Logo ROOT   6.16/01
Reference Guide
TEfficiency.cxx
Go to the documentation of this file.
1#ifndef ROOT_TEfficiency_cxx
2#define ROOT_TEfficiency_cxx
3
4//standard header
5#include <vector>
6#include <string>
7#include <cmath>
8#include <stdlib.h>
9#include <cassert>
10
11//ROOT headers
14#include "TDirectory.h"
15#include "TF1.h"
16#include "TGraphAsymmErrors.h"
17#include "TH1.h"
18#include "TH2.h"
19#include "TH3.h"
20#include "TList.h"
21#include "TMath.h"
22#include "TROOT.h"
23#include "TStyle.h"
24#include "TVirtualPad.h"
25#include "TError.h"
28
29//custom headers
30#include "TEfficiency.h"
31
32// file with extra class for FC method
33#include "TEfficiencyHelper.h"
34
35//default values
38const Double_t kDefConfLevel = 0.682689492137; // 1 sigma
41
43
44////////////////////////////////////////////////////////////////////////////////
45/** \class TEfficiency
46 \ingroup Hist
47 \brief Class to handle efficiency histograms
48
49## I. Overview
50This class handles the calculation of efficiencies and their uncertainties. It
51provides several statistical methods for calculating frequentist and Bayesian
52confidence intervals as well as a function for combining several efficiencies.
53
54Efficiencies have a lot of applications and meanings but in principle, they can
55be described by the fraction of good/passed events k out of sample containing
56N events. One is usually interested in the dependency of the efficiency on other
57(binned) variables. The number of passed and total events is therefore stored
58internally in two histograms (TEfficiency::fTotalHistogram and TEfficiency::fPassedHistogram).
59Then the efficiency, as well as its upper and lower error, can be calculated for each bin
60individually.
61
62As the efficiency can be regarded as a parameter of a binomial distribution, the
63number of passed and total events must always be integer numbers. Therefore a
64filling with weights is not possible. However, you can assign a global weight to each
65TEfficiency object (TEfficiency::SetWeight).
66It is necessary to create one TEfficiency object
67for each weight if you investigate a process involving different weights. This
68procedure needs more effort but enables you to re-use the filled object in cases
69where you want to change one or more weights. This would not be possible if all
70events with different weights were filled in the same histogram.
71
72## II. Creating a TEfficiency object
73If you start a new analysis, it is highly recommended to use the TEfficiency class
74from the beginning. You can then use one of the constructors for fixed or
75variable bin size and your desired dimension. These constructors append the
76created TEfficiency object to the current directory. So it will be written
77automatically to a file during the next TFile::Write command.
78
79Example: create a two-dimensional TEfficiency object with
80- name = "eff"
81- title = "my efficiency"
82- axis titles: x, y and LaTeX-formatted epsilon as a label for Z axis
83- 10 bins with constant bin width (= 1) along X axis starting at 0 (lower edge
84 from the first bin) up to 10 (upper edge of last bin)
85- 20 bins with constant bin width (= 0.5) along Y axis starting at -5 (lower
86 edge from the first bin) up to 5 (upper edge of last bin)
87
88 TEfficiency* pEff = new TEfficiency("eff","my efficiency;x;y;#epsilon",10,0,10,20,-5,5);
89
90If you already have two histograms filled with the number of passed and total
91events, you will use the constructor TEfficiency(const TH1& passed,const TH1& total)
92to construct the TEfficiency object. The histograms "passed" and "total" have
93to fulfill the conditions mentioned in TEfficiency::CheckConsistency, otherwise the construction will fail.
94As the histograms already exist, the new TEfficiency is by default **not** attached
95to the current directory to avoid duplication of data. If you want to store the
96new object anyway, you can either write it directly by calling TObject::Write or attach it to a directory using TEfficiency::SetDirectory.
97This also applies to TEfficiency objects created by the copy constructor TEfficiency::TEfficiency(const TEfficiency& rEff).
98
99
100### Example 1
101
102~~~~~~~~~~~~~~~{.cpp}
103TEfficiency* pEff = 0;
104TFile* pFile = new TFile("myfile.root","recreate");
105
106//h_pass and h_total are valid and consistent histograms
107if(TEfficiency::CheckConsistency(h_pass,h_total))
108{
109 pEff = new TEfficiency(h_pass,h_total);
110 // this will write the TEfficiency object to "myfile.root"
111 // AND pEff will be attached to the current directory
112 pEff->Write();
113}
114~~~~~~~~~~~~~~~
115
116### Example 2
117
118~~~~~~~~~~~~~~~{.cpp}
119TEfficiency* pEff = 0;
120TFile* pFile = new TFile("myfile.root","recreate");
121
122//h_pass and h_total are valid and consistent histograms
123if(TEfficiency::CheckConsistency(h_pass,h_total))
124{
125 pEff = new TEfficiency(h_pass,h_total);
126 //this will attach the TEfficiency object to the current directory
127 pEff->SetDirectory(gDirectory);
128 //now all objects in gDirectory will be written to "myfile.root"
129 pFile->Write();
130}
131~~~~~~~~~~~~~~~
132
133In case you already have two filled histograms and you only want to
134plot them as a graph, you should rather use TGraphAsymmErrors::TGraphAsymmErrors(const TH1* pass,const TH1* total,Option_t* opt)
135to create a graph object.
136
137## III. Filling with events
138You can fill the TEfficiency object by calling the TEfficiency::Fill(Bool_t bPassed,Double_t x,Double_t y,Double_t z) method.
139The "bPassed" boolean flag indicates whether the current event is good
140(both histograms are filled) or not (only TEfficiency::fTotalHistogram is filled).
141The x, y and z variables determine the bin which is filled. For lower dimensions, the z- or even the y-value may be omitted.
142
143Begin_Macro(source)
144{
145 //canvas only needed for this documentation
146 TCanvas* c1 = new TCanvas("example","",600,400);
147 c1->SetFillStyle(1001);
148 c1->SetFillColor(kWhite);
149
150 //create one-dimensional TEfficiency object with fixed bin size
151 TEfficiency* pEff = new TEfficiency("eff","my efficiency;x;#epsilon",20,0,10);
152 TRandom3 rand3;
153
154 bool bPassed;
155 double x;
156 for(int i=0; i<10000; ++i)
157 {
158 //simulate events with variable under investigation
159 x = rand3.Uniform(10);
160 //check selection: bPassed = DoesEventPassSelection(x)
161 bPassed = rand3.Rndm() < TMath::Gaus(x,5,4);
162 pEff->Fill(bPassed,x);
163 }
164
165 pEff->Draw("AP");
166
167 //only for this documentation
168 return c1;
169}
170End_Macro
171
172You can also set the number of passed or total events for a bin directly by
173using the TEfficiency::SetPassedEvents or TEfficiency::SetTotalEvents method.
174
175## IV. Statistic options
176The calculation of the estimated efficiency depends on the chosen statistic
177option. Let k denotes the number of passed events and N the number of total
178events.
