73 TAttLine::operator=(sp);
74 TAttFill::operator=(sp);
75 TAttMarker::operator=(sp);
139 pmin =
gPad->PadtoX(
gPad->GetUxmin());
140 pmax =
gPad->PadtoX(
gPad->GetUxmax());
144 if (
xmax < pmin)
return;
145 if (
xmin > pmax)
return;
169 for (i=0;i<=
fNpx;i++) {
170 xbins[i] =
gPad->PadtoX(xlogmin+ i*dlogx);
181 for (i=1;i<=
fNpx;i++) {
199 char *o = (
char *) opt.
Data();
362 fValBeg(valbeg), fValEnd(valend), fBegCond(0), fEndCond(0)
372 for (
Int_t i=0; i<
n; ++i) {
391 fValBeg(valbeg), fValEnd(valend),
392 fBegCond(0), fEndCond(0)
402 for (
Int_t i=0; i<
n; ++i) {
420 fValBeg(valbeg), fValEnd(valend),
421 fBegCond(0), fEndCond(0)
431 for (
Int_t i=0; i<
n; ++i) {
447 const TF1 *func,
Int_t n,
const char *opt,
450 fValBeg(valbeg), fValEnd(valend),
451 fBegCond(0), fEndCond(0)
464 for (
Int_t i=0; i<
n; ++i) {
480 const TGraph *
g,
const char *opt,
483 fValBeg(valbeg), fValEnd(valend),
484 fBegCond(0), fEndCond(0)
496 g->GetPoint(i,xx,yy);
513 fValBeg(valbeg), fValEnd(valend),
514 fBegCond(0), fEndCond(0)
525 fPoly[i].
X()=
h->GetXaxis()->GetBinCenter(i+1);
526 fPoly[i].
Y()=
h->GetBinContent(i+1);
541 fValBeg(sp3.fValBeg),
542 fValEnd(sp3.fValEnd),
543 fBegCond(sp3.fBegCond),
544 fEndCond(sp3.fEndCond)
576 const char *b1 = strstr(opt,
"b1");
577 const char *e1 = strstr(opt,
"e1");
578 const char *b2 = strstr(opt,
"b2");
579 const char *e2 = strstr(opt,
"e2");
581 Error(
"SetCond",
"Cannot specify first and second derivative at first point");
583 Error(
"SetCond",
"Cannot specify first and second derivative at last point");
623 printf(
"1 TEST OF TSpline3 WITH NONEQUIDISTANT KNOTS\n");
638 printf(
"\n-N = %3d M =%2d\n",
n,
m);
640 for (i = 0; i <
n; ++i)
641 spline->
GetCoeff(i,hx,
a[i],
a[i+200],
a[i+400],
a[i+600]);
643 for (i = 0; i < mm1; ++i) diff[i] = com[i] = 0;
644 for (k = 0; k <
n; ++k) {
645 for (i = 0; i < mm; ++i)
c[i] =
a[k+i*200];
646 printf(
" ---------------------------------------%3d --------------------------------------------\n",k+1);
647 printf(
"%12.8f\n",
x[k]);
649 printf(
"%16.8f\n",
c[0]);
651 for (i = 0; i < mm; ++i) printf(
"%16.8f",
c[i]);
653 for (i = 0; i < mm1; ++i)
654 if ((z=
TMath::Abs(
a[k+i*200])) > com[i]) com[i] = z;
656 for (i = 1; i < mm; ++i)
657 for (jj = i; jj < mm; ++jj) {
659 c[j-2] =
c[j-1]*z+
c[j-2];
661 for (i = 0; i < mm; ++i) printf(
"%16.8f",
c[i]);
663 for (i = 0; i < mm1; ++i)
664 if (!(k >=
n-2 && i != 0))
666 > diff[i]) diff[i] = z;
669 printf(
" MAXIMUM ABSOLUTE VALUES OF DIFFERENCES \n");
670 for (i = 0; i < mm1; ++i) printf(
"%18.9E",diff[i]);
672 printf(
" MAXIMUM ABSOLUTE VALUES OF COEFFICIENTS \n");
675 for (i = 0; i < mm1; ++i) printf(
"%16.8f",com[i]);
678 for (
n = 10;
n <= 100;
n += 10) {
682 for (i = 0; i < nm1; i += 2) {
692 printf(
"\n-N = %3d M =%2d\n",
n,
m);
694 for (i = 0; i <
n; ++i)
697 for (i = 0; i < mm1; ++i)
698 diff[i] = com[i] = 0;
699 for (k = 0; k <
n; ++k) {
700 for (i = 0; i < mm; ++i)
703 printf(
" ---------------------------------------%3d --------------------------------------------\n",k+1);
704 printf(
"%12.8f\n",
x[k]);
705 if (k ==
n-1) printf(
"%16.8f\n",
c[0]);
709 for (i = 0; i < mm; ++i) printf(
"%16.8f",
c[i]);
712 for (i = 0; i < mm1; ++i)
716 for (i = 1; i < mm; ++i)
717 for (jj = i; jj < mm; ++jj) {
719 c[j-2] =
c[j-1]*z+
c[j-2];
722 for (i = 0; i < mm; ++i) printf(
"%16.8f",
c[i]);
725 for (i = 0; i < mm1; ++i)
726 if (!(k >=
n-2 && i != 0))
728 > diff[i]) diff[i] = z;
730 printf(
" MAXIMUM ABSOLUTE VALUES OF DIFFERENCES \n");
731 for (i = 0; i < mm1; ++i) printf(
"%18.9E",diff[i]);
733 printf(
" MAXIMUM ABSOLUTE VALUES OF COEFFICIENTS \n");
736 for (i = 0; i < mm1; ++i) printf(
"%16.8E",com[i]);
751 else if(
x>=
fXmax) klow=khig;
760 else if (klow < khig) {
761 if (
x >
fPoly[klow+1].X()) ++klow;
768 if(
x>
fPoly[khalf=(klow+khig)/2].X())
776 "Binary search failed x(%d) = %f < x= %f < x(%d) = %f\n",
789 if (klow >=
fNp-1 &&
fNp > 1) klow =
fNp-2;
799 if (klow >=
fNp-1) klow =
fNp-2;
810 std::ofstream *
f =
new std::ofstream(
filename,std::ios::out);
820 char *dot = strstr(buffer,
".");
822 strlcat(buffer,
