter for gaussian function given the fit data Set the sigma limits for zero top ...
double Chisquare(const TH1 &h1, TF1 &f1, bool useRange, bool usePL=false)
compute the chi2 value for an histogram given a function (see TH1::Chisquare for the documentation)
std::string ToString(const T &val)
Utility function for conversion to strings.
Bool_t IsImplicitMTEnabled()
Returns true if the implicit multi-threading in ROOT is enabled.
static constexpr double s
static constexpr double mg
Int_t Finite(Double_t x)
Check if it is finite with a mask in order to be consistent in presence of fast math.
LongDouble_t Power(LongDouble_t x, LongDouble_t y)
ROOT::Fit::ExecutionPolicy ExecPolicy
DataOptions : simple structure holding the options on how the data are filled.