179
180###Frequentist methods
181The expectation value of the number of passed events is given by the true
182efficiency times the total number of events. One can estimate the efficiency
183by replacing the expected number of passed events by the observed number of
184passed events.
185
186\f[
187 k = \epsilon \times N \Rightarrow \hat{\varepsilon} = \frac{k}{N}
188\f]
189
190### Bayesian methods
191In Bayesian statistics a likelihood-function (how probable is it to get the
192observed data assuming a true efficiency) and a prior probability (what is the
193probability that a certain true efficiency is actually realised) are used to
194determine a posterior probability by using Bayes theorem. At the moment, only
195beta distributions (have 2 free parameters) are supported as prior
196probabilities.
197
198\f{eqnarray*}{
199 P(\epsilon | k ; N) &=& \frac{1}{norm} \times P(k | \epsilon ; N) \times Prior(\epsilon) \\
200 P(k | \epsilon ; N) &=& Binomial(N,k) \times \epsilon^{k} \times (1 - \epsilon)^{N - k} ...\ binomial\ distribution \\
201 Prior(\epsilon) &=& \frac{1}{B(\alpha,\beta)} \times \epsilon ^{\alpha - 1} \times (1 - \epsilon)^{\beta - 1} \equiv Beta(\epsilon; \alpha,\beta) \\
202 \Rightarrow P(\epsilon | k ; N) &=& \frac{1}{norm'} \times \epsilon^{k + \alpha - 1} \times (1 - \epsilon)^{N - k + \beta - 1} \equiv Beta(\epsilon; k + \alpha, N - k + \beta)
203\f}
204
205By default the expectation value of this posterior distribution is used as an estimator for the efficiency:
206
207\f[
208 \hat{\varepsilon} = \frac{k + \alpha}{N + \alpha + \beta}
209\f]
210
211Optionally the mode can also be used as a value for the estimated efficiency. This can be done by calling
212SetBit(kPosteriorMode) or TEfficiency::SetPosteriorMode. In this case, the estimated efficiency is:
213
214\f[
215 \hat{\varepsilon} = \frac{k + \alpha -1}{N + \alpha + \beta - 2}
216\f]
217
218In the case of a uniform prior distribution, B(x,1,1), the posterior mode is k/n, equivalent to the frequentist
219estimate (the maximum likelihood value).
220
221The statistic options also specify which confidence interval is used for calculating
222the uncertainties of the efficiency. The following properties define the error
223calculation:
224- **fConfLevel:** desired confidence level: 0 < fConfLevel < 1 (TEfficiency::GetConfidenceLevel / TEfficiency::SetConfidenceLevel)
225- **fStatisticOption** defines which method is used to calculate the boundaries of the confidence interval (TEfficiency::SetStatisticOption)
226- **fBeta_alpha, fBeta_beta:** parameters for the prior distribution which is only used in the bayesian case (TEfficiency::GetBetaAlpha / TEfficiency::GetBetaBeta / TEfficiency::SetBetaAlpha / TEfficiency::SetBetaBeta)
227- **kIsBayesian:** flag whether bayesian statistics are used or not (TEfficiency::UsesBayesianStat)
228- **kShortestInterval:** flag whether shortest interval (instead of central one) are used in case of Bayesian statistics (TEfficiency::UsesShortestInterval). Normally shortest interval should be used in combination with the mode (see TEfficiency::UsesPosteriorMode)
229- **fWeight:** global weight for this TEfficiency object which is used during combining or merging with other TEfficiency objects(TEfficiency::GetWeight / TEfficiency::SetWeight)
230
231In the following table, the implemented confidence intervals are listed
232with their corresponding statistic option. For more details on the calculation,
233please have a look at the mentioned functions.
234
235
236| name | statistic option | function | kIsBayesian | parameters |
237|------------------|------------------|---------------------|-------------|------------|
238| Clopper-Pearson | kFCP | TEfficiency::ClopperPearson |false |total events, passed events, confidence level |
239| normal approximation | kFNormal | TEfficiency::Normal | false | total events, passed events, confidence level |
240| Wilson | kFWilson | TEfficiency::Wilson | false | total events, passed events, confidence level |
241| Agresti-Coull | kFAC | TEfficiency::AgrestiCoull | false | total events, passed events. confidence level |
242| Feldman-Cousins | kFFC | TEfficiency::FeldmanCousins | false | total events, passed events, confidence level |
243| Mid-P Lancaster | kMidP | TEfficiency::MidPInterval | false | total events, passed events, confidence level |
244| Jeffrey | kBJeffrey | TEfficiency::Bayesian | true | total events, passed events, confidence level, fBeta_alpha = 0.5, fBeta_beta = 0.5 |
245| Uniform prior | kBUniform |TEfficiency::Bayesian | true |total events, passed events, confidence level, fBeta_alpha = 1, fBeta_beta = 1 |
246| custom prior | kBBayesian |TEfficiency::Bayesian | true |total events, passed events, confidence level, fBeta_alpha, fBeta_beta |
247
248The following example demonstrates the effect of different statistic options and
249confidence levels.
250
251Begin_Macro(source)
252{
253 //canvas only needed for the documentation
254 TCanvas* c1 = new TCanvas("c1","",600,400);
255 c1->Divide(2);
256 c1->SetFillStyle(1001);
257 c1->SetFillColor(kWhite);
258
259 //create one-dimensional TEfficiency object with fixed bin size
260 TEfficiency* pEff = new TEfficiency("eff","different confidence levels;x;#epsilon",20,0,10);
261 TRandom3 rand3;
262
263 bool bPassed;
264 double x;
265 for(int i=0; i<1000; ++i)
266 {
267 //simulate events with variable under investigation
268 x = rand3.Uniform(10);
269 //check selection: bPassed = DoesEventPassSelection(x)
270 bPassed = rand3.Rndm() < TMath::Gaus(x,5,4);
271 pEff->Fill(bPassed,x);
272 }
273
274 //set style attributes
275 pEff->SetFillStyle(3004);
276 pEff->SetFillColor(kRed);
277
278 //copy current TEfficiency object and set new confidence level
279 TEfficiency* pCopy = new TEfficiency(*pEff);
280 pCopy->SetConfidenceLevel(0.90);
281
282 //set style attributes
283 pCopy->SetFillStyle(3005);
284 pCopy->SetFillColor(kBlue);
285
286 c1->cd(1);
287
288 //add legend
289 TLegend* leg1 = new TLegend(0.3,0.1,0.7,0.5);
290 leg1->AddEntry(pEff,"95%","F");
291 leg1->AddEntry(pCopy,"68.3%","F");
292
293 pEff->Draw("A4");
294 pCopy->Draw("same4");
295 leg1->Draw("same");
296
297 //use same confidence level but different statistic methods
298 TEfficiency* pEff2 = new TEfficiency(*pEff);
299 TEfficiency* pCopy2 = new TEfficiency(*pEff);
300
301 pEff2->SetStatisticOption(TEfficiency::kFNormal);
302 pCopy2->SetStatisticOption(TEfficiency::kFAC);
303
304 pEff2->SetTitle("different statistic options;x;#epsilon");
305
306 //set style attributes
307 pCopy2->SetFillStyle(3005);
308 pCopy2->SetFillColor(kBlue);
309
310 c1->cd(2);
311
312 //add legend
313 TLegend* leg2 = new TLegend(0.3,0.1,0.7,0.5);
314 leg2->AddEntry(pEff2,"kFNormal","F");
315 leg2->AddEntry(pCopy2,"kFAC","F");
316
317 pEff2->Draw("a4");
318 pCopy2->Draw("same4");
319 leg2->Draw("same");
320
321 //only for this documentation
322 c1->cd(0);
323 return c1;
324}
325End_Macro
326
327The prior probability of the efficiency in Bayesian statistics can be given
328in terms of a beta distribution. The beta distribution has two positive shape
329parameters. The resulting priors for different combinations of these shape
330parameters are shown in the plot below.