"(double x) {\n",512);
823 nch = strlen(buffer);
f->write(buffer,nch);
825 nch = strlen(buffer);
f->write(buffer,nch);
827 nch = strlen(buffer);
f->write(buffer,nch);
831 snprintf(buffer,512,
" const double fX[%d] = {",
fNp);
832 nch = strlen(buffer);
f->write(buffer,nch);
836 for (i=0;i<
fNp;i++) {
839 if (i ==
fNp-1) numb[nch-1]=0;
840 strlcat(buffer,numb,512);
841 if (i%5 == 4 || i ==
fNp-1) {
842 nch = strlen(buffer);
f->write(buffer,nch);
847 nch = strlen(buffer);
f->write(buffer,nch);
849 snprintf(buffer,512,
" const double fY[%d] = {",
fNp);
850 nch = strlen(buffer);
f->write(buffer,nch);
852 for (i=0;i<
fNp;i++) {
855 if (i ==
fNp-1) numb[nch-1]=0;
856 strlcat(buffer,numb,512);
857 if (i%5 == 4 || i ==
fNp-1) {
858 nch = strlen(buffer);
f->write(buffer,nch);
863 nch = strlen(buffer);
f->write(buffer,nch);
865 snprintf(buffer,512,
" const double fB[%d] = {",
fNp);
866 nch = strlen(buffer);
f->write(buffer,nch);
868 for (i=0;i<
fNp;i++) {
871 if (i ==
fNp-1) numb[nch-1]=0;
872 strlcat(buffer,numb,512);
873 if (i%5 == 4 || i ==
fNp-1) {
874 nch = strlen(buffer);
f->write(buffer,nch);
879 nch = strlen(buffer);
f->write(buffer,nch);
881 snprintf(buffer,512,
" const double fC[%d] = {",
fNp);
882 nch = strlen(buffer);
f->write(buffer,nch);
884 for (i=0;i<
fNp;i++) {
887 if (i ==
fNp-1) numb[nch-1]=0;
888 strlcat(buffer,numb,512);
889 if (i%5 == 4 || i ==
fNp-1) {
890 nch = strlen(buffer);
f->write(buffer,nch);
895 nch = strlen(buffer);
f->write(buffer,nch);
897 snprintf(buffer,512,
" const double fD[%d] = {",
fNp);
898 nch = strlen(buffer);
f->write(buffer,nch);
900 for (i=0;i<
fNp;i++) {
903 if (i ==
fNp-1) numb[nch-1]=0;
904 strlcat(buffer,numb,512);
905 if (i%5 == 4 || i ==
fNp-1) {
906 nch = strlen(buffer);
f->write(buffer,nch);
911 nch = strlen(buffer);
f->write(buffer,nch);
914 snprintf(buffer,512,
" int klow=0;\n");
915 nch = strlen(buffer);
f->write(buffer,nch);
917 snprintf(buffer,512,
" // If out of boundaries, extrapolate. It may be badly wrong\n");
918 snprintf(buffer,512,
" if(x<=fXmin) klow=0;\n");
919 nch = strlen(buffer);
f->write(buffer,nch);
920 snprintf(buffer,512,
" else if(x>=fXmax) klow=fNp-1;\n");
921 nch = strlen(buffer);
f->write(buffer,nch);
923 nch = strlen(buffer);
f->write(buffer,nch);
924 snprintf(buffer,512,
" if(fKstep) {\n");
925 nch = strlen(buffer);
f->write(buffer,nch);
927 snprintf(buffer,512,
" // Equidistant knots, use histogramming\n");
928 nch = strlen(buffer);
f->write(buffer,nch);
929 snprintf(buffer,512,
" klow = int((x-fXmin)/fDelta);\n");
930 nch = strlen(buffer);
f->write(buffer,nch);
931 snprintf(buffer,512,
" if (klow < fNp-1) klow = fNp-1;\n");
932 nch = strlen(buffer);
f->write(buffer,nch);
934 nch = strlen(buffer);
f->write(buffer,nch);
935 snprintf(buffer,512,
" int khig=fNp-1, khalf;\n");
936 nch = strlen(buffer);
f->write(buffer,nch);
938 snprintf(buffer,512,
" // Non equidistant knots, binary search\n");
939 nch = strlen(buffer);
f->write(buffer,nch);
940 snprintf(buffer,512,
" while(khig-klow>1)\n");
941 nch = strlen(buffer);
f->write(buffer,nch);
942 snprintf(buffer,512,
" if(x>fX[khalf=(klow+khig)/2]) klow=khalf;\n");
943 nch = strlen(buffer);
f->write(buffer,nch);
944 snprintf(buffer,512,
" else khig=khalf;\n");
945 nch = strlen(buffer);
f->write(buffer,nch);
947 nch = strlen(buffer);
f->write(buffer,nch);
949 nch = strlen(buffer);
f->write(buffer,nch);
950 snprintf(buffer,512,
" // Evaluate now\n");
951 nch = strlen(buffer);
f->write(buffer,nch);
952 snprintf(buffer,512,
" double dx=x-fX[klow];\n");
953 nch = strlen(buffer);
f->write(buffer,nch);
954 snprintf(buffer,512,
" return (fY[klow]+dx*(fB[klow]+dx*(fC[klow]+dx*fD[klow])));\n");
955 nch = strlen(buffer);
f->write(buffer,nch);
960 if (
f) {
f->close();
delete f;}
975 out<<
"spline3 = new TSpline3("<<quote<<
GetTitle()<<quote<<
","
976 <<
fXmin<<
","<<
fXmax<<
",(TF1*)0,"<<
fNp<<
","<<quote<<quote<<
","
978 out<<
" spline3->SetName("<<quote<<
GetName()<<quote<<
");"<<std::endl;
983 if (
fNpx != 100) out<<
" spline3->SetNpx("<<
fNpx<<
");"<<std::endl;
986 out<<
" spline3->SetPoint("<<i<<
","<<
fPoly[i].
