20from ROOT
import TMVA, TFile, TTree, TCut
21from subprocess
import call
22from os.path
import isfile
31 '!V:!Silent:Color:DrawProgressBar:Transformations=D,G:AnalysisType=Classification')
36data =
TFile.Open(
"http://root.cern.ch/files/tmva_class_example.root",
"CACHEREAD")
38 raise FileNotFoundError(
"Input file cannot be downloaded - exit")
40signal = data.Get(
'TreeS')
41background = data.Get(
'TreeB')
44for branch
in signal.GetListOfBranches():
45 dataloader.AddVariable(branch.GetName())
47dataloader.AddSignalTree(signal, 1.0)
48dataloader.AddBackgroundTree(background, 1.0)
49dataloader.PrepareTrainingAndTestTree(
TCut(
''),
50 'nTrain_Signal=4000:nTrain_Background=4000:SplitMode=Random:NormMode=NumEvents:!V')
56model = nn.Sequential()
57model.add_module(
'linear_1', nn.Linear(in_features=4, out_features=64))
58model.add_module(
'relu', nn.ReLU())
59model.add_module(
'linear_2', nn.Linear(in_features=64, out_features=2))
60model.add_module(
'softmax', nn.Softmax(dim=1))
64loss = torch.nn.MSELoss()
65optimizer = torch.optim.SGD
69def train(model, train_loader, val_loader, num_epochs, batch_size, optimizer, criterion, save_best, scheduler):
70 trainer = optimizer(model.parameters(), lr=0.01)
71 schedule, schedulerSteps = scheduler
74 for epoch
in range(num_epochs):
78 running_train_loss = 0.0
79 running_val_loss = 0.0
80 for i, (X, y)
in enumerate(train_loader):
83 train_loss = criterion(output, y)
88 running_train_loss += train_loss.item()
90 print(
"[{}, {}] train loss: {:.3f}".
format(epoch+1, i+1, running_train_loss / 32))
91 running_train_loss = 0.0
94 schedule(optimizer, epoch, schedulerSteps)
100 for i, (X, y)
in enumerate(val_loader):
102 val_loss = criterion(output, y)
103 running_val_loss += val_loss.item()
105 curr_val = running_val_loss /
len(val_loader)
109 best_val = save_best(model, curr_val, best_val)
112 print(
"[{}] val loss: {:.3f}".
format(epoch+1, curr_val))
113 running_val_loss = 0.0
115 print(
"Finished Training on {} Epochs!".
format(epoch+1))
121def predict(model, test_X, batch_size=32):
125 test_dataset = torch.utils.data.TensorDataset(torch.Tensor(test_X))
126 test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=
False)
129 with torch.no_grad():
130 for i, data
in enumerate(test_loader):
133 predictions.append(outputs)
134 preds = torch.cat(predictions)
139load_model_custom_objects = {
"optimizer": optimizer,
"criterion": loss,
"train_func": train,
"predict_func": predict}
144m = torch.jit.script(model)
145torch.jit.save(m,
"modelClassification.pt")
150factory.BookMethod(dataloader, TMVA.Types.kFisher,
'Fisher',
151 '!H:!V:Fisher:VarTransform=D,G')
152factory.BookMethod(dataloader, TMVA.Types.kPyTorch,
'PyTorch',
153 'H:!V:VarTransform=D,G:FilenameModel=modelClassification.pt:FilenameTrainedModel=trainedModelClassification.pt:NumEpochs=20:BatchSize=32')
157factory.TrainAllMethods()
158factory.TestAllMethods()
159factory.EvaluateAllMethods()
163roc = factory.GetROCCurve(dataloader)
164roc.SaveAs(
'ROC_ClassificationPyTorch.png')
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t UChar_t len
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t format
A specialized string object used for TTree selections.
static Bool_t SetCacheFileDir(ROOT::Internal::TStringView cacheDir, Bool_t operateDisconnected=kTRUE, Bool_t forceCacheread=kFALSE)
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseCompiledDefault, Int_t netopt=0)
Create / open a file.
This is the main MVA steering class.
static void PyInitialize()
Initialize Python interpreter.