189 fDataHist->get(bin1);
190 double n1 = fDataHist->weight();
191 fDataHist->get(bin2);
192 double n2 = fDataHist->weight();
201 double n1 = fSparseHist->GetBinContent(bin1);
202 double n2 = fSparseHist->GetBinContent(bin2);
210 fChain(chain), fParam(param) {}
212 double xi = fChain->Get(i)->getRealValue(fParam->GetName());
213 double xj = fChain->Get(j)->getRealValue(fParam->GetName());
251 x[i] =
fAxes[i]->getVal();
280 <<
"Interval type not set. Returning false." << endl;
321 "number of variables in axes (" <<
size <<
322 ") doesn't match number of parameters ("
339 <<
"parameters have not been set." << endl;
345 "MCMCInterval::CreateKeysPdf: creation of Keys PDF failed: " <<
346 "Number of burn-in steps (num steps to ignore) >= number of steps " <<
347 "in Markov chain." << endl;
377 coutE(
Eval) <<
"* Error in MCMCInterval::CreateHist(): " <<
378 "Crucial data member was nullptr." << endl;
379 coutE(
Eval) <<
"Make sure to fully construct/initialize." << endl;
382 if (
fHist !=
nullptr) {
389 "MCMCInterval::CreateHist: creation of histogram failed: " <<
390 "Number of burn-in steps (num steps to ignore) >= number of steps " <<
391 "in Markov chain." << endl;
396 fHist =
new TH1F(
"posterior",
"MCMC Posterior Histogram",
400 fHist =
new TH2F(
"posterior",
"MCMC Posterior Histogram",
405 fHist =
new TH3F(
"posterior",
"MCMC Posterior Histogram",
411 coutE(
Eval) <<
"* Error in MCMCInterval::CreateHist() : " <<
412 "TH1* couldn't handle dimension: " <<
fDimension << endl;
449 <<
"Crucial data member was nullptr." << endl;
466 fDimension, bins.data(), min.data(), max.data());
475 "MCMCInterval::CreateSparseHist: creation of histogram failed: " <<
476 "Number of burn-in steps (num steps to ignore) >= number of steps " <<
477 "in Markov chain." << endl;
497 coutE(
Eval) <<
"* Error in MCMCInterval::CreateDataHist(): " <<
498 "Crucial data member was nullptr or empty." << endl;
499 coutE(
Eval) <<
"Make sure to fully construct/initialize." << endl;
505 "MCMCInterval::CreateDataHist: creation of histogram failed: " <<
506 "Number of burn-in steps (num steps to ignore) >= number of steps " <<
507 "in Markov chain." << endl;
525 "Crucial data member (Markov chain) was nullptr." << endl;
533 "MCMCInterval::CreateVector: creation of vector failed: " <<
534 "Number of burn-in steps (num steps to ignore) >= number of steps " <<
535 "in Markov chain." << endl;
543 for (i = 0; i <
size; i++) {
560 if (
fAxes !=
nullptr)
565 if (
dynamic_cast<RooRealVar*
>(obj) !=
nullptr)
568 coutE(
Eval) <<
"* Error in MCMCInterval::SetParameters: " <<
569 obj->
GetName() <<
" not a RooRealVar*" << std::endl;
587 "Error: Interval type not set" << endl;
606 if (fLeftSideTF < 0 || fLeftSideTF > 1) {
608 <<
"Fraction must be in the range [0, 1]. "
615 <<
"Error: Can only find a tail-fraction interval for 1-D intervals"
620 if (
fAxes ==
nullptr) {
622 <<
"Crucial data member was nullptr." << endl;
655 double leftTailSum = 0;
656 double rightTailSum = 0;
659 double ll = param->
getMin();
660 double ul = param->
getMax();
689 if (
TMath::Abs(rightTailSum +
w - rightTailCutoff) <
728 coutW(
Eval) <<
"Warning: Integral of Keys PDF came out to " << full
729 <<
" instead of expected value 1. Will continue using this "
730 <<
"factor to normalize further integrals of this PDF." << endl;