X()<<
","<<
fPoly[i].
Y()<<
");"<<std::endl;
987 out<<
" spline3->SetPointCoeff("<<i<<
","<<
fPoly[i].
B()<<
","<<
fPoly[i].
C()<<
","<<
fPoly[i].
D()<<
");"<<std::endl;
989 out<<
" spline3->Draw("<<quote<<
option<<quote<<
");"<<std::endl;
997 if (i < 0 || i >=
fNp)
return;
1007 if (i < 0 || i >=
fNp)
return;
1092 for (
m=1;
m<
l; ++
m) {
1161 for (i=1; i<
fNp; ++i) {
1165 fPoly[i-1].
C() = (divdf1 -
fPoly[i-1].
B() - divdf3)/dtau;
1166 fPoly[i-1].
D() = (divdf3/dtau)/dtau;
1220 const char *cb1, *ce1, *cb2, *ce2;
1229 for (
Int_t i=0; i<
n; ++i) {
1254 const char *cb1, *ce1, *cb2, *ce2;
1263 for (
Int_t i=0; i<
n; ++i) {
1287 const char *cb1, *ce1, *cb2, *ce2;
1296 for (
Int_t i=0; i<
n; i++) {
1321 const char *cb1, *ce1, *cb2, *ce2;
1330 for (
Int_t i=0; i<
n; ++i) {
1333 if (func)
fPoly[i+beg].
Y() = ((
TF1*)func)->Eval(
x);
1356 const char *cb1, *ce1, *cb2, *ce2;
1367 g->GetPoint(i,xx,yy);
1390 const char *cb1, *ce1, *cb2, *ce2;
1400 fPoly[i+beg].
X()=
h->GetXaxis()->GetBinCenter(i+1);
1401 fPoly[i+beg].
Y()=
h->GetBinContent(i+1);
1447 const char *&cb1,
const char *&ce1,
1448 const char *&cb2,
const char *&ce2)
1453 cb1 = strstr(opt,
"b1");
1454 ce1 = strstr(opt,
"e1");
1455 cb2 = strstr(opt,
"b2");
1456 ce2 = strstr(opt,
"e2");
1478 const char *cb1,
const char *ce1,
const char *cb2,
1544 if(
x>
fPoly[khalf=(klow+khig)/2].X())
1553 "Binary search failed x(%d) = %f < x(%d) = %f\n",
1554 klow,
fPoly[klow].X(),klow+1,
fPoly[klow+1].X());
1584 std::ofstream *
f =
new std::ofstream(
filename,std::ios::out);
1594 char *dot = strstr(buffer,
".");
1596 strlcat(buffer,
"(double x) {\n",512);
1597 nch = strlen(buffer);
f->write(buffer,nch);
1599 nch = strlen(buffer);
f->write(buffer,nch);
1601 nch = strlen(buffer);
f->write(buffer,nch);
1605 snprintf(buffer,512,
" const double fX[%d] = {",
fNp);
1606 nch = strlen(buffer);
f->write(buffer,nch);
1610 for (i=0;i<
fNp;i++) {
1613 if (i ==
fNp-1) numb[nch-1]=0;
1614 strlcat(buffer,numb,512);
1615 if (i%5 == 4 || i ==
fNp-1) {
1616 nch = strlen(buffer);
f->write(buffer,nch);
1621 nch = strlen(buffer);
f->write(buffer,nch);
1623 snprintf(buffer,512,
" const double fY[%d] = {",
fNp);
1624 nch = strlen(buffer);
f->write(buffer,nch);
1626 for (i=0;i<
fNp;i++) {
1629 if (i ==
fNp-1) numb[nch-1]=0;
1630 strlcat(buffer,numb,512);
1631 if (i%5 == 4 || i ==
fNp-1) {
1632 nch = strlen(buffer);
f->write(buffer,nch);
1637 nch = strlen(buffer);
f->write(buffer,nch);
1639 snprintf(buffer,512,
" const double fB[%d] = {",
fNp);
1640 nch = strlen(buffer);
f->write(buffer,nch);
1642 for (i=0;i<
fNp;i++) {
1645 if (i ==
fNp-1) numb[nch-1]=0;
1646 strlcat(buffer,numb,512);
1647 if (i%5 == 4 || i ==
fNp-1) {
1648 nch = strlen(buffer);
f->write(buffer,nch);
1653 nch = strlen(buffer);
f->write(buffer,nch);
1655 snprintf(buffer,512,
" const double fC[%d] = {",
fNp);
1656 nch = strlen(buffer);
f->write(buffer,nch);
1658 for (i=0;i<
fNp;i++) {
1661 if (i ==
fNp-1) numb[nch-1]=0;
1662 strlcat(buffer,numb,512);
1663 if (i%5 == 4 || i ==
fNp-1) {
1664 nch = strlen(buffer);
f->write(buffer,nch);
1669 nch = strlen(buffer);
f->write(buffer,nch);
1671 snprintf(buffer,512,
" const double fD[%d] = {",
fNp);
1672 nch = strlen(buffer);
f->write(buffer,nch);
1674 for (i=0;i<
fNp;i++) {
1677 if (i ==
fNp-1) numb[nch-1]=0;
1678 strlcat(buffer,numb,512);
1679 if (i%5 == 4 || i ==
fNp-1) {
1680 nch = strlen(buffer);
f->write(buffer,nch);
1685 nch = strlen(buffer);
f->write(buffer,nch);
1687 snprintf(buffer,512,
" const double fE[%d] = {",
fNp);