331
332Begin_Macro(source)
333{
334 //canvas only needed for the documentation
335 TCanvas* c1 = new TCanvas("c1","",600,400);
336 c1->SetFillStyle(1001);
337 c1->SetFillColor(kWhite);
338
339 //create different beta distributions
340 TF1* f1 = new TF1("f1","TMath::BetaDist(x,1,1)",0,1);
341 f1->SetLineColor(kBlue);
342 TF1* f2 = new TF1("f2","TMath::BetaDist(x,0.5,0.5)",0,1);
343 f2->SetLineColor(kRed);
344 TF1* f3 = new TF1("f3","TMath::BetaDist(x,1,5)",0,1);
345 f3->SetLineColor(kGreen+3);
346 f3->SetTitle("Beta distributions as priors;#epsilon;P(#epsilon)");
347 TF1* f4 = new TF1("f4","TMath::BetaDist(x,4,3)",0,1);
348 f4->SetLineColor(kViolet);
349
350 //add legend
351 TLegend* leg = new TLegend(0.25,0.5,0.85,0.89);
352 leg->SetFillColor(kWhite);
353 leg->SetFillStyle(1001);
354 leg->AddEntry(f1,"a=1, b=1","L");
355 leg->AddEntry(f2,"a=0.5, b=0.5","L");
356 leg->AddEntry(f3,"a=1, b=5","L");
357 leg->AddEntry(f4,"a=4, b=3","L");
358
359 f3->Draw();
360 f1->Draw("same");
361 f2->Draw("Same");
362 f4->Draw("same");
363 leg->Draw("same");
364
365 //only for this documentation
366 return c1;
367}
368End_Macro
369
370
371## IV.1 Coverage probabilities for different methods
372The following pictures illustrate the actual coverage probability for the
373different values of the true efficiency and the total number of events when a
374confidence level of 95% is desired.
375
376\image html normal95.gif "Normal Approximation"
377
378
379\image html wilson95.gif "Wilson"
380
381
382\image html ac95.gif "Agresti Coull"
383
384
385\image html cp95.gif "Clopper Pearson"
386
387
388\image html uni95.gif "Bayesian with Uniform Prior"
389
390
391\image html jeffrey95.gif "Bayesian with Jeffrey Prior"
392
393The average (over all possible true efficiencies) coverage probability for
394different number of total events is shown in the next picture.
395\image html av_cov.png "Average Coverage"
396
397## V. Merging and combining TEfficiency objects
398In many applications, the efficiency should be calculated for an inhomogeneous
399sample in the sense that it contains events with different weights. In order
400to be able to determine the correct overall efficiency, it is necessary to
401use for each subsample (= all events with the same weight) a different
402TEfficiency object. After finishing your analysis you can then construct the
403overall efficiency with its uncertainty.
404
405This procedure has the advantage that you can change the weight of one
406subsample easily without rerunning the whole analysis. On the other hand, more
407effort is needed to handle several TEfficiency objects instead of one
408histogram. In the case of many different or even continuously distributed
409weights, this approach becomes cumbersome. One possibility to overcome this
410problem is the usage of binned weights.
411
412### Example
413In particle physics weights arises from the fact that you want to
414normalise your results to a certain reference value. A very common formula for
415calculating weights is
416
417\f{eqnarray*}{
418 w &=& \frac{\sigma L}{N_{gen} \epsilon_{trig}} \\
419 &-& \sigma ...\ cross\ section \\
420 &-& L ...\ luminosity \\
421 &-& N_{gen}\ ... number\ of\ generated\ events \\
422 &-& \epsilon_{trig}\ ...\ (known)\ trigger\ efficiency \\
423\f}
424
425The reason for different weights can therefore be:
426- different processes
427- other integrated luminosity
428- varying trigger efficiency
429- different sample sizes
430- ...
431- or even combination of them
432
433Depending on the actual meaning of different weights in your case, you
434should either merge or combine them to get the overall efficiency.
435
436### V.1 When should I use merging?
437If the weights are artificial and do not represent real alternative hypotheses,
438you should merge the different TEfficiency objects. That means especially for
439the Bayesian case that the prior probability should be the same for all merged
440TEfficiency objects. The merging can be done by invoking one of the following
441operations:
442- eff1.Add(eff2)
443- eff1 += eff2
444- eff1 = eff1 + eff2
445
446The result of the merging is stored in the TEfficiency object which is marked
447bold above. The contents of the internal histograms of both TEfficiency
448objects are added and a new weight is assigned. The statistic options are not
449changed.
450
451\f[
452 \frac{1}{w_{new}} = \frac{1}{w_{1}} + \frac{1}{w_{2}}
453\f]
454
455### Example:
456If you use two samples with different numbers of generated events for the same
457process and you want to normalise both to the same integrated luminosity and
458trigger efficiency, the different weights then arise just from the fact that
459you have different numbers of events. The TEfficiency objects should be merged
460because the samples do not represent true alternatives. You expect the same
461result as if you would have a big sample with all events in it.
462
463\f[
464 w_{1} = \frac{\sigma L}{\epsilon N_{1}}, w_{2} = \frac{\sigma L}{\epsilon N_{2}} \Rightarrow w_{new} = \frac{\sigma L}{\epsilon (N_{1} + N_{2})} = \frac{1}{\frac{1}{w_{1}} + \frac{1}{w_{2}}}
465\f]
466
467### V.2 When should I use combining?
468You should combine TEfficiency objects whenever the weights represent
469alternatives processes for the efficiency. As the combination of two TEfficiency
470objects is not always consistent with the representation by two internal
471histograms, the result is not stored in a TEfficiency object but a TGraphAsymmErrors
472is returned which shows the estimated combined efficiency and its uncertainty
473for each bin.
474At the moment the combination method TEfficiency::Combine only supports a combination of 1-dimensional
475efficiencies in a Bayesian approach.
476
477
478For calculating the combined efficiency and its uncertainty for each bin only Bayesian statistics
479is used. No frequentists methods are presently supported for computing the combined efficiency and
480its confidence interval.
481In the case of the Bayesian statistics, a combined posterior is constructed taking into account the
482weight of each TEfficiency object. The same prior is used for all the TEfficiency objects.