739 for (
auto *var : static_range_cast<RooRealVar*>(
fParameters))
740 volume *= (var->getMax() - var->getMin());
742 double topCutoff = full / volume;
743 double bottomCutoff = topCutoff;
750 bool changed =
false;
763 bottomCutoff = topCutoff / 2.0;
784 topCutoff = bottomCutoff * 2.0;
788 coutI(
Eval) <<
"range set: [" << bottomCutoff <<
", " << topCutoff <<
"]"
791 cutoff = (topCutoff + bottomCutoff) / 2.0;
803 bottomCutoff = cutoff;
806 cutoff = (topCutoff + bottomCutoff) / 2.0;
807 coutI(
Eval) <<
"cutoff range: [" << bottomCutoff <<
", "
808 << topCutoff <<
"]" << endl;
843 std::vector<Long_t> bins(numBins);
844 for (
Int_t ibin = 0; ibin < numBins; ibin++)
845 bins[ibin] = (
Long_t)ibin;
853 for (i = numBins - 1; i >= 0; i--) {
871 for ( ; i >= 0; i--) {
880 for ( ; i < numBins; i++) {
887 if (i == numBins - 1)
913 std::vector<Int_t> bins(numBins);
914 for (
Int_t ibin = 0; ibin < numBins; ibin++)
922 for (i = numBins - 1; i >= 0; i--) {
941 for ( ; i >= 0; i--) {
951 for ( ; i < numBins; i++) {
959 if (i == numBins - 1)
982 <<
"not implemented for this type of interval. Returning 0." << endl;
998 "Error: Interval type not set" << endl;
1014 "Error: Interval type not set" << endl;
1091 <<
"Sorry, will not compute lower limit unless dimension == 1" << endl;
1099 coutE(
Eval) <<
"In MCMCInterval::LowerLimitBySparseHist: "
1100 <<
"couldn't determine cutoff. Check that num burn in steps < num "
1101 <<
"steps in the Markov chain. Returning param.getMin()." << endl;
1109 double lowerLimit = param.
getMax();
1111 for (
Long_t i = 0; i < numBins; i++) {
1114 if (val < lowerLimit)
1135 coutE(
Eval) <<
"In MCMCInterval::LowerLimitByDataHist: "
1136 <<
"couldn't determine cutoff. Check that num burn in steps < num "
1137 <<
"steps in the Markov chain. Returning param.getMin()." << endl;
1144 double lowerLimit = param.
getMax();
1146 for (
Int_t i = 0; i < numBins; i++) {
1150 if (val < lowerLimit)
1168 <<
"Sorry, will not compute upper limit unless dimension == 1" << endl;
1176 coutE(
Eval) <<
"In MCMCInterval::UpperLimitBySparseHist: "
1177 <<
"couldn't determine cutoff. Check that num burn in steps < num "
1178 <<
"steps in the Markov chain. Returning param.getMax()." << endl;
1186 double upperLimit = param.
getMin();
1188 for (
Long_t i = 0; i < numBins; i++) {
1191 if (val > upperLimit)
1212 coutE(
Eval) <<
"In MCMCInterval::UpperLimitByDataHist: "
1213 <<
"couldn't determine cutoff. Check that num burn in steps < num "
1214 <<
"steps in the Markov chain. Returning param.getMax()." << endl;
1221 double upperLimit = param.
getMin();
1223 for (
Int_t i = 0; i < numBins; i++) {
1227 if (val > upperLimit)
1251 coutE(
Eval) <<
"in MCMCInterval::LowerLimitByKeys(): "
1252 <<
"couldn't find lower limit, check that the number of burn in "
1253 <<
"steps < number of total steps in the Markov chain. Returning "
1254 <<
"param.getMin()" << endl;
1261 double lowerLimit = param.
getMax();
1263 for (
Int_t i = 0; i < numBins; i++) {
1267 if (val < lowerLimit)
1291 coutE(
Eval) <<
"in MCMCInterval::UpperLimitByKeys(): "
1292 <<
"couldn't find upper limit, check that the number of burn in "
1293 <<
"steps < number of total steps in the Markov chain. Returning "
1294 <<
"param.getMax()" << endl;
1301 double upperLimit = param.