1688 nch = strlen(buffer);
f->write(buffer,nch);
1690 for (i=0;i<
fNp;i++) {
1693 if (i ==
fNp-1) numb[nch-1]=0;
1694 strlcat(buffer,numb,512);
1695 if (i%5 == 4 || i ==
fNp-1) {
1696 nch = strlen(buffer);
f->write(buffer,nch);
1701 nch = strlen(buffer);
f->write(buffer,nch);
1703 snprintf(buffer,512,
" const double fF[%d] = {",
fNp);
1704 nch = strlen(buffer);
f->write(buffer,nch);
1706 for (i=0;i<
fNp;i++) {
1709 if (i ==
fNp-1) numb[nch-1]=0;
1710 strlcat(buffer,numb,512);
1711 if (i%5 == 4 || i ==
fNp-1) {
1712 nch = strlen(buffer);
f->write(buffer,nch);
1717 nch = strlen(buffer);
f->write(buffer,nch);
1720 snprintf(buffer,512,
" int klow=0;\n");
1721 nch = strlen(buffer);
f->write(buffer,nch);
1723 snprintf(buffer,512,
" // If out of boundaries, extrapolate. It may be badly wrong\n");
1724 snprintf(buffer,512,
" if(x<=fXmin) klow=0;\n");
1725 nch = strlen(buffer);
f->write(buffer,nch);
1726 snprintf(buffer,512,
" else if(x>=fXmax) klow=fNp-1;\n");
1727 nch = strlen(buffer);
f->write(buffer,nch);
1729 nch = strlen(buffer);
f->write(buffer,nch);
1730 snprintf(buffer,512,
" if(fKstep) {\n");
1731 nch = strlen(buffer);
f->write(buffer,nch);
1733 snprintf(buffer,512,
" // Equidistant knots, use histogramming\n");
1734 nch = strlen(buffer);
f->write(buffer,nch);
1735 snprintf(buffer,512,
" klow = int((x-fXmin)/fDelta);\n");
1736 nch = strlen(buffer);
f->write(buffer,nch);
1737 snprintf(buffer,512,
" if (klow < fNp-1) klow = fNp-1;\n");
1738 nch = strlen(buffer);
f->write(buffer,nch);
1739 snprintf(buffer,512,
" } else {\n");
1740 nch = strlen(buffer);
f->write(buffer,nch);
1741 snprintf(buffer,512,
" int khig=fNp-1, khalf;\n");
1742 nch = strlen(buffer);
f->write(buffer,nch);
1744 snprintf(buffer,512,
" // Non equidistant knots, binary search\n");
1745 nch = strlen(buffer);
f->write(buffer,nch);
1746 snprintf(buffer,512,
" while(khig-klow>1)\n");
1747 nch = strlen(buffer);
f->write(buffer,nch);
1748 snprintf(buffer,512,
" if(x>fX[khalf=(klow+khig)/2]) klow=khalf;\n");
1749 nch = strlen(buffer);
f->write(buffer,nch);
1750 snprintf(buffer,512,
" else khig=khalf;\n");
1751 nch = strlen(buffer);
f->write(buffer,nch);
1753 nch = strlen(buffer);
f->write(buffer,nch);
1755 nch = strlen(buffer);
f->write(buffer,nch);
1756 snprintf(buffer,512,
" // Evaluate now\n");
1757 nch = strlen(buffer);
f->write(buffer,nch);
1758 snprintf(buffer,512,
" double dx=x-fX[klow];\n");
1759 nch = strlen(buffer);
f->write(buffer,nch);
1760 snprintf(buffer,512,
" return (fY[klow]+dx*(fB[klow]+dx*(fC[klow]+dx*(fD[klow]+dx*(fE[klow]+dx*fF[klow])))));\n");
1761 nch = strlen(buffer);
f->write(buffer,nch);
1766 if (
f) {
f->close();
delete f;}
1775 out<<
" "<<std::endl;
1785 out<<
"spline5 = new TSpline5("<<quote<<
GetTitle()<<quote<<
","
1786 <<
fXmin<<
","<<
fXmax<<
",(TF1*)0,"<<
fNp<<
","<<quote<<quote<<
","
1787 <<b1<<
","<<e1<<
","<<b2<<
","<<e2<<
");"<<std::endl;
1788 out<<
" spline5->SetName("<<quote<<
GetName()<<quote<<
");"<<std::endl;
1793 if (
fNpx != 100) out<<
" spline5->SetNpx("<<
fNpx<<
");"<<std::endl;
1796 out<<
" spline5->SetPoint("<<i<<
","<<
fPoly[i].
X()<<
","<<
fPoly[i].
Y()<<
");"<<std::endl;
1797 out<<
" spline5->SetPointCoeff("<<i<<
","<<
fPoly[i].
B()<<
","<<
fPoly[i].
C()<<
","<<
fPoly[i].
D()<<
","<<
fPoly[i].
E()<<
","<<
fPoly[i].
F()<<
");"<<std::endl;
1799 out<<
" spline5->Draw("<<quote<<
option<<quote<<
");"<<std::endl;
1808 if (i < 0 || i >=
fNp)
return;
1819 if (i < 0 || i >=
fNp)
return;
1908 b1, p2, p3, q2, q3, r2, pq, pr, qr;
1923 if (
q)
fPoly[1].
