40#ifndef ROOT_TMVA_Factory
41#define ROOT_TMVA_Factory
72 class DataInputHandler;
77 class VariableTransformBase;
187 TH1F*
GetImportance(
const int nbits,std::vector<Double_t> importances,std::vector<TString> varNames);
#define ClassDef(name, id)
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
Describe directory structure in memory.
A ROOT file is a suite of consecutive data records (TKey instances) with a well defined format.
A TGraph is an object made of two arrays X and Y with npoints each.
1-D histogram with a float per channel (see TH1 documentation)}
Class to perform cross validation, splitting the dataloader into folds.
Class that contains all the data information.
This is the main MVA steering class.
void PrintHelpMessage(const TString &datasetname, const TString &methodTitle="") const
Print predefined help message of classifier.
Bool_t fSilentFile
! used in constructor without file
Bool_t fCorrelations
! enable to calculate correlations
Bool_t IsModelPersistence() const
TString fOptions
! option string given by construction (presently only "V")
std::vector< IMethod * > MVector
void TrainAllMethods()
Iterates through all booked methods and calls training.
Bool_t Verbose(void) const
void WriteDataInformation(DataSetInfo &fDataSetInfo)
MethodBase * BookMethod(DataLoader *loader, TString theMethodName, TString methodTitle, TString theOption="")
Book a classifier or regression method.
void TestAllMethods()
Evaluates all booked methods on the testing data and adds the output to the Results in the corresponi...
void TrainAllMethodsForClassification(void)
Bool_t fVerbose
! verbose mode
void EvaluateAllMethods(void)
Iterates over all MVAs that have been booked, and calls their evaluation methods.
TH1F * EvaluateImportanceRandom(DataLoader *loader, UInt_t nseeds, Types::EMVA theMethod, TString methodTitle, const char *theOption="")
TH1F * GetImportance(const int nbits, std::vector< Double_t > importances, std::vector< TString > varNames)
Bool_t fROC
! enable to calculate ROC values
void EvaluateAllVariables(DataLoader *loader, TString options="")
Iterates over all MVA input variables and evaluates them.
TDirectory * RootBaseDir()
TString fVerboseLevel
! verbosity level, controls granularity of logging
TMultiGraph * GetROCCurveAsMultiGraph(DataLoader *loader, UInt_t iClass, Types::ETreeType type=Types::kTesting)
Generate a collection of graphs, for all methods for a given class.
TH1F * EvaluateImportance(DataLoader *loader, VIType vitype, Types::EMVA theMethod, TString methodTitle, const char *theOption="")
Evaluate Variable Importance.
void OptimizeAllMethodsForRegression(TString fomType="ROCIntegral", TString fitType="FitGA")
Double_t GetROCIntegral(DataLoader *loader, TString theMethodName, UInt_t iClass=0, Types::ETreeType type=Types::kTesting)
Calculate the integral of the ROC curve, also known as the area under curve (AUC),...
std::map< TString, MVector * > fMethodsMap
void SetInputTreesFromEventAssignTrees()
virtual ~Factory()
Destructor.
virtual void MakeClass(const TString &datasetname, const TString &methodTitle="") const
MethodBase * BookMethodWeightfile(DataLoader *dataloader, TMVA::Types::EMVA methodType, const TString &weightfile)
Adds an already constructed method to be managed by this factory.
Bool_t fModelPersistence
! option to save the trained model in xml file or using serialization
std::map< TString, Double_t > OptimizeAllMethods(TString fomType="ROCIntegral", TString fitType="FitGA")
Iterates through all booked methods and sees if they use parameter tuning and if so does just that,...
void OptimizeAllMethodsForClassification(TString fomType="ROCIntegral", TString fitType="FitGA")
ROCCurve * GetROC(DataLoader *loader, TString theMethodName, UInt_t iClass=0, Types::ETreeType type=Types::kTesting)
Private method to generate a ROCCurve instance for a given method.
Bool_t IsSilentFile() const
TH1F * EvaluateImportanceShort(DataLoader *loader, Types::EMVA theMethod, TString methodTitle, const char *theOption="")
Types::EAnalysisType fAnalysisType
! the training type
TString fJobName
! jobname, used as extension in weight file names
Bool_t HasMethod(const TString &datasetname, const TString &title) const
Checks whether a given method name is defined for a given dataset.
TGraph * GetROCCurve(DataLoader *loader, TString theMethodName, Bool_t setTitles=kTRUE, UInt_t iClass=0, Types::ETreeType type=Types::kTesting)
Argument iClass specifies the class to generate the ROC curve in a multiclass setting.
MethodBase * BookMethod(DataLoader *, TMVA::Types::EMVA, TString, TString, TMVA::Types::EMVA, TString)
void TrainAllMethodsForRegression(void)
TH1F * EvaluateImportanceAll(DataLoader *loader, Types::EMVA theMethod, TString methodTitle, const char *theOption="")
void SetVerbose(Bool_t v=kTRUE)
TFile * fgTargetFile
! ROOT output file
std::vector< TMVA::VariableTransformBase * > fDefaultTrfs
! list of transformations on default DataSet
IMethod * GetMethod(const TString &datasetname, const TString &title) const
Returns pointer to MVA that corresponds to given method title.
void DeleteAllMethods(void)
Delete methods.
TString fTransformations
! list of transformations to test
void Greetings()
Print welcome message.
Interface for all concrete MVA method implementations.
Virtual base Class for all MVA method.
A TMultiGraph is a collection of TGraph (or derived) objects.
A TTree represents a columnar dataset.
create variable transformations