import torch
from torch import nn
 
from ROOT import TMVA, TFile, TTree, TCut
from subprocess import call
from os.path import isfile
 
 
 
                       '!V:!Silent:Color:DrawProgressBar:Transformations=D,G:AnalysisType=Classification')
 
 
data = 
TFile.Open(
"http://root.cern.ch/files/tmva_class_example.root", 
"CACHEREAD")
 
if data is None:
    raise FileNotFoundError("Input file cannot be downloaded - exit")
 
signal = data.Get('TreeS')
background = data.Get('TreeB')
 
for branch in signal.GetListOfBranches():
    dataloader.AddVariable(branch.GetName())
 
dataloader.AddSignalTree(signal, 1.0)
dataloader.AddBackgroundTree(background, 1.0)
dataloader.PrepareTrainingAndTestTree(
TCut(
''),
 
                                      'nTrain_Signal=4000:nTrain_Background=4000:SplitMode=Random:NormMode=NumEvents:!V')
 
 
 
model = nn.Sequential()
model.add_module('linear_1', nn.Linear(in_features=4, out_features=64))
model.add_module('relu', nn.ReLU())
model.add_module('linear_2', nn.Linear(in_features=64, out_features=2))
model.add_module('softmax', nn.Softmax(dim=1))
 
 
loss = torch.nn.MSELoss()
optimizer = torch.optim.SGD
 
 
def train(model, train_loader, val_loader, num_epochs, batch_size, optimizer, criterion, save_best, scheduler):
    trainer = optimizer(model.parameters(), lr=0.01)
    schedule, schedulerSteps = scheduler
    best_val = None
 
    for epoch in range(num_epochs):
        
        
        model.train()
        running_train_loss = 0.0
        running_val_loss = 0.0
        for i, (X, y) in enumerate(train_loader):
            trainer.zero_grad()
            output = model(X)
            train_loss = criterion(output, y)
            train_loss.backward()
            trainer.step()
 
            
            running_train_loss += train_loss.item()
            if i % 32 == 31:    
                print(
"[{}, {}] train loss: {:.3f}".
format(epoch+1, i+1, running_train_loss / 32))
 
                running_train_loss = 0.0
 
        if schedule:
            schedule(optimizer, epoch, schedulerSteps)
 
        
        
        model.eval()
        with torch.no_grad():
            for i, (X, y) in enumerate(val_loader):
                output = model(X)
                val_loss = criterion(output, y)
                running_val_loss += val_loss.item()
 
            curr_val = running_val_loss / 
len(val_loader)
 
            if save_best:
               if best_val==None:
                   best_val = curr_val
               best_val = save_best(model, curr_val, best_val)
 
            
            print(
"[{}] val loss: {:.3f}".
format(epoch+1, curr_val))
 
            running_val_loss = 0.0
 
    print(
"Finished Training on {} Epochs!".
format(epoch+1))
 
 
    return model
 
 
def predict(model, test_X, batch_size=32):
    
    model.eval()
 
    test_dataset = torch.utils.data.TensorDataset(torch.Tensor(test_X))
    test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
 
    predictions = []
    with torch.no_grad():
        for i, data in enumerate(test_loader):
            X = data[0]
            outputs = model(X)
            predictions.append(outputs)
        preds = torch.cat(predictions)
 
    return preds.numpy()
 
 
load_model_custom_objects = {"optimizer": optimizer, "criterion": loss, "train_func": train, "predict_func": predict}
 
 
m = torch.jit.script(model)
torch.jit.save(m, "modelClassification.pt")
print(m)
 
 
factory.BookMethod(dataloader, TMVA.Types.kFisher, 'Fisher',
                   '!H:!V:Fisher:VarTransform=D,G')
factory.BookMethod(dataloader, TMVA.Types.kPyTorch, 'PyTorch',
                   'H:!V:VarTransform=D,G:FilenameModel=modelClassification.pt:FilenameTrainedModel=trainedModelClassification.pt:NumEpochs=20:BatchSize=32')
 
 
factory.TrainAllMethods()
factory.TestAllMethods()
factory.EvaluateAllMethods()
 
 
roc = factory.GetROCCurve(dataloader)
roc.SaveAs('ROC_ClassificationPyTorch.png')
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t UChar_t len
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t format
 
A specialized string object used for TTree selections.
 
static Bool_t SetCacheFileDir(ROOT::Internal::TStringView cacheDir, Bool_t operateDisconnected=kTRUE, Bool_t forceCacheread=kFALSE)
 
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseCompiledDefault, Int_t netopt=0)
Create / open a file.
 
This is the main MVA steering class.
 
static void PyInitialize()
Initialize Python interpreter.