D() =
q*6.*q2/(qr*qr);
1927 for (i = 1; i <
m; ++i) {
1940 fPoly[i+1].
D() = q3*6./(qr*qr);
1942 *(pr* 20.+q2*7.)+q2*
1943 ((p2+r2)*8.+pr*21.+q2+q2))/(pqqr*pqqr);
1944 fPoly[i-1].
D() += q3*6./(pq*pq);
1945 fPoly[i].
E() = q2*(
p*qr+pq*3.*(qr+
r+
r))/(pqqr*qr);
1946 fPoly[i-1].
E() += q2*(
r*pq+qr*3.*(pq+
p+
p))/(pqqr*pq);
1947 fPoly[i-1].
F() = q3/pqqr;
1952 if (
r)
fPoly[
m-1].
D() +=
r*6.*r2/(qr*qr);
1957 for (i = 1; i <
fNp; ++i) {
1966 for (i = 2; i <
fNp; ++i) {
1984 for (i = 2; i <
m; ++i) {
1997 for (i=
fNp-3; i > 0; --i)
2015 for (i = 1; i <
m; ++i) {
2036 p3-(
v+
fPoly[i].E())*q3)/pq;
2093 printf(
"1 TEST OF TSpline5 WITH NONEQUIDISTANT KNOTS\n");
2108 printf(
"\n-N = %3d M =%2d\n",
n,
m);
2110 for (i = 0; i <
n; ++i)
2112 a[i+600],
a[i+800],
a[i+1000]);
2114 for (i = 0; i < mm1; ++i) diff[i] = com[i] = 0;
2115 for (k = 0; k <
n; ++k) {
2116 for (i = 0; i < mm; ++i)
c[i] =
a[k+i*200];
2117 printf(
" ---------------------------------------%3d --------------------------------------------\n",k+1);
2118 printf(
"%12.8f\n",
x[k]);
2120 printf(
"%16.8f\n",
c[0]);
2122 for (i = 0; i < mm; ++i) printf(
"%16.8f",
c[i]);
2124 for (i = 0; i < mm1; ++i)
2125 if ((z=
TMath::Abs(
a[k+i*200])) > com[i]) com[i] = z;
2127 for (i = 1; i < mm; ++i)
2128 for (jj = i; jj < mm; ++jj) {
2130 c[j-2] =
c[j-1]*z+
c[j-2];
2132 for (i = 0; i < mm; ++i) printf(
"%16.8f",
c[i]);
2134 for (i = 0; i < mm1; ++i)
2135 if (!(k >=
n-2 && i != 0))
2137 > diff[i]) diff[i] = z;
2140 printf(
" MAXIMUM ABSOLUTE VALUES OF DIFFERENCES \n");
2141 for (i = 0; i < mm1; ++i) printf(
"%18.9E",diff[i]);
2143 printf(
" MAXIMUM ABSOLUTE VALUES OF COEFFICIENTS \n");
2146 for (i = 0; i < mm1; ++i) printf(
"%16.8f",com[i]);
2149 for (
n = 10;
n <= 100;
n += 10) {
2153 for (i = 0; i < nm1; i += 2) {
2163 printf(
"\n-N = %3d M =%2d\n",
n,
m);
2165 for (i = 0; i <
n; ++i)
2167 a[i+600],
a[i+800],
a[i+1000]);
2169 for (i = 0; i < mm1; ++i)
2170 diff[i] = com[i] = 0;
2171 for (k = 0; k <
n; ++k) {
2172 for (i = 0; i < mm; ++i)
2175 printf(
" ---------------------------------------%3d --------------------------------------------\n",k+1);
2176 printf(
"%12.8f\n",
x[k]);
2177 if (k ==
n-1) printf(
"%16.8f\n",
c[0]);
2179 if (k ==
n-1)
break;
2181 for (i = 0; i < mm; ++i) printf(
"%16.8f",
c[i]);
2184 for (i = 0; i < mm1; ++i)
2188 for (i = 1; i < mm; ++i)
2189 for (jj = i; jj < mm; ++jj) {
2191 c[j-2] =
c[j-1]*z+
c[j-2];
2194 for (i = 0; i < mm; ++i) printf(
"%16.8f",
c[i]);
2197 for (i = 0; i < mm1; ++i)
2198 if (!(k >=
n-2 && i != 0))
2200 > diff[i]) diff[i] = z;
2202 printf(
" MAXIMUM ABSOLUTE VALUES OF DIFFERENCES \n");
2203 for (i = 0; i < mm1; ++i) printf(
"%18.9E",diff[i]);
2205 printf(
" MAXIMUM ABSOLUTE VALUES OF COEFFICIENTS \n");
2208 for (i = 0; i < mm1; ++i) printf(
"%16.8E",com[i]);
2213 printf(
"1 TEST OF TSpline5 WITH NONEQUIDISTANT DOUBLE KNOTS\n");
2239 printf(
"-N = %3d M =%2d\n",
n,
m);
2241 for (i = 0; i < nn; ++i)
2243 a[i+600],
a[i+800],
a[i+1000]);
2245 for (i = 0; i < mm1; ++i)
2246 diff[i] = com[i] = 0;
2247 for (k = 0; k < nn; ++k) {
2248 for (i = 0; i < mm; ++i)
2250 printf(
" ---------------------------------------%3d --------------------------------------------\n",k+1);
2251 printf(
"%12.8f\n",
x[k]);
2253 printf(
"%16.8f\n",
c[0]);
2256 for (i = 0; i < mm; ++i) printf(
"%16.8f",
c[i]);
2258 for (i = 0; i < mm1; ++i)
2259 if ((z=
TMath::Abs(
a[k+i*200])) > com[i]) com[i] = z;
2261 for (i = 1; i < mm; ++i)
2262 for (jj = i; jj < mm; ++jj) {
2264 c[j-2] =
c[j-1]*z+
c[j-2];
2266 for (i = 0; i < mm; ++i) printf(
"%16.8f",
c[i]);
2268 for (i = 0; i < mm1; ++i)
2269 if (!(k >= nn-2 && i != 0))
2271 > diff[i]) diff[i] = z;
2273 printf(
" MAXIMUM ABSOLUTE VALUES OF DIFFERENCES \n");
2274 for (i = 1; i <= mm1; ++i) {
2275 printf(
"%18.9E",diff[i-1]);