483
484\f{eqnarray*}{
485 P_{comb}(\epsilon | {w_{i}}, {k_{i}} , {N_{i}}) = \frac{1}{norm} \prod_{i}{L(k_{i} | N_{i}, \epsilon)}^{w_{i}} \Pi( \epsilon )\\
486L(k_{i} | N_{i}, \epsilon)\ is\ the\ likelihood\ function\ for\ the\ sample\ i\ (a\ Binomial\ distribution)\\
487\Pi( \epsilon)\ is\ the\ prior,\ a\ beta\ distribution\ B(\epsilon, \alpha, \beta).\\
488The\ resulting\ combined\ posterior\ is \\
489P_{comb}(\epsilon |{w_{i}}; {k_{i}}; {N_{i}}) = B(\epsilon, \sum_{i}{ w_{i} k_{i}} + \alpha, \sum_{i}{ w_{i}(n_{i}-k_{i})}+\beta) \\
490\hat{\varepsilon} = \int_{0}^{1} \epsilon \times P_{comb}(\epsilon | {k_{i}} , {N_{i}}) d\epsilon \\
491confidence\ level = 1 - \alpha \\
492\frac{\alpha}{2} = \int_{0}^{\epsilon_{low}} P_{comb}(\epsilon | {k_{i}} , {N_{i}}) d\epsilon ...\ defines\ lower\ boundary \\
4931- \frac{\alpha}{2} = \int_{0}^{\epsilon_{up}} P_{comb}(\epsilon | {k_{i}} , {N_{i}}) d\epsilon ...\ defines\ upper\ boundary
494\f}
495
496
497###Example:
498If you use cuts to select electrons which can originate from two different
499processes, you can determine the selection efficiency for each process. The
500overall selection efficiency is then the combined efficiency. The weights to be used in the
501combination should be the probability that an
502electron comes from the corresponding process.
503
504\f[
505p_{1} = \frac{\sigma_{1}}{\sigma_{1} + \sigma_{2}} = \frac{N_{1}w_{1}}{N_{1}w_{1} + N_{2}w_{2}}\\
506p_{2} = \frac{\sigma_{2}}{\sigma_{1} + \sigma_{2}} = \frac{N_{2}w_{2}}{N_{1}w_{1} + N_{2}w_{2}}
507\f]
508
509## VI. Further operations
510
511### VI.Information about the internal histograms
512The methods TEfficiency::GetPassedHistogram and TEfficiency::GetTotalHistogram
513return a constant pointer to the internal histograms. They can be used to
514obtain information about the internal histograms (e.g., the binning, number of passed / total events in a bin, mean values...).
515One can obtain a clone of the internal histograms by calling TEfficiency::GetCopyPassedHisto or TEfficiency::GetCopyTotalHisto.
516The returned histograms are completely independent from the current
517TEfficiency object. By default, they are not attached to a directory to
518avoid the duplication of data and the user is responsible for deleting them.
519
520
521~~~~~~~~~~~~~~~{.cpp}
522//open a root file which contains a TEfficiency object
523TFile* pFile = new TFile("myfile.root","update");
524
525//get TEfficiency object with name "my_eff"
526TEfficiency* pEff = (TEfficiency*)pFile->Get("my_eff");
527
528//get clone of total histogram
529TH1* clone = pEff->GetCopyTotalHisto();
530
531//change clone...
532//save changes of clone directly
533clone->Write();
534//or append it to the current directory and write the file
535//clone->SetDirectory(gDirectory);
536//pFile->Write();
537
538//delete histogram object
539delete clone;
540clone = 0;
541~~~~~~~~~~~~~~~
542
543It is also possible to set the internal total or passed histogram by using the
544methods TEfficiency::SetPassedHistogram or TEfficiency::SetTotalHistogram.
545
546In order to ensure the validity of the TEfficiency object, the consistency of the
547new histogram and the stored histogram is checked. It might be
548impossible sometimes to change the histograms in a consistent way. Therefore one can force
549the replacement by passing the "f" option. Then the user has to ensure that the
550other internal histogram is replaced as well and that the TEfficiency object is
551in a valid state.
552
553### VI.2 Fitting
554The efficiency can be fitted using the TEfficiency::Fit function which internally uses
555the TBinomialEfficiencyFitter::Fit method.
556As this method is using a maximum-likelihood-fit, it is necessary to initialise
557the given fit function with reasonable start values.
558The resulting fit function is attached to the list of associated functions and
559will be drawn automatically during the next TEfficiency::Draw command.
560The list of associated function can be modified by using the pointer returned
561by TEfficiency::GetListOfFunctions.
562
563Begin_Macro(source)
564{
565 //canvas only needed for this documentation
566 TCanvas* c1 = new TCanvas("example","",600,400);
567 c1->SetFillStyle(1001);
568 c1->SetFillColor(kWhite);
569
570 //create one-dimensional TEfficiency object with fixed bin size
571 TEfficiency* pEff = new TEfficiency("eff","my efficiency;x;#epsilon",20,0,10);
572 TRandom3 rand3;
573
574 bool bPassed;
575 double x;
576 for(int i=0; i<10000; ++i)
577 {
578 //simulate events with variable under investigation
579 x = rand3.Uniform(10);
580 //check selection: bPassed = DoesEventPassSelection(x)
581 bPassed = rand3.Rndm() < TMath::Gaus(x,5,4);
582 pEff->Fill(bPassed,x);
583 }
584
585 //create a function for fitting and do the fit
586 TF1* f1 = new TF1("f1","gaus",0,10);
587 f1->SetParameters(1,5,2);
588 pEff->Fit(f1);
589
590 //create a threshold function
591 TF1* f2 = new TF1("thres","0.8",0,10);
592 f2->SetLineColor(kRed);
593 //add it to the list of functions
594 //use add first because the parameters of the last function will be displayed
595 pEff->GetListOfFunctions()->AddFirst(f2);
596
597 pEff->Draw("AP");
598
599 //only for this documentation
600 return c1;
601}
602End_Macro
603
604### VI.3 Draw a TEfficiency object
605A TEfficiency object can be drawn by calling the usual TEfficiency::Draw method.
606At the moment drawing is only supported for 1- and 2-dimensional TEfficiency objects.
607In the 1-dimensional case, you can use the same options as for the TGraphAsymmErrors::Draw
608method. For 2-dimensional TEfficiency objects, you can pass the same options as
609for a TH2::Draw object.