getMin();
1303 for (
Int_t i = 0; i < numBins; i++) {
1307 if (val > upperLimit)
1330 coutE(
Eval) <<
"in MCMCInterval::KeysMax(): "
1331 <<
"couldn't find Keys max value, check that the number of burn in "
1332 <<
"steps < number of total steps in the Markov chain. Returning 0"
1340 for (
Int_t i = 0; i < numBins; i++) {
1380 double confLevel = integral->getVal(
fParameters) / full;
1381 coutI(
Eval) <<
"cutoff = " << cutoff <<
", conf = " << confLevel << endl;
1391 <<
"confidence level not set " << endl;
1392 if (
fHist ==
nullptr)
1395 if (
fHist ==
nullptr)
1408 <<
"confidence level not set " << endl;
1425 <<
"confidence level not set " << endl;
1464 if (
fAxes ==
nullptr)
1490 bool tempChangeBinning =
true;
1492 if (!
fAxes[i]->getBinning(
nullptr,
false,
false).isUniform()) {
1493 tempChangeBinning =
false;
1502 tempChangeBinning =
false;
1504 if (tempChangeBinning) {
1516 "Keys PDF & Heaviside Product Data Hist",
fParameters);
1519 if (tempChangeBinning) {
1524 fAxes[i]->setBins(savedBins[i],
nullptr);
1535 coutE(
Eval) <<
"MCMCInterval: size is wrong, parameters don't match" << std::endl;
1539 coutE(
Eval) <<
"MCMCInterval: size is ok, but parameters don't match" << std::endl;
static const double DEFAULT_EPSILON
static const double DEFAULT_DELTA
size_t size(const MatrixT &matrix)
retrieve the size of a square matrix
THnSparseT< TArrayF > THnSparseF
TRObject operator()(const T1 &t1) const
TObject * Clone(const char *newname=nullptr) const override
Make a clone of an object using the Streamer facility.
Int_t numBins() const
Return number of bins.
bool equals(const RooAbsCollection &otherColl) const
Check if this and other collection have identically-named contents.
double getRealValue(const char *name, double defVal=0.0, bool verbose=false) const
Get value of a RooAbsReal stored in set with given name.
virtual void removeAll()
Remove all arguments from our set, deleting them if we own them.
Int_t getSize() const
Return the number of elements in the collection.
virtual bool add(const RooAbsArg &var, bool silent=false)
Add the specified argument to list.
virtual Int_t numEntries() const
Return number of entries in dataset, i.e., count unweighted entries.
Int_t numBins(const char *rangeName=nullptr) const override
virtual double getMax(const char *name=nullptr) const
Get maximum of currently defined range.
virtual double getMin(const char *name=nullptr) const
Get minimum of currently defined range.
RooDataHist * fillDataHist(RooDataHist *hist, const RooArgSet *nset, double scaleFactor, bool correctForBinVolume=false, bool showProgress=false) const
Fill a RooDataHist with values sampled from this function at the bin centers.
RooFit::OwningPtr< RooAbsReal > createIntegral(const RooArgSet &iset, const RooCmdArg &arg1, const RooCmdArg &arg2={}, const RooCmdArg &arg3={}, const RooCmdArg &arg4={}, const RooCmdArg &arg5={}, const RooCmdArg &arg6={}, const RooCmdArg &arg7={}, const RooCmdArg &arg8={}) const
Create an object that represents the integral of the function over one or more observables listed in ...
double getVal(const RooArgSet *normalisationSet=nullptr) const
Evaluate object.
RooArgList is a container object that can hold multiple RooAbsArg objects.
RooAbsArg * at(Int_t idx) const
Return object at given index, or nullptr if index is out of range.
RooArgSet is a container object that can hold multiple RooAbsArg objects.
The RooDataHist is a container class to hold N-dimensional binned data.
double sum(bool correctForBinSize, bool inverseCorr=false) const
Return the sum of the weights of all bins in the histogram.
Int_t getIndex(const RooAbsCollection &coord, bool fast=false) const
Calculate bin number of the given coordinates.
double weight(std::size_t i) const
Return weight of i-th bin.
const RooArgSet * get() const override
Get bin centre of current bin.
Generic N-dimensional implementation of a kernel estimation p.d.f.
static constexpr double infinity()
Return internal infinity representation.
A RooProduct represents the product of a given set of RooAbsReal objects.