2280 printf(
" MAXIMUM ABSOLUTE VALUES OF COEFFICIENTS \n");
2281 for (i = 0; i < mm1; ++i) printf(
"%16.8f",com[i]);
2284 for (
n = 10;
n <= 100;
n += 10) {
2289 for (i = 0; i <
n; ++i) {
2296 printf(
"-N = %3d M =%2d\n",
n,
m);
2298 for (i = 0; i < nn; ++i)
2300 a[i+600],
a[i+800],
a[i+1000]);
2302 for (i = 0; i < mm1; ++i)
2303 diff[i] = com[i] = 0;
2304 for (k = 0; k < nn; ++k) {
2305 for (i = 0; i < mm; ++i)
2308 printf(
" ---------------------------------------%3d --------------------------------------------\n",k+1);
2309 printf(
"%12.8f\n",
x[k]);
2310 if (k == nn-1) printf(
"%16.8f\n",
c[0]);
2312 if (k == nn-1)
break;
2314 for (i = 0; i < mm; ++i) printf(
"%16.8f",
c[i]);
2317 for (i = 0; i < mm1; ++i)
2318 if ((z=
TMath::Abs(
a[k+i*200])) > com[i]) com[i] = z;
2320 for (i = 1; i < mm; ++i) {
2321 for (jj = i; jj < mm; ++jj) {
2323 c[j-2] =
c[j-1]*z+
c[j-2];
2327 for (i = 0; i < mm; ++i) printf(
"%16.8f",
c[i]);
2330 for (i = 0; i < mm1; ++i)
2331 if (!(k >= nn-2 && i != 0))
2333 > diff[i]) diff[i] = z;
2335 printf(
" MAXIMUM ABSOLUTE VALUES OF DIFFERENCES \n");
2336 for (i = 0; i < mm1; ++i) printf(
"%18.9E",diff[i]);
2338 printf(
" MAXIMUM ABSOLUTE VALUES OF COEFFICIENTS \n");
2341 for (i = 0; i < mm1; ++i) printf(
"%18.9E",com[i]);
2347 printf(
"1 TEST OF TSpline5 WITH NONEQUIDISTANT KNOTS,\n");
2348 printf(
" ONE DOUBLE, ONE TRIPLE KNOT\n");
2369 printf(
"-N = %3d M =%2d\n",
n,
m);
2371 for (i = 0; i <
n; ++i)
2373 a[i+600],
a[i+800],
a[i+1000]);
2375 for (i = 0; i < mm1; ++i)
2376 diff[i] = com[i] = 0;
2377 for (k = 0; k <
n; ++k) {
2378 for (i = 0; i < mm; ++i)
2380 printf(
" ---------------------------------------%3d --------------------------------------------\n",k+1);
2381 printf(
"%12.8f\n",
x[k]);
2383 printf(
"%16.8f\n",
c[0]);
2386 for (i = 0; i < mm; ++i) printf(
"%16.8f",
c[i]);
2388 for (i = 0; i < mm1; ++i)
2389 if ((z=
TMath::Abs(
a[k+i*200])) > com[i]) com[i] = z;
2391 for (i = 1; i < mm; ++i)
2392 for (jj = i; jj < mm; ++jj) {
2394 c[j-2] =
c[j-1]*z+
c[j-2];
2396 for (i = 0; i < mm; ++i) printf(
"%16.8f",
c[i]);
2398 for (i = 0; i < mm1; ++i)
2399 if (!(k >=
n-2 && i != 0))
2401 > diff[i]) diff[i] = z;
2403 printf(
" MAXIMUM ABSOLUTE VALUES OF DIFFERENCES \n");
2404 for (i = 0; i < mm1; ++i) printf(
"%18.9E",diff[i]);
2406 printf(
" MAXIMUM ABSOLUTE VALUES OF COEFFICIENTS \n");
2409 for (i = 0; i < mm1; ++i) printf(
"%16.8f",com[i]);
2414 printf(
"1 TEST OF TSpline5 WITH NONEQUIDISTANT KNOTS,\n");
2415 printf(
" TWO DOUBLE, ONE TRIPLE KNOT\n");
2440 printf(
"-N = %3d M =%2d\n",
n,
m);
2442 for (i = 0; i <
n; ++i)
2444 a[i+600],
a[i+800],
a[i+1000]);
2446 for (i = 0; i < mm1; ++i)
2447 diff[i] = com[i] = 0;
2448 for (k = 0; k <
n; ++k) {
2449 for (i = 0; i < mm; ++i)
2451 printf(
" ---------------------------------------%3d --------------------------------------------\n",k+1);
2452 printf(
"%12.8f\n",
x[k]);
2454 printf(
"%16.8f\n",
c[0]);
2457 for (i = 0; i < mm; ++i) printf(
"%16.8f",
c[i]);
2459 for (i = 0; i < mm1; ++i)
2460 if ((z=
TMath::Abs(
a[k+i*200])) > com[i]) com[i] = z;
2462 for (i = 1; i < mm; ++i)
2463 for (jj = i; jj < mm; ++jj) {
2465 c[j-2] =
c[j-1]*z+
c[j-2];
2467 for (i = 0; i < mm; ++i) printf(
"%16.8f",
c[i]);
2469 for (i = 0; i < mm1; ++i)
2470 if (!(k >=
n-2 && i != 0))
2472 > diff[i]) diff[i] = z;
2474 printf(
" MAXIMUM ABSOLUTE VALUES OF DIFFERENCES \n");
2475 for (i = 0; i < mm1; ++i) printf(
"%18.9E",diff[i]);
2477 printf(
" MAXIMUM ABSOLUTE VALUES OF COEFFICIENTS \n");
2480 for (i = 0; i < mm1; ++i) printf(
"%16.8f",com[i]);
winID h TVirtualViewer3D TVirtualGLPainter p
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char filename
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t r
R__EXTERN TSystem * gSystem
Fill Area Attributes class.