610
611********************************************************************************/
612//______________________________________________________________________________
613
614////////////////////////////////////////////////////////////////////////////////
615///default constructor
616///
617///should not be used explicitly
618
620fBeta_alpha(kDefBetaAlpha),
621fBeta_beta(kDefBetaBeta),
622fBoundary(0),
623fConfLevel(kDefConfLevel),
624fDirectory(0),
625fFunctions(0),
626fPaintGraph(0),
627fPaintHisto(0),
628fPassedHistogram(0),
629fTotalHistogram(0),
630fWeight(kDefWeight)
631{
633
634 // create 2 dummy histograms
635 fPassedHistogram = new TH1F("h_passed","passed",10,0,10);
636 fTotalHistogram = new TH1F("h_total","total",10,0,10);
637}
638
639////////////////////////////////////////////////////////////////////////////////
640///constructor using two existing histograms as input
641///
642///Input: passed - contains the events fulfilling some criteria
643/// total - contains all investigated events
644///
645///Notes: - both histograms have to fulfill the conditions of CheckConsistency
646/// - dimension of the resulting efficiency object depends
647/// on the dimension of the given histograms
648/// - Clones of both histograms are stored internally
649/// - The function SetName(total.GetName() + "_clone") is called to set
650/// the names of the new object and the internal histograms..
651/// - The created TEfficiency object is NOT appended to a directory. It
652/// will not be written to disk during the next TFile::Write() command
653/// in order to prevent duplication of data. If you want to save this
654/// TEfficiency object anyway, you can either append it to a
655/// directory by calling SetDirectory(TDirectory*) or write it
656/// explicitly to disk by calling Write().
657
658TEfficiency::TEfficiency(const TH1& passed,const TH1& total):
659fBeta_alpha(kDefBetaAlpha),
660fBeta_beta(kDefBetaBeta),
661fConfLevel(kDefConfLevel),
662fDirectory(0),
663fFunctions(0),
664fPaintGraph(0),
665fPaintHisto(0),
666fWeight(kDefWeight)
667{
668 //check consistency of histograms
669 if(CheckConsistency(passed,total)) {
672 fTotalHistogram = (TH1*)total.Clone();
673 fPassedHistogram = (TH1*)passed.Clone();
674 TH1::AddDirectory(bStatus);
675
676 TString newName = total.GetName();
677 newName += TString("_clone");
678 SetName(newName);
679
680 // are the histograms filled with weights?
681 if(CheckWeights(passed,total))
682 {
683 Info("TEfficiency","given histograms are filled with weights");
685 }
686 }
687 else {
688 Error("TEfficiency(const TH1&,const TH1&)","histograms are not consistent -> results are useless");
689 Warning("TEfficiency(const TH1&,const TH1&)","using two empty TH1D('h1','h1',10,0,10)");
690
693 fTotalHistogram = new TH1D("h1_total","h1 (total)",10,0,10);
694 fPassedHistogram = new TH1D("h1_passed","h1 (passed)",10,0,10);
695 TH1::AddDirectory(bStatus);
696 }
697
698 SetBit(kPosteriorMode,false);
700
702 SetDirectory(0);
703}
704
705////////////////////////////////////////////////////////////////////////////////
706/// Create 1-dimensional TEfficiency object with variable bin size.
707///
708/// Constructor creates two new and empty histograms with a given binning
709///
710/// Input:
711///
712/// - `name`: the common part of the name for both histograms (no blanks)
713/// fTotalHistogram has name: name + "_total"
714/// fPassedHistogram has name: name + "_passed"
715/// - `title`: the common part of the title for both histogram
716/// fTotalHistogram has title: title + " (total)"
717/// fPassedHistogram has title: title + " (passed)"
718/// It is possible to label the axis by passing a title with
719/// the following format: "title;xlabel;ylabel".
720/// - `nbins`: number of bins on the x-axis
721/// - `xbins`: array of length (nbins + 1) with low-edges for each bin
722/// xbins[nbinsx] ... lower edge for overflow bin
723
724TEfficiency::TEfficiency(const char* name,const char* title,Int_t nbins,
725 const Double_t* xbins):
726fBeta_alpha(kDefBetaAlpha),
727fBeta_beta(kDefBetaBeta),
728fConfLevel(kDefConfLevel),
729fDirectory(0),
730fFunctions(0),
731fPaintGraph(0),
732fPaintHisto(0),
733fWeight(kDefWeight)
734{
737 fTotalHistogram = new TH1D("total","total",nbins,xbins);
738 fPassedHistogram = new TH1D("passed","passed",nbins,xbins);
739 TH1::AddDirectory(bStatus);
740
741 Build(name,title);
742}
743
744////////////////////////////////////////////////////////////////////////////////
745/// Create 1-dimensional TEfficiency object with fixed bins size.
746///
747/// Constructor creates two new and empty histograms with a fixed binning.
748///
749/// Input:
750///
751/// - `name`: the common part of the name for both histograms(no blanks)
752/// fTotalHistogram has name: name + "_total"
753/// fPassedHistogram has name: name + "_passed"
754/// - `title`: the common part of the title for both histogram
755/// fTotalHistogram has title: title + " (total)"
756/// fPassedHistogram has title: title + " (passed)"
757/// It is possible to label the axis by passing a title with
758/// the following format: "title;xlabel;ylabel".
759/// - `nbinsx`: number of bins on the x-axis
760/// - `xlow`: lower edge of first bin
761/// - `xup`: upper edge of last bin
762
763TEfficiency::TEfficiency(const char* name,const char* title,Int_t nbinsx,
764 Double_t xlow,Double_t xup):
765fBeta_alpha(kDefBetaAlpha),
766fBeta_beta(kDefBetaBeta),
767fConfLevel(kDefConfLevel),
768fDirectory(0),
769fFunctions(0),
770fPaintGraph(0),
771fPaintHisto(0),
772fWeight(kDefWeight)
773{
776 fTotalHistogram = new TH1D("total","total",nbinsx,xlow,xup);
777 fPassedHistogram = new TH1D("passed","passed",nbinsx,xlow,xup);
778 TH1::AddDirectory(bStatus);
779
780 Build(name,title);
781}
782
783////////////////////////////////////////////////////////////////////////////////
784/// Create 2-dimensional TEfficiency object with fixed bin size.
785///
786/// Constructor creates two new and empty histograms with a fixed binning.
787///
788/// Input:
789///
790/// - `name`: the common part of the name for both histograms(no blanks)
791/// fTotalHistogram has name: name + "_total"
792/// fPassedHistogram has name: name + "_passed"
793/// - `title`: the common part of the title for both histogram
794/// fTotalHistogram has title: title + " (total)"
795/// fPassedHistogram has title: title + " (passed)"
796/// It is possible to label the axis by passing a title with
797/// the following format: "title;xlabel;ylabel;zlabel".
798/// - `nbinsx`: number of bins on the x-axis
799/// - `xlow`: lower edge of first x-bin
800/// - `xup`: upper edge of last x-bin
801/// - `nbinsy`: number of bins on the y-axis
802/// - `ylow`: lower edge of first y-bin
803/// - `yup`: upper edge of last y-bin
804
805TEfficiency::TEfficiency(const char* name,const char* title,Int_t nbinsx,
806 Double_t xlow,Double_t xup,Int_t nbinsy,
807 Double_t ylow,Double_t yup):
808fBeta_alpha(kDefBetaAlpha),
809fBeta_beta(kDefBetaBeta),
810fConfLevel(kDefConfLevel),
811fDirectory(0),
812fFunctions(0),
813fPaintGraph(0),
814fPaintHisto(0),
815fWeight(kDefWeight)
816{
819 fTotalHistogram = new TH2D("total","total",nbinsx,xlow,xup,nbinsy,ylow,yup);
820 fPassedHistogram = new TH2D("passed","passed",nbinsx,xlow,xup,nbinsy,ylow,yup);
821 TH1::AddDirectory(bStatus);
822
823 Build(name,title);
824}
825
826////////////////////////////////////////////////////////////////////////////////
827/// Create 2-dimensional TEfficiency object with variable bin size.
