12#ifndef ROOT_TMVA_CROSS_EVALUATION 
   13#define ROOT_TMVA_CROSS_EVALUATION 
   82   std::map<UInt_t, Float_t> 
fROCs;
 
  142   const std::vector<CrossValidationResult> &
GetResults() 
const;
 
#define ClassDef(name, id)
 
A ROOT file is a suite of consecutive data records (TKey instances) with a well defined format.
 
A TGraph is an object made of two arrays X and Y with npoints each.
 
CrossValidationFoldResult(UInt_t iFold)
 
CrossValidationFoldResult()
 
Class to save the results of cross validation, the metric for the classification ins ROC and you can ...
 
std::vector< Double_t > fSeps
 
std::vector< Double_t > fEff01s
 
std::vector< Double_t > GetTrainEff10Values() const
 
std::vector< Double_t > fTrainEff30s
 
std::shared_ptr< TMultiGraph > fROCCurves
 
std::vector< Double_t > GetTrainEff30Values() const
 
std::vector< Double_t > fSigs
 
std::vector< Double_t > fEff30s
 
void Fill(CrossValidationFoldResult const &fr)
 
Float_t GetROCStandardDeviation() const
 
std::vector< Double_t > fEff10s
 
std::vector< Double_t > fTrainEff01s
 
std::vector< Double_t > GetEff10Values() const
 
std::map< UInt_t, Float_t > fROCs
 
std::vector< Double_t > fTrainEff10s
 
std::vector< Double_t > GetTrainEff01Values() const
 
Float_t GetROCAverage() const
 
std::vector< Double_t > fEffAreas
 
std::vector< Double_t > GetEff01Values() const
 
TCanvas * DrawAvgROCCurve(Bool_t drawFolds=kFALSE, TString title="") const
 
std::vector< Double_t > GetSigValues() const
 
TMultiGraph * GetROCCurves(Bool_t fLegend=kTRUE)
 
TGraph * GetAvgROCCurve(UInt_t numSamples=100) const
Generates a multigraph that contains an average ROC Curve.
 
std::map< UInt_t, Float_t > GetROCValues() const
 
std::vector< Double_t > GetEffAreaValues() const
 
std::vector< Double_t > GetSepValues() const
 
std::vector< Double_t > GetEff30Values() const
 
Class to perform cross validation, splitting the dataloader into folds.
 
void SetNumFolds(UInt_t i)
 
void ParseOptions()
Method to parse the internal option string.
 
const std::vector< CrossValidationResult > & GetResults() const
 
std::vector< CrossValidationResult > fResults
!
 
std::unique_ptr< Factory > fFoldFactory
 
Bool_t fFoldStatus
! If true: dataset is prepared
 
std::unique_ptr< CvSplitKFolds > fSplit
 
Types::EAnalysisType fAnalysisType
 
Bool_t fFoldFileOutput
! If true: generate output file for each fold
 
TString fCvFactoryOptions
 
void SetSplitExpr(TString splitExpr)
 
void Evaluate()
Does training, test set evaluation and performance evaluation of using cross-evalution.
 
TString fOutputFactoryOptions
 
std::unique_ptr< Factory > fFactory
 
UInt_t fNumFolds
! Number of folds to prepare
 
TString fOutputEnsembling
! How to combine output of individual folds
 
UInt_t fNumWorkerProcs
! Number of processes to use for fold evaluation. (Default, no parallel evaluation)
 
CrossValidationFoldResult ProcessFold(UInt_t iFold, const OptionMap &methodInfo)
Evaluates each fold in turn.
 
Abstract base class for all high level ml algorithms, you can book ml methods like BDT,...
 
This is the main MVA steering class.
 
class to storage options for the differents methods
 
std::vector< Float_t > EventOutputs_t
 
std::vector< std::vector< Float_t > > EventOutputsMulticlass_t
 
std::vector< Event * > EventCollection_t
 
std::vector< Bool_t > EventTypes_t
 
A TMultiGraph is a collection of TGraph (or derived) objects.
 
create variable transformations