virtual void Streamer(TBuffer &)
virtual Color_t GetFillColor() const
Return the fill area color.
virtual Style_t GetFillStyle() const
Return the fill area style.
virtual void SetFillColor(Color_t fcolor)
Set the fill area color.
virtual void SetFillStyle(Style_t fstyle)
Set the fill area style.
virtual void SaveFillAttributes(std::ostream &out, const char *name, Int_t coldef=1, Int_t stydef=1001)
Save fill attributes as C++ statement(s) on output stream out.
virtual void Streamer(TBuffer &)
virtual Color_t GetLineColor() const
Return the line color.
virtual void SetLineStyle(Style_t lstyle)
Set the line style.
virtual Width_t GetLineWidth() const
Return the line width.
virtual void SetLineWidth(Width_t lwidth)
Set the line width.
virtual void SetLineColor(Color_t lcolor)
Set the line color.
virtual Style_t GetLineStyle() const
Return the line style.
virtual void SaveLineAttributes(std::ostream &out, const char *name, Int_t coldef=1, Int_t stydef=1, Int_t widdef=1)
Save line attributes as C++ statement(s) on output stream out.
virtual void SaveMarkerAttributes(std::ostream &out, const char *name, Int_t coldef=1, Int_t stydef=1, Int_t sizdef=1)
Save line attributes as C++ statement(s) on output stream out.
virtual Style_t GetMarkerStyle() const
Return the marker style.
virtual void SetMarkerColor(Color_t mcolor=1)
Set the marker color.
virtual Color_t GetMarkerColor() const
Return the marker color.
virtual Size_t GetMarkerSize() const
Return the marker size.
virtual void SetMarkerStyle(Style_t mstyle=1)
Set the marker style.
virtual void Streamer(TBuffer &)
virtual void SetMarkerSize(Size_t msize=1)
Set the marker size.
virtual void SetLimits(Double_t xmin, Double_t xmax)
Buffer base class used for serializing objects.
virtual Version_t ReadVersion(UInt_t *start=nullptr, UInt_t *bcnt=nullptr, const TClass *cl=nullptr)=0
virtual Int_t CheckByteCount(UInt_t startpos, UInt_t bcnt, const TClass *clss)=0
virtual Int_t ReadClassBuffer(const TClass *cl, void *pointer, const TClass *onfile_class=nullptr)=0
virtual Int_t WriteClassBuffer(const TClass *cl, void *pointer)=0
A TGraph is an object made of two arrays X and Y with npoints each.
void Paint(Option_t *chopt="") override
Draw this graph with its current attributes.
1-D histogram with a float per channel (see TH1 documentation)}
TH1 is the base class of all histogram classes in ROOT.
virtual void SetDirectory(TDirectory *dir)
By default, when a histogram is created, it is added to the list of histogram objects in the current ...
virtual Double_t GetBinCenter(Int_t bin) const
Return bin center for 1D histogram.
Int_t DistancetoPrimitive(Int_t px, Int_t py) override
Compute distance from point px,py to a line.
@ kLogX
X-axis in log scale.
@ kNoStats
Don't draw stats box.
virtual void SetBinContent(Int_t bin, Double_t content)
Set bin content see convention for numbering bins in TH1::GetBin In case the bin number is greater th...
void Paint(Option_t *option="") override
Control routine to paint any kind of histograms.
void ExecuteEvent(Int_t event, Int_t px, Int_t py) override
Execute action corresponding to one event.
The TNamed class is the base class for all named ROOT classes.
const char * GetName() const override
Returns name of object.
void Streamer(TBuffer &) override
Stream an object of class TObject.
const char * GetTitle() const override
Returns title of object.
TNamed & operator=(const TNamed &rhs)
TNamed assignment operator.
TObject & operator=(const TObject &rhs)
TObject assignment operator.
R__ALWAYS_INLINE Bool_t TestBit(UInt_t f) const
virtual void AppendPad(Option_t *option="")
Append graphics object to current pad.
void SetBit(UInt_t f, Bool_t set)
Set or unset the user status bits as specified in f.
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
Class to create third splines to interpolate knots Arbitrary conditions can be introduced for first a...
Int_t fEndCond
0=no end cond, 1=first derivative, 2=second derivative
Int_t fBegCond
0=no beg cond, 1=first derivative, 2=second derivative
Int_t FindX(Double_t x) const
Find X.
void SaveAs(const char *filename, Option_t *option="") const override
Write this spline as a C++ function that can be executed without ROOT the name of the function is the...
void SavePrimitive(std::ostream &out, Option_t *option="") override
Save primitive as a C++ statement(s) on output stream out.
void GetCoeff(Int_t i, Double_t &x, Double_t &y, Double_t &b, Double_t &c, Double_t &d) const
static void Test()
Test method for TSpline5.
Double_t fValBeg
Initial value of first or second derivative.
void BuildCoeff() override
Build coefficients.
void Streamer(TBuffer &) override
Stream an object of class TSpline3.
Double_t Eval(Double_t x) const override
Eval this spline at x.