828///
829/// Constructor creates two new and empty histograms with a given binning.
830///
831/// Input:
832///
833/// - `name`: the common part of the name for both histograms(no blanks)
834/// fTotalHistogram has name: name + "_total"
835/// fPassedHistogram has name: name + "_passed"
836/// - `title`: the common part of the title for both histogram
837/// fTotalHistogram has title: title + " (total)"
838/// fPassedHistogram has title: title + " (passed)"
839/// It is possible to label the axis by passing a title with
840/// the following format: "title;xlabel;ylabel;zlabel".
841/// - `nbinsx`: number of bins on the x-axis
842/// - `xbins`: array of length (nbins + 1) with low-edges for each bin
843/// xbins[nbinsx] ... lower edge for overflow x-bin
844/// - `nbinsy`: number of bins on the y-axis
845/// - `ybins`: array of length (nbins + 1) with low-edges for each bin
846/// ybins[nbinsy] ... lower edge for overflow y-bin
847
848TEfficiency::TEfficiency(const char* name,const char* title,Int_t nbinsx,
849 const Double_t* xbins,Int_t nbinsy,
850 const Double_t* ybins):
851fBeta_alpha(kDefBetaAlpha),
852fBeta_beta(kDefBetaBeta),
853fConfLevel(kDefConfLevel),
854fDirectory(0),
855fFunctions(0),
856fPaintGraph(0),
857fPaintHisto(0),
858fWeight(kDefWeight)
859{
862 fTotalHistogram = new TH2D("total","total",nbinsx,xbins,nbinsy,ybins);
863 fPassedHistogram = new TH2D("passed","passed",nbinsx,xbins,nbinsy,ybins);
864 TH1::AddDirectory(bStatus);
865
866 Build(name,title);
867}
868
869////////////////////////////////////////////////////////////////////////////////
870/// Create 3-dimensional TEfficiency object with fixed bin size.
871///
872/// Constructor creates two new and empty histograms with a fixed binning.
873///
874/// Input:
875///
876/// - `name`: the common part of the name for both histograms(no blanks)
877/// fTotalHistogram has name: name + "_total"
878/// fPassedHistogram has name: name + "_passed"
879/// - `title`: the common part of the title for both histogram
880/// fTotalHistogram has title: title + " (total)"
881/// fPassedHistogram has title: title + " (passed)"
882/// It is possible to label the axis by passing a title with
883/// the following format: "title;xlabel;ylabel;zlabel".
884/// - `nbinsx`: number of bins on the x-axis
885/// - `xlow`: lower edge of first x-bin
886/// - `xup`: upper edge of last x-bin
887/// - `nbinsy`: number of bins on the y-axis
888/// - `ylow`: lower edge of first y-bin
889/// - `yup`: upper edge of last y-bin
890/// - `nbinsz`: number of bins on the z-axis
891/// - `zlow`: lower edge of first z-bin
892/// - `zup`: upper edge of last z-bin
893
894TEfficiency::TEfficiency(const char* name,const char* title,Int_t nbinsx,
895 Double_t xlow,Double_t xup,Int_t nbinsy,
896 Double_t ylow,Double_t yup,Int_t nbinsz,
897 Double_t zlow,Double_t zup):
898fBeta_alpha(kDefBetaAlpha),
899fBeta_beta(kDefBetaBeta),
900fConfLevel(kDefConfLevel),
901fDirectory(0),
902fFunctions(0),
903fPaintGraph(0),
904fPaintHisto(0),
905fWeight(kDefWeight)
906{
909 fTotalHistogram = new TH3D("total","total",nbinsx,xlow,xup,nbinsy,ylow,yup,nbinsz,zlow,zup);
910 fPassedHistogram = new TH3D("passed","passed",nbinsx,xlow,xup,nbinsy,ylow,yup,nbinsz,zlow,zup);
911 TH1::AddDirectory(bStatus);
912
913 Build(name,title);
914}
915
916////////////////////////////////////////////////////////////////////////////////
917/// Create 3-dimensional TEfficiency object with variable bin size.
918///
919/// Constructor creates two new and empty histograms with a given binning.
920///
921/// Input:
922///
923/// - `name`: the common part of the name for both histograms(no blanks)
924/// fTotalHistogram has name: name + "_total"
925/// fPassedHistogram has name: name + "_passed"
926/// - `title`: the common part of the title for both histogram
927/// fTotalHistogram has title: title + " (total)"
928/// fPassedHistogram has title: title + " (passed)"
929/// It is possible to label the axis by passing a title with
930/// the following format: "title;xlabel;ylabel;zlabel".
931/// - `nbinsx`: number of bins on the x-axis
932/// - `xbins`: array of length (nbins + 1) with low-edges for each bin
933/// xbins[nbinsx] ... lower edge for overflow x-bin
934/// - `nbinsy`: number of bins on the y-axis
935/// - `ybins`: array of length (nbins + 1) with low-edges for each bin
936/// xbins[nbinsx] ... lower edge for overflow y-bin
937/// - `nbinsz`: number of bins on the z-axis
938/// - `zbins`: array of length (nbins + 1) with low-edges for each bin
939/// xbins[nbinsx] ... lower edge for overflow z-bin
940
941TEfficiency::TEfficiency(const char* name,const char* title,Int_t nbinsx,
942 const Double_t* xbins,Int_t nbinsy,
943 const Double_t* ybins,Int_t nbinsz,
944 const Double_t* zbins):
945fBeta_alpha(kDefBetaAlpha),
946fBeta_beta(kDefBetaBeta),
947fConfLevel(kDefConfLevel),
948fDirectory(0),
949fFunctions(0),
950fPaintGraph(0),
951fPaintHisto(0),
952fWeight(kDefWeight)
953{
956 fTotalHistogram = new TH3D("total","total",nbinsx,xbins,nbinsy,ybins,nbinsz,zbins);
957 fPassedHistogram = new TH3D("passed","passed",nbinsx,xbins,nbinsy,ybins,nbinsz,zbins);
958 TH1::AddDirectory(bStatus);
959
960 Build(name,title);
961}
962
963////////////////////////////////////////////////////////////////////////////////
964/// Copy constructor.
965///
966///The list of associated objects (e.g. fitted functions) is not copied.
967///
968///Note:
969///
970/// - SetName(rEff.GetName() + "_copy") is called to set the names of the
971/// object and the histograms.
972/// - The titles are set by calling SetTitle("[copy] " + rEff.GetTitle()).
