136  if(rnd->
Rndm()>frac) {
 
  137    return rnd->
Gaus(mTrue+smallBias,smallSigma);
 
  139    return rnd->
Gaus(mTrue+wideBias,wideSigma);
 
  152  Double_t const luminosityData=100000;
 
  153  Double_t const luminosityMC=1000000;
 
  156  Int_t const nDet=250;
 
  157  Int_t const nGen=100;
 
  166  TH1D *histMgenMC=
new TH1D(
"MgenMC",
";mass(gen)",nGen,xminGen,xmaxGen);
 
  167  TH1D *histMdetMC=
new TH1D(
"MdetMC",
";mass(det)",nDet,xminDet,xmaxDet);
 
  168  TH2D *histMdetGenMC=
new TH2D(
"MdetgenMC",
";mass(det);mass(gen)",nDet,xminDet,xmaxDet,
 
  169                              nGen,xminGen,xmaxGen);
 
  171  for(
Int_t i=0;i<neventMC;i++) {
 
  184    histMgenMC->
Fill(mGen,luminosityData/luminosityMC);
 
  186    histMdetMC->
Fill(mDet,luminosityData/luminosityMC);
 
  201    histMdetGenMC->
Fill(mDet,mGen,luminosityData/luminosityMC);
 
  207  TH1D *histMgenData=
new TH1D(
"MgenData",
";mass(gen)",nGen,xminGen,xmaxGen);
 
  208  TH1D *histMdetData=
new TH1D(
"MdetData",
";mass(det)",nDet,xminDet,xmaxDet);
 
  209  Int_t neventData=rnd->
Poisson(luminosityData*crossSection);
 
  210  for(
Int_t i=0;i<neventData;i++) {
 
  217    histMgenData->
Fill(mGen);
 
  220    histMdetData->
Fill(mDet);
 
  245  Int_t iPeek=(
Int_t)(nGen*(estimatedPeakPosition-xminGen)/(xmaxGen-xminGen)
 
  251  unfold.RegularizeBins(1,1,iPeek-nPeek,regMode);
 
  253  unfold.RegularizeBins(iPeek+nPeek,1,nGen-(iPeek+nPeek),regMode);
 
  259  if(unfold.SetInput(histMdetData,0.0)>=10000) {
 
  260    std::cout<<
"Unfolding result may be wrong\n";
 
  272  iBest=unfold.ScanLcurve(nScan,tauMin,tauMax,&lCurve,&logTauX,&logTauY);
 
  273  std::cout<<
"tau="<<unfold.GetTau()<<
"\n";
 
  274  std::cout<<
"chi**2="<<unfold.GetChi2A()<<
"+"<<unfold.GetChi2L()
 
  275           <<
" / "<<unfold.GetNdf()<<
"\n";
 
  291  for(
Int_t i=1;i<=nGen;i++) binMap[i]=i;
 
  295  TH1D *histMunfold=
new TH1D(
"Unfolded",
";mass(gen)",nGen,xminGen,xmaxGen);
 
  296  unfold.GetOutput(histMunfold,binMap);
 
  297  TH1D *histMdetFold=
new TH1D(
"FoldedBack",
"mass(det)",nDet,xminDet,xmaxDet);
 
  298  unfold.GetFoldedOutput(histMdetFold);
 
  301  TH1D *histRhoi=
new TH1D(
"rho_I",
"mass",nGen,xminGen,xmaxGen);
 
  302  unfold.GetRhoI(histRhoi,binMap);
 
  321  histMdetGenMC->
Draw(
"BOX");
 
  331  histMgenData->
Draw(
"SAME");
 
  332  histMgenMC->
Draw(
"SAME HIST");
 
  340  histMdetFold->
Draw();
 
  342  histMdetData->
Draw(
"SAME");
 
  343  histMdetMC->
Draw(
"SAME HIST");
 
  357  bestLogTauX->
Draw(
"*");
 
  362  bestLcurve->
Draw(
"*");
 
  364  output.SaveAs(
"testUnfold2.ps");
 
virtual void SetLineColor(Color_t lcolor)
Set the line color.
 
virtual void SetMarkerColor(Color_t mcolor=1)
Set the marker color.
 
A TGraph is an object made of two arrays X and Y with npoints each.
 
void Draw(Option_t *chopt="") override
Draw this graph with its current attributes.
 
1-D histogram with a double per channel (see TH1 documentation)}
 
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
 
void Draw(Option_t *option="") override
Draw this histogram with options.
 
static void SetDefaultSumw2(Bool_t sumw2=kTRUE)
When this static function is called with sumw2=kTRUE, all new histograms will automatically activate ...
 
2-D histogram with a double per channel (see TH1 documentation)}
 
Int_t Fill(Double_t) override
Invalid Fill method.
 
void Divide(Int_t nx=1, Int_t ny=1, Float_t xmargin=0.01, Float_t ymargin=0.01, Int_t color=0) override
Automatic pad generation by division.
 
Random number generator class based on M.
 
This is the base class for the ROOT Random number generators.
 
virtual Double_t Gaus(Double_t mean=0, Double_t sigma=1)
Samples a random number from the standard Normal (Gaussian) Distribution with the given mean and sigm...
 
virtual Int_t Poisson(Double_t mean)
Generates a random integer N according to a Poisson law.
 
Double_t Rndm() override
Machine independent random number generator.
 
Base class for spline implementation containing the Draw/Paint methods.
 
void Draw(Option_t *option="") override
Draw this function with its current attributes.
 
virtual void GetKnot(Int_t i, Double_t &x, Double_t &y) const =0
 
An algorithm to unfold distributions from detector to truth level.
 
ERegMode
choice of regularisation scheme
 
@ kRegModeNone
no regularisation, or defined later by RegularizeXXX() methods
 
@ kRegModeCurvature
regularize the 2nd derivative of the output distribution
 
@ kHistMapOutputVert
truth level on y-axis of the response matrix
 
LongDouble_t Power(LongDouble_t x, LongDouble_t y)
Returns x raised to the power y.
 
Double_t Tan(Double_t)
Returns the tangent of an angle of x radians.
 
Short_t Abs(Short_t d)
Returns the absolute value of parameter Short_t d.