20from ROOT 
import TMVA, TFile, TTree, TCut
 
   21from subprocess 
import call
 
   22from os.path 
import isfile
 
   31                       '!V:!Silent:Color:DrawProgressBar:Transformations=D,G:AnalysisType=Classification')
 
   36data = 
TFile.Open(
"http://root.cern.ch/files/tmva_class_example.root", 
"CACHEREAD")
 
   38    raise FileNotFoundError(
"Input file cannot be downloaded - exit")
 
   40signal = data.Get(
'TreeS')
 
   41background = data.Get(
'TreeB')
 
   44for branch 
in signal.GetListOfBranches():
 
   45    dataloader.AddVariable(branch.GetName())
 
   47dataloader.AddSignalTree(signal, 1.0)
 
   48dataloader.AddBackgroundTree(background, 1.0)
 
   49dataloader.PrepareTrainingAndTestTree(
TCut(
''),
 
   50                                      'nTrain_Signal=4000:nTrain_Background=4000:SplitMode=Random:NormMode=NumEvents:!V')
 
   56model = nn.Sequential()
 
   57model.add_module(
'linear_1', nn.Linear(in_features=4, out_features=64))
 
   58model.add_module(
'relu', nn.ReLU())
 
   59model.add_module(
'linear_2', nn.Linear(in_features=64, out_features=2))
 
   60model.add_module(
'softmax', nn.Softmax(dim=1))
 
   64loss = torch.nn.MSELoss()
 
   65optimizer = torch.optim.SGD
 
   69def train(model, train_loader, val_loader, num_epochs, batch_size, optimizer, criterion, save_best, scheduler):
 
   70    trainer = optimizer(model.parameters(), lr=0.01)
 
   71    schedule, schedulerSteps = scheduler
 
   74    for epoch 
in range(num_epochs):
 
   78        running_train_loss = 0.0
 
   79        running_val_loss = 0.0
 
   80        for i, (X, y) 
in enumerate(train_loader):
 
   83            train_loss = criterion(output, y)
 
   88            running_train_loss += train_loss.item()
 
   90                print(
"[{}, {}] train loss: {:.3f}".
format(epoch+1, i+1, running_train_loss / 32))
 
   91                running_train_loss = 0.0
 
   94            schedule(optimizer, epoch, schedulerSteps)
 
  100            for i, (X, y) 
in enumerate(val_loader):
 
  102                val_loss = criterion(output, y)
 
  103                running_val_loss += val_loss.item()
 
  105            curr_val = running_val_loss / 
len(val_loader)
 
  109               best_val = save_best(model, curr_val, best_val)
 
  112            print(
"[{}] val loss: {:.3f}".
format(epoch+1, curr_val))
 
  113            running_val_loss = 0.0
 
  115    print(
"Finished Training on {} Epochs!".
format(epoch+1))
 
  121def predict(model, test_X, batch_size=32):
 
  125    test_dataset = torch.utils.data.TensorDataset(torch.Tensor(test_X))
 
  126    test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=
False)
 
  129    with torch.no_grad():
 
  130        for i, data 
in enumerate(test_loader):
 
  133            predictions.append(outputs)
 
  134        preds = torch.cat(predictions)
 
  139load_model_custom_objects = {
"optimizer": optimizer, 
"criterion": loss, 
"train_func": train, 
"predict_func": predict}
 
  144m = torch.jit.script(model)
 
  145torch.jit.save(m, 
"modelClassification.pt")
 
  150factory.BookMethod(dataloader, TMVA.Types.kFisher, 
'Fisher',
 
  151                   '!H:!V:Fisher:VarTransform=D,G')
 
  152factory.BookMethod(dataloader, TMVA.Types.kPyTorch, 
'PyTorch',
 
  153                   'H:!V:VarTransform=D,G:FilenameModel=modelClassification.pt:FilenameTrainedModel=trainedModelClassification.pt:NumEpochs=20:BatchSize=32')
 
  157factory.TrainAllMethods()
 
  158factory.TestAllMethods()
 
  159factory.EvaluateAllMethods()
 
  163roc = factory.GetROCCurve(dataloader)
 
  164roc.SaveAs(
'ROC_ClassificationPyTorch.png')
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t UChar_t len
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t format
 
A specialized string object used for TTree selections.
 
static Bool_t SetCacheFileDir(ROOT::Internal::TStringView cacheDir, Bool_t operateDisconnected=kTRUE, Bool_t forceCacheread=kFALSE)
 
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseCompiledDefault, Int_t netopt=0)
Create / open a file.
 
This is the main MVA steering class.
 
static void PyInitialize()
Initialize Python interpreter.