973/// - The copied TEfficiency object is NOT appended to a directory. It
974/// will not be written to disk during the next TFile::Write() command
975/// in order to prevent duplication of data. If you want to save this
976/// TEfficiency object anyway, you can either append it to a directory
977/// by calling SetDirectory(TDirectory*) or write it explicitly to disk
978/// by calling Write().
979
981TNamed(),
982TAttLine(),
983TAttFill(),
984TAttMarker(),
985fBeta_alpha(rEff.fBeta_alpha),
986fBeta_beta(rEff.fBeta_beta),
987fBeta_bin_params(rEff.fBeta_bin_params),
988fConfLevel(rEff.fConfLevel),
989fDirectory(0),
990fFunctions(0),
991fPaintGraph(0),
992fPaintHisto(0),
993fWeight(rEff.fWeight)
994{
995 // copy TObject bits
996 ((TObject&)rEff).Copy(*this);
997
1000 fTotalHistogram = (TH1*)((rEff.fTotalHistogram)->Clone());
1001 fPassedHistogram = (TH1*)((rEff.fPassedHistogram)->Clone());
1002 TH1::AddDirectory(bStatus);
1003
1004 TString name = rEff.GetName();
1005 name += "_copy";
1006 SetName(name);
1007 TString title = "[copy] ";
1008 title += rEff.GetTitle();
1009 SetTitle(title);
1010
1012
1013 SetDirectory(0);
1014
1015 //copy style
1016 rEff.TAttLine::Copy(*this);
1017 rEff.TAttFill::Copy(*this);
1018 rEff.TAttMarker::Copy(*this);
1019}
1020
1021////////////////////////////////////////////////////////////////////////////////
1022///default destructor
1023
1025{
1026 //delete all function in fFunctions
1027 // use same logic as in TH1 destructor
1028 // (see TH1::~TH1 code in TH1.cxx)
1029 if(fFunctions) {
1031 TObject* obj = 0;
1032 while ((obj = fFunctions->First())) {
1033 while(fFunctions->Remove(obj)) { }
1034 if (!obj->TestBit(kNotDeleted)) {
1035 break;
1036 }
1037 delete obj;
1038 obj = 0;
1039 }
1040 delete fFunctions;
1041 fFunctions = 0;
1042 }
1043
1044 if(fDirectory)
1045 fDirectory->Remove(this);
1046
1047 delete fTotalHistogram;
1048 delete fPassedHistogram;
1049 delete fPaintGraph;
1050 delete fPaintHisto;
1051}
1052
1053////////////////////////////////////////////////////////////////////////////////
1054/**
1055 Calculates the boundaries for the frequentist Agresti-Coull interval
1056
1057 \param total number of total events
1058 \param passed 0 <= number of passed events <= total
1059 \param level confidence level
1060 \param bUpper true - upper boundary is returned
1061 false - lower boundary is returned
1062
1063
1064 \f{eqnarray*}{
1065 \alpha &=& 1 - \frac{level}{2} \\
1066 \kappa &=& \Phi^{-1}(1 - \alpha,1)\ ... normal\ quantile\ function\\
1067 mode &=& \frac{passed + \frac{\kappa^{2}}{2}}{total + \kappa^{2}}\\
1068 \Delta &=& \kappa * \sqrt{\frac{mode * (1 - mode)}{total + \kappa^{2}}}\\
1069 return &=& max(0,mode - \Delta)\ or\ min(1,mode + \Delta)
1070 \f}
1071
1072*/
1073
1075{
1076 Double_t alpha = (1.0 - level)/2;
1077 Double_t kappa = ROOT::Math::normal_quantile(1 - alpha,1);
1078
1079 Double_t mode = (passed + 0.5 * kappa * kappa) / (total + kappa * kappa);
1080 Double_t delta = kappa * std::sqrt(mode * (1 - mode) / (total + kappa * kappa));
1081
1082 if(bUpper)
1083 return ((mode + delta) > 1) ? 1.0 : (mode + delta);
1084 else
1085 return ((mode - delta) < 0) ? 0.0 : (mode - delta);
1086}
1087
1088////////////////////////////////////////////////////////////////////////////////
1089/// Calculates the boundaries for the frequentist Feldman-Cousins interval
1090///
1091/// \param total number of total events
1092/// \param passed 0 <= number of passed events <= total
1093/// \param level confidence level
1094/// \param bUpper: true - upper boundary is returned
1095/// false - lower boundary is returned
1096
1098{
1099 Double_t lower = 0;
1100 Double_t upper = 1;
1101 if (!FeldmanCousinsInterval(total,passed,level, lower, upper)) {
1102 ::Error("FeldmanCousins","Error running FC method - return 0 or 1");
1103 }
1104 return (bUpper) ? upper : lower;
1105}
1106
1107////////////////////////////////////////////////////////////////////////////////
1108/// Calculates the interval boundaries using the frequentist methods of Feldman-Cousins
1109///
1110/// \param[in] total number of total events
1111/// \param[in] passed 0 <= number of passed events <= total
1112/// \param[in] level confidence level
1113/// \param[out] lower lower boundary returned on exit
1114/// \param[out] upper lower boundary returned on exit
1115/// \return a flag with the status of the calculation
1116///
1117/// Calculation:
1118///
1119/// The Feldman-Cousins is a frequentist method where the interval is estimated using a Neyman construction where the ordering
1120/// is based on the likelihood ratio:
1121/// \f[
1122/// LR = \frac{Binomial(k | N, \epsilon)}{Binomial(k | N, \hat{\epsilon} ) }
1123/// \f]
1124/// See G. J. Feldman and R. D. Cousins, Phys. Rev. D57 (1998) 3873
1125/// and R. D. Cousins, K. E. Hymes, J. Tucker, Nuclear Instruments and Methods in Physics Research A 612 (2010) 388
1126///
1127/// Implemented using classes developed by Jordan Tucker and Luca Lista
1128/// See File hist/hist/src/TEfficiencyHelper.h
1129
1131{
1133 double alpha = 1.-level;
1134 fc.Init(alpha);
1135 fc.Calculate(passed, total);
1136 lower = fc.Lower();
1137 upper = fc.Upper();
1138 return true;
1139}
1140
1141////////////////////////////////////////////////////////////////////////////////
1142/// Calculates the boundaries using the mid-P binomial
1143/// interval (Lancaster method) from B. Cousing and J. Tucker.
1144/// See http://arxiv.org/abs/0905.3831 for a description and references for the method
1145///
1146/// Modify equal_tailed to get the kind of interval you want.
