40 #ifndef ROOT_TMVA_Factory 41 #define ROOT_TMVA_Factory 73 class DataInputHandler;
78 class VariableTransformBase;
97 virtual const char*
GetName()
const {
return "Factory"; }
183 TH1F*
GetImportance(
const int nbits,std::vector<Double_t> importances,std::vector<TString> varNames);
TH1F * GetImportance(const int nbits, std::vector< Double_t > importances, std::vector< TString > varNames)
MethodBase * BookMethod(DataLoader *loader, TString theMethodName, TString methodTitle, TString theOption="")
Book a classifier or regression method.
std::vector< TMVA::VariableTransformBase * > fDefaultTrfs
ROOT output file.
void EvaluateAllVariables(DataLoader *loader, TString options="")
Iterates over all MVA input variables and evaluates them.
Bool_t fROC
enable to calculate corelations
void OptimizeAllMethodsForClassification(TString fomType="ROCIntegral", TString fitType="FitGA")
TH1F * EvaluateImportanceShort(DataLoader *loader, Types::EMVA theMethod, TString methodTitle, const char *theOption="")
A ROOT file is a suite of consecutive data records (TKey instances) with a well defined format...
Bool_t Verbose(void) const
A TMultiGraph is a collection of TGraph (or derived) objects.
Virtual base Class for all MVA method.
void OptimizeAllMethodsForRegression(TString fomType="ROCIntegral", TString fitType="FitGA")
TString fTransformations
option string given by construction (presently only "V")
1-D histogram with a float per channel (see TH1 documentation)}
void TrainAllMethods()
Iterates through all booked methods and calls training.
TMultiGraph * GetROCCurveAsMultiGraph(DataLoader *loader, UInt_t iClass)
Generate a collection of graphs, for all methods for a given class.
void WriteDataInformation(DataSetInfo &fDataSetInfo)
void TrainAllMethodsForClassification(void)
TH1F * EvaluateImportanceRandom(DataLoader *loader, UInt_t nseeds, Types::EMVA theMethod, TString methodTitle, const char *theOption="")
TGraph * GetROCCurve(DataLoader *loader, TString theMethodName, Bool_t setTitles=kTRUE, UInt_t iClass=0)
Argument iClass specifies the class to generate the ROC curve in a multiclass setting.
void TrainAllMethodsForRegression(void)
#define ClassDef(name, id)
TH1F * EvaluateImportance(DataLoader *loader, VIType vitype, Types::EMVA theMethod, TString methodTitle, const char *theOption="")
Evaluate Variable Importance.
Bool_t fModelPersistence
the training type
TString fVerboseLevel
verbose mode
TH1F * EvaluateImportanceAll(DataLoader *loader, Types::EMVA theMethod, TString methodTitle, const char *theOption="")
Bool_t IsModelPersistence()
Class that contains all the data information.
std::map< TString, MVector * > fMethodsMap
Bool_t fSilentFile
enable to calculate ROC values
virtual ~Factory()
Destructor.
std::map< TString, Double_t > OptimizeAllMethods(TString fomType="ROCIntegral", TString fitType="FitGA")
Iterates through all booked methods and sees if they use parameter tuning and if so.
TDirectory * RootBaseDir()
Double_t GetROCIntegral(DataLoader *loader, TString theMethodName, UInt_t iClass=0)
Calculate the integral of the ROC curve, also known as the area under curve (AUC), for a given method.
Bool_t HasMethod(const TString &datasetname, const TString &title) const
Checks whether a given method name is defined for a given dataset.
Bool_t fCorrelations
verbosity level, controls granularity of logging
void EvaluateAllMethods(void)
Iterates over all MVAs that have been booked, and calls their evaluation methods. ...
void TestAllMethods()
Evaluates all booked methods on the testing data and adds the output to the Results in the corresponi...
void Greetings()
Print welcome message.
This is the main MVA steering class.
void SetVerbose(Bool_t v=kTRUE)
void SetInputTreesFromEventAssignTrees()
ROCCurve * GetROC(DataLoader *loader, TString theMethodName, UInt_t iClass=0, Types::ETreeType type=Types::kTesting)
Private method to generate a ROCCurve instance for a given method.
Describe directory structure in memory.
Class to perform cross validation, splitting the dataloader into folds.
Interface for all concrete MVA method implementations.
void PrintHelpMessage(const TString &datasetname, const TString &methodTitle="") const
Print predefined help message of classifier.
Abstract ClassifierFactory template that handles arbitrary types.
TString fOptions
list of transformations on default DataSet
Factory(TString theJobName, TFile *theTargetFile, TString theOption="")
Standard constructor.
TString fJobName
used in contructor wihtout file
MethodBase * BookMethod(DataLoader *, TMVA::Types::EMVA, TString, TString, TMVA::Types::EMVA, TString)
A Graph is a graphics object made of two arrays X and Y with npoints each.
void DeleteAllMethods(void)
Delete methods.
A TTree object has a header with a name and a title.
Types::EAnalysisType fAnalysisType
jobname, used as extension in weight file names
std::vector< IMethod * > MVector
virtual const char * GetName() const
Returns name of object.
virtual void MakeClass(const TString &datasetname, const TString &methodTitle="") const
IMethod * GetMethod(const TString &datasetname, const TString &title) const
Returns pointer to MVA that corresponds to given method title.
Bool_t fVerbose
list of transformations to test
MethodBase * BookMethodWeightfile(DataLoader *dataloader, TMVA::Types::EMVA methodType, const TString &weightfile)
Adds an already constructed method to be managed by this factory.