RooRealVar represents a variable that can be changed from the outside.
void setVal(double value) override
Set value of variable to 'value'.
const RooAbsBinning & getBinning(const char *name=nullptr, bool verbose=true, bool createOnTheFly=false) const override
Return binning definition with name.
void setBins(Int_t nBins, const char *name=nullptr)
Create a uniform binning under name 'name' for this variable.
ConfInterval is an interface class for a generic interval in the RooStats framework.
Represents the Heaviside function.
MCMCInterval is a concrete implementation of the RooStats::ConfInterval interface.
virtual void CreateDataHist()
virtual void DetermineByDataHist()
virtual void DetermineShortestInterval()
virtual double GetActualConfidenceLevel()
virtual double GetKeysPdfCutoff() { return fKeysCutoff; }
double fKeysConfLevel
the actual conf level determined by keys
virtual void CreateVector(RooRealVar *param)
RooDataHist * fDataHist
the binned Markov Chain data
virtual double LowerLimitByDataHist(RooRealVar ¶m)
determine lower limit using histogram
double fDelta
topCutoff (a) considered == bottomCutoff (b) iff
double fConfidenceLevel
Requested confidence level (eg. 0.95 for 95% CL)
TH1 * fHist
the binned Markov Chain data
virtual double UpperLimitBySparseHist(RooRealVar ¶m)
determine upper limit using histogram
enum IntervalType fIntervalType
virtual double UpperLimit(RooRealVar ¶m)
get the highest value of param that is within the confidence interval
RooRealVar * fCutoffVar
cutoff variable to use for integrating keys pdf
virtual void SetAxes(RooArgList &axes)
Set which parameters go on which axis.
virtual void DetermineByKeys()
double fTFLower
lower limit of the tail-fraction interval
bool fUseSparseHist
whether to use sparse hist (vs. RooDataHist)
double fVecWeight
sum of weights of all entries in fVector
double fLeftSideTF
left side tail-fraction for interval
bool AcceptableConfLevel(double confLevel)
virtual void DetermineBySparseHist()
double GetKeysMax()
Determine the approximate maximum value of the Keys PDF.
RooProduct * fProduct
the (keysPdf * heaviside) product
virtual double LowerLimitBySparseHist(RooRealVar ¶m)
determine lower limit using histogram
bool WithinDeltaFraction(double a, double b)
double fKeysCutoff
cutoff keys pdf value to be in interval
virtual double LowerLimitShortest(RooRealVar ¶m)
get the lower limit of param in the shortest confidence interval Note that this works better for some...
virtual double LowerLimitTailFraction(RooRealVar ¶m)
determine lower limit of the lower confidence interval
virtual TH1 * GetPosteriorHist()
set the number of bins to use (same for all axes, for now) virtual void SetNumBins(Int_t numBins);
Int_t fDimension
number of variables
void SetConfidenceLevel(double cl) override
set the desired confidence level (see GetActualConfidenceLevel()) Note: calling this function trigger...
MCMCInterval(const char *name=nullptr)
default constructor
RooRealVar ** fAxes
array of pointers to RooRealVars representing the axes of the histogram fAxes[0] represents x-axis,...
virtual void DetermineTailFractionInterval()
double fTFConfLevel
the actual conf level of tail-fraction interval
double fHistConfLevel
the actual conf level determined by hist
virtual void CreateSparseHist()
Heaviside * fHeaviside
the Heaviside function
double fFull
Value of intergral of fProduct.
virtual double UpperLimitByDataHist(RooRealVar ¶m)
determine upper limit using histogram
virtual void DetermineInterval()
virtual double CalcConfLevel(double cutoff, double full)
virtual double LowerLimitByHist(RooRealVar ¶m)
determine lower limit using histogram
virtual double LowerLimit(RooRealVar ¶m)
get the lowest value of param that is within the confidence interval
virtual double UpperLimitShortest(RooRealVar ¶m)
get the upper limit of param in the confidence interval Note that this works better for some distribu...
