Namespaces | |
namespace | Internal |
namespace | Objectives |
namespace | SOFIE |
Classes | |
struct | BranchlessForest |
Forest using branchless trees. More... | |
struct | BranchlessJittedForest |
Forest using branchless jitted trees. More... | |
class | BranchlessTree |
Branchless representation of a decision tree using topological ordering. More... | |
class | Classification |
class | ClassificationResult |
struct | ForestBase |
Forest base class. More... | |
class | RBDT |
Fast boosted decision tree inference. More... | |
class | RReader |
A replacement for the TMVA::Reader legacy interface. More... | |
class | RSofieReader |
TMVA::RSofieReader class for reading external Machine Learning models in ONNX files, Keras .h5 files or PyTorch .pt files and performing the inference using SOFIE It is reccomended to use ONNX if possible since there is a larger support for model operators. More... | |
class | RStandardScaler |
class | RTensor |
RTensor is a container with contiguous memory and shape information. More... | |
class | SaveXGBoost |
Save an XGBoost to a ROOT file to be used with the fast tree inference system of TMVA. More... | |
class | SofieFunctorHelper |
Helper class used by SOFIEFunctor to wrap the infer signature interface to RDataFrame. More... | |
class | SofieFunctorHelper< std::index_sequence< N... >, Session_t, T > |
Enumerations | |
enum class | MemoryLayout : uint8_t { RowMajor = 0x01 , ColumnMajor = 0x02 , RowMajor = 0x01 , ColumnMajor = 0x02 } |
Memory layout type (copy from RTensor.hxx) More... | |
enum class | MemoryLayout : uint8_t { RowMajor = 0x01 , ColumnMajor = 0x02 , RowMajor = 0x01 , ColumnMajor = 0x02 } |
Memory layout type. More... | |
Functions | |
template<typename T , typename U > | |
RTensor< T > | AsTensor (U &dataframe, std::vector< std::string > columns={}, MemoryLayout layout=MemoryLayout::RowMajor) |
Convert the content of an RDataFrame to an RTensor. | |
template<std::size_t N, typename T , typename F > | |
auto | Compute (F &&f) -> Internal::ComputeHelper< std::make_index_sequence< N >, T, F > |
Helper to pass TMVA model to RDataFrame.Define nodes. | |
template<typename T > | |
std::ostream & | operator<< (std::ostream &os, RTensor< T > &x) |
Pretty printing. | |
template<std::size_t N, typename Session_t > | |
auto | SofieFunctor (unsigned int nslots=0, const std::string &weightsFile="") -> SofieFunctorHelper< std::make_index_sequence< N >, Session_t, float > |
SofieFunctor : used to wrap the infer function of the generated model by SOFIE in a RDF compatible signature. | |
|
strong |
Memory layout type (copy from RTensor.hxx)
Enumerator | |
---|---|
RowMajor | |
ColumnMajor | |
RowMajor | |
ColumnMajor |
Definition at line 47 of file CudaTensor.h.
|
strong |
Memory layout type.
Enumerator | |
---|---|
RowMajor | |
ColumnMajor | |
RowMajor | |
ColumnMajor |
Definition at line 17 of file RTensor.hxx.
RTensor< T > TMVA::Experimental::AsTensor | ( | U & | dataframe, |
std::vector< std::string > | columns = {} , |
||
MemoryLayout | layout = MemoryLayout::RowMajor |
||
) |
Convert the content of an RDataFrame to an RTensor.
[in] | dataframe | RDataFrame node |
[in] | columns | Vector of column names |
[in] | layout | Memory layout |
Definition at line 21 of file RTensorUtils.hxx.
auto TMVA::Experimental::Compute | ( | F && | f | ) | -> Internal::ComputeHelper<std::make_index_sequence<N>, T, F> |
Helper to pass TMVA model to RDataFrame.Define nodes.
Definition at line 32 of file RInferenceUtils.hxx.
std::ostream & TMVA::Experimental::operator<< | ( | std::ostream & | os, |
RTensor< T > & | x | ||
) |
Pretty printing.
[in] | os | Output stream |
[in] | x | RTensor |
Definition at line 582 of file RTensor.hxx.
auto TMVA::Experimental::SofieFunctor | ( | unsigned int | nslots = 0 , |
const std::string & | weightsFile = "" |
||
) | -> SofieFunctorHelper<std::make_index_sequence<N>, Session_t, float> |
SofieFunctor : used to wrap the infer function of the generated model by SOFIE in a RDF compatible signature.
The number of slots is an optional parameter used to create multiple SOFIE Sessions, which can be run in a parallel model evaluation. One shouild use as number of slots the number of slots used by RDataFrame. By default, in case of nslots=0
, only a single Session will be created and the Functor cannot be run in parallel. Examples of using the SofieFunctor are the C++ tutorial TMVA_SOFIE_RDataFrame.C and the Python tutorial TMVA_SOFIE_RDataFrame.py which makes use of the ROOT JIT to compile on the fly the generated SOFIE model.
Definition at line 61 of file SOFIEHelpers.hxx.