Double_t fValEnd
End value of first or second derivative.
void SetCond(const char *opt)
Check the boundary conditions.
Double_t Derivative(Double_t x) const
Derivative.
TSplinePoly3 * fPoly
[fNp] Array of polynomial terms
TSpline3 & operator=(const TSpline3 &)
Assignment operator.
virtual void SetPoint(Int_t i, Double_t x, Double_t y)
Set point number i.
virtual void SetPointCoeff(Int_t i, Double_t b, Double_t c, Double_t d)
Set point coefficient number i.
Class to create quintic natural splines to interpolate knots Arbitrary conditions can be introduced f...
void GetCoeff(Int_t i, Double_t &x, Double_t &y, Double_t &b, Double_t &c, Double_t &d, Double_t &e, Double_t &f) const
static void Test()
Test method for TSpline5.
Double_t Eval(Double_t x) const override
Eval this spline at x.
void SaveAs(const char *filename, Option_t *option="") const override
Write this spline as a C++ function that can be executed without ROOT the name of the function is the...
void Streamer(TBuffer &) override
Stream an object of class TSpline5.
void BuildCoeff() override
Algorithm 600, collected algorithms from acm.
TSplinePoly5 * fPoly
[fNp] Array of polynomial terms
virtual void SetPointCoeff(Int_t i, Double_t b, Double_t c, Double_t d, Double_t e, Double_t f)
Set point coefficient number i.
Double_t Derivative(Double_t x) const
Derivative.
void BoundaryConditions(const char *opt, Int_t &beg, Int_t &end, const char *&cb1, const char *&ce1, const char *&cb2, const char *&ce2)
Check the boundary conditions and the amount of extra double knots needed.
void SavePrimitive(std::ostream &out, Option_t *option="") override
Save primitive as a C++ statement(s) on output stream out.
void SetBoundaries(Double_t b1, Double_t e1, Double_t b2, Double_t e2, const char *cb1, const char *ce1, const char *cb2, const char *ce2)
Set the boundary conditions at double/triple knots.
Int_t FindX(Double_t x) const
Find X.
virtual void SetPoint(Int_t i, Double_t x, Double_t y)
Set point number i.
TSpline5 & operator=(const TSpline5 &)
Assignment operator.
Double_t fC
Second order expansion coefficient : fC*2! is the second derivative at x.
Double_t Eval(Double_t x) const override
Double_t fD
Third order expansion coefficient : fD*3! is the third derivative at x.
Double_t Derivative(Double_t x) const
Double_t fB
First order expansion coefficient : fB*1! is the first derivative at x.
void CopyPoly(TSplinePoly3 const &other)
Utility called by the copy constructors and = operator.
TSplinePoly3 & operator=(TSplinePoly3 const &other)
Assignment operator.
void Streamer(TBuffer &) override
Stream an object of class TObject.
void CopyPoly(TSplinePoly5 const &other)
Utility called by the copy constructors and = operator.
TSplinePoly5 & operator=(TSplinePoly5 const &other)
Assignment operator.
Double_t fF
Fifth order expansion coefficient : fF*5! is the fifth derivative at x.
Double_t Derivative(Double_t x) const
void Streamer(TBuffer &) override
Stream an object of class TObject.
Double_t fB
First order expansion coefficient : fB*1! is the first derivative at x.
Double_t fC
Second order expansion coefficient : fC*2! is the second derivative at x.
Double_t fD
Third order expansion coefficient : fD*3! is the third derivative at x.
Double_t Eval(Double_t x) const override
Double_t fE
Fourth order expansion coefficient : fE*4! is the fourth derivative at x.
Base class for TSpline knot.
void CopyPoly(TSplinePoly const &other)
Utility called by the copy constructors and = operator.
TSplinePoly & operator=(TSplinePoly const &other)
Assignment operator.
Double_t fY
Constant term.
Base class for spline implementation containing the Draw/Paint methods.
void Streamer(TBuffer &) override
Stream an object of class TSpline.
virtual Double_t Eval(Double_t x) const =0
void ExecuteEvent(Int_t event, Int_t px, Int_t py) override
Execute action corresponding to one event.
TGraph * fGraph
Graph for drawing the knots.
Int_t DistancetoPrimitive(Int_t px, Int_t py) override
Compute distance from point px,py to a spline.
Double_t fXmin
Minimum value of abscissa.
TClass * IsA() const override
TH1F * fHistogram
Temporary histogram.
void Draw(Option_t *option="") override
Draw this function with its current attributes.
Double_t fDelta
Distance between equidistant knots.
virtual void GetKnot(Int_t i, Double_t &x, Double_t &y) const =0
TSpline & operator=(const TSpline &)
Assignment operator.
void Paint(Option_t *option="") override
Paint this function with its current attributes.
Bool_t fKstep
True of equidistant knots.
Int_t fNp
Number of knots.
~TSpline() override
Destructor.
Double_t fXmax
Maximum value of abscissa.
Int_t fNpx
Number of points used for graphical representation.
void ToLower()
Change string to lower-case.
const char * Data() const
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
virtual Bool_t AccessPathName(const char *path, EAccessMode mode=kFileExists)
Returns FALSE if one can access a file using the specified access mode.
Short_t Max(Short_t a, Short_t b)
Returns the largest of a and b.
Int_t FloorNint(Double_t x)
Returns the nearest integer of TMath::Floor(x).
Short_t Min(Short_t a, Short_t b)
Returns the smallest of a and b.
Double_t Cos(Double_t)
Returns the cosine of an angle of x radians.
Double_t Sin(Double_t)
Returns the sine of an angle of x radians.
Double_t Log10(Double_t x)
Returns the common (base-10) logarithm of x.
Short_t Abs(Short_t d)
Returns the absolute value of parameter Short_t d.