THnSparse * fSparseHist
the binned Markov Chain data
bool CheckParameters(const RooArgSet &point) const override
check if parameters are correct. (dummy implementation to start)
std::vector< Int_t > fVector
vector containing the Markov chain data
virtual double LowerLimitByKeys(RooRealVar ¶m)
determine lower limit in the shortest interval by using keys pdf
virtual RooProduct * GetPosteriorKeysProduct()
Get a clone of the (keyspdf * heaviside) product of the posterior.
double fTFUpper
upper limit of the tail-fraction interval
double fHistCutoff
cutoff bin size to be in interval
MarkovChain * fChain
the markov chain
RooArgSet * GetParameters() const override
return a set containing the parameters of this interval the caller owns the returned RooArgSet*
virtual double UpperLimitTailFraction(RooRealVar ¶m)
determine upper limit of the lower confidence interval
bool fIsHistStrict
whether the specified confidence level is a
virtual RooNDKeysPdf * GetPosteriorKeysPdf()
Get a clone of the keys pdf of the posterior.
virtual double UpperLimitByHist(RooRealVar ¶m)
determine upper limit using histogram
virtual void CreateKeysPdf()
virtual double UpperLimitByKeys(RooRealVar ¶m)
determine upper limit in the shortest interval by using keys pdf
Int_t fNumBurnInSteps
number of steps to discard as burn in, starting from the first
virtual void CreateHist()
bool fUseKeys
whether to use kernel estimation
RooDataHist * fKeysDataHist
data hist representing product
RooArgSet fParameters
parameters of interest for this interval
bool IsInInterval(const RooArgSet &point) const override
determine whether this point is in the confidence interval
virtual void DetermineByHist()
virtual void SetParameters(const RooArgSet ¶meters)
Set the parameters of interest for this interval and change other internal data members accordingly.
virtual void CreateKeysDataHist()
RooNDKeysPdf * fKeysPdf
the kernel estimation pdf
double fEpsilon
acceptable error for Keys interval determination
virtual double GetKeysPdfCutoff()
get the cutoff RooNDKeysPdf value for being considered in the confidence interval
virtual double GetHistCutoff()
get the cutoff bin height for being considered in the confidence interval
Stores the steps in a Markov Chain of points.
virtual RooFit::OwningPtr< RooDataHist > GetAsDataHist(RooArgSet *whichVars=nullptr) const
get this MarkovChain as a RooDataHist whose entries contain the values of whichVars.
virtual RooFit::OwningPtr< RooDataSet > GetAsDataSet(RooArgSet *whichVars=nullptr) const
get this MarkovChain as a RooDataSet whose entries contain the values of whichVars.
virtual const RooArgSet * Get(Int_t i) const
get the entry at position i
virtual double Weight() const
get the weight of the current (last indexed) entry
virtual Int_t Size() const
get the number of steps in the chain
virtual Double_t GetBinCenter(Int_t bin) const
Return center of bin.
1-D histogram with a float per channel (see TH1 documentation)}
TH1 is the base class of all histogram classes in ROOT.
TObject * Clone(const char *newname="") const override
Make a complete copy of the underlying object.
2-D histogram with a float per channel (see TH1 documentation)}
3-D histogram with a float per channel (see TH1 documentation)}
Long64_t Fill(const Double_t *x, Double_t w=1.)
TAxis * GetAxis(Int_t dim) const
Efficient multidimensional histogram.
Double_t GetBinContent(const Int_t *idx) const
Forwards to THnBase::GetBinContent() overload.
Long64_t GetBin(const Int_t *idx) const override
void Sumw2() override
Enable calculation of errors.
Long64_t GetNbins() const override
virtual void SetTitle(const char *title="")
Set the title of the TNamed.
const char * GetName() const override
Returns name of object.
RooCmdArg SelectVars(const RooArgSet &vars)
RooCmdArg EventRange(Int_t nStart, Int_t nStop)
RooCmdArg NormSet(Args_t &&... argsOrArgSet)
The namespace RooFit contains mostly switches that change the behaviour of functions of PDFs (or othe...
Namespace for the RooStats classes.
void SetParameters(const RooArgSet *desiredVals, RooArgSet *paramsToChange)
Short_t Abs(Short_t d)
Returns the absolute value of parameter Short_t d.
CompareDataHistBins(RooDataHist *hist)
CompareSparseHistBins(THnSparse *hist)
CompareVectorIndices(MarkovChain *chain, RooRealVar *param)
static uint64_t sum(uint64_t i)