1147/// Can also be converted to interval on ratio of poisson means X/Y by the substitutions
1148/// ~~~ {.cpp}
1149/// X = passed
1150/// total = X + Y
1151/// lower_poisson = lower/(1 - lower)
1152/// upper_poisson = upper/(1 - upper)
1153/// ~~~
1154
1156{
1157 const double alpha = 1. - level;
1158 const bool equal_tailed = true; // change if you don;t want equal tailed interval
1159 const double alpha_min = equal_tailed ? alpha/2 : alpha;
1160 const double tol = 1e-9; // tolerance
1161 double pmin = 0;
1162 double pmax = 0;
1163 double p = 0;
1164
1165 pmin = 0; pmax = 1;
1166
1167
1168 // treat special case for 0<passed<1
1169 // do a linear interpolation of the upper limit values
1170 if ( passed > 0 && passed < 1) {
1171 double p0 = MidPInterval(total,0.0,level,bUpper);
1172 double p1 = MidPInterval(total,1.0,level,bUpper);
1173 p = (p1 - p0) * passed + p0;
1174 return p;
1175 }
1176
1177 while (std::abs(pmax - pmin) > tol) {
1178 p = (pmin + pmax)/2;
1179 //double v = 0.5 * ROOT::Math::binomial_pdf(int(passed), p, int(total));
1180 // make it work for non integer using the binomial - beta relationship
1181 double v = 0.5 * ROOT::Math::beta_pdf(p, passed+1., total-passed+1)/(total+1);
1182 //if (passed > 0) v += ROOT::Math::binomial_cdf(int(passed - 1), p, int(total));
1183 // compute the binomial cdf at passed -1
1184 if ( (passed-1) >= 0) v += ROOT::Math::beta_cdf_c(p, passed, total-passed+1);
1185
1186 double vmin = (bUpper) ? alpha_min : 1.- alpha_min;
1187 if (v > vmin)
1188 pmin = p;
1189 else
1190 pmax = p;
1191 }
1192
1193 return p;
1194}
1195
1196
1197////////////////////////////////////////////////////////////////////////////////
1198/**
1199Calculates the boundaries for a Bayesian confidence interval (shortest or central interval depending on the option)
1200
1201\param[in] total number of total events
1202\param[in] passed 0 <= number of passed events <= total
1203\param[in] level confidence level
1204\param[in] alpha shape parameter > 0 for the prior distribution (fBeta_alpha)
1205\param[in] beta shape parameter > 0 for the prior distribution (fBeta_beta)
1206\param[in] bUpper
1207 - true - upper boundary is returned
1208 - false - lower boundary is returned
1209\param[in] bShortest ??
1210
1211Note: In the case central confidence interval is calculated.
1212 when passed = 0 (or passed = total) the lower (or upper)
1213 interval values will be larger than 0 (or smaller than 1).
1214
1215Calculation:
1216
1217The posterior probability in bayesian statistics is given by:
1218\f[
1219 P(\varepsilon |k,N) \propto L(\varepsilon|k,N) \times Prior(\varepsilon)
1220\f]
1221As an efficiency can be interpreted as probability of a positive outcome of
1222a Bernoullli trial the likelihood function is given by the binomial
1223distribution:
1224\f[
1225 L(\varepsilon|k,N) = Binomial(N,k) \varepsilon ^{k} (1 - \varepsilon)^{N-k}
1226\f]
1227At the moment only beta distributions are supported as prior probabilities
1228of the efficiency (\f$ B(\alpha,\beta)\f$ is the beta function):
1229\f[
1230 Prior(\varepsilon) = \frac{1}{B(\alpha,\beta)} \varepsilon ^{\alpha - 1} (1 - \varepsilon)^{\beta - 1}
1231\f]
1232The posterior probability is therefore again given by a beta distribution:
1233\f[
1234 P(\varepsilon |k,N) \propto \varepsilon ^{k + \alpha - 1} (1 - \varepsilon)^{N - k + \beta - 1}
1235\f]
1236In case of central intervals
1237the lower boundary for the equal-tailed confidence interval is given by the
1238inverse cumulative (= quantile) function for the quantile \f$ \frac{1 - level}{2} \f$.
1239The upper boundary for the equal-tailed confidence interval is given by the
1240inverse cumulative (= quantile) function for the quantile \f$ \frac{1 + level}{2} \f$.
1241Hence it is the solution \f$ \varepsilon \f$ of the following equation:
1242\f[
1243 I_{\varepsilon}(k + \alpha,N - k + \beta) = \frac{1}{norm} \int_{0}^{\varepsilon} dt t^{k + \alpha - 1} (1 - t)^{N - k + \beta - 1} = \frac{1 \pm level}{2}
1244\f]
1245In the case of shortest interval the minimum interval around the mode is found by minimizing the length of all intervals width the
1246given probability content. See TEfficiency::BetaShortestInterval
1247*/
1248
1250{
1251 Double_t a = double(passed)+alpha;
1252 Double_t b = double(total-passed)+beta;
1253
1254 if (bShortest) {
1255 double lower = 0;
1256 double upper = 1;
1257 BetaShortestInterval(level,a,b,lower,upper);
1258 return (bUpper) ? upper : lower;
1259 }
1260 else
1261 return BetaCentralInterval(level, a, b, bUpper);
1262}
1263
1264////////////////////////////////////////////////////////////////////////////////
1265/// Calculates the boundaries for a central confidence interval for a Beta distribution
1266///
1267/// \param[in] level confidence level
1268/// \param[in] a parameter > 0 for the beta distribution (for a posterior is passed + prior_alpha
1269/// \param[in] b parameter > 0 for the beta distribution (for a posterior is (total-passed) + prior_beta
1270/// \param[in] bUpper true - upper boundary is returned
1271/// false - lower boundary is returned
1272
1274{
1275 if(bUpper) {
1276 if((a > 0) && (b > 0))
1277 return ROOT::Math::beta_quantile((1+level)/2,a,b);
1278 else {
1279 gROOT->Error("TEfficiency::BayesianCentral","Invalid input parameters - return 1");
1280 return 1;
1281 }
1282 }
1283 else {
1284 if((a > 0) && (b > 0))
1285 return ROOT::Math::beta_quantile((1-level)/2,a,b);
1286 else {
1287 gROOT->Error("TEfficiency::BayesianCentral","Invalid input parameters - return 0");
1288 return 0;
1289 }
1290 }
1291}
1292
1293struct Beta_interval_length {
1294 Beta_interval_length(Double_t level,Double_t alpha,Double_t beta ) :
1295 fCL(level), fAlpha(alpha), fBeta(beta)
1296 {}
1297
1298 Double_t LowerMax() {
1299 // max allowed value of lower given the interval size
1300 return ROOT::Math::beta_quantile_c(fCL, fAlpha,fBeta);
1301 }
1302
1303 Double_t operator() (double lower) const {
1304 // return length of interval
1305 Double_t plow = ROOT::Math::beta_cdf(lower, fAlpha, fBeta);
1306 Double_t pup = plow + fCL;
1307 double upper = ROOT::Math::beta_quantile(pup, fAlpha,fBeta);
1308 return upper-lower;
1309 }
1310 Double_t fCL; // interval size (confidence level)
1311 Double_t fAlpha; // beta distribution alpha parameter
1312 Double_t fBeta; // beta distribution beta parameter
1313
1314};
1315
1316////////////////////////////////////////////////////////////////////////////////
1317/// Calculates the boundaries for a shortest confidence interval for a Beta distribution
1318///
1319/// \param[in] level confidence level
1320/// \param[in] a parameter > 0 for the beta distribution (for a posterior is passed + prior_alpha
1321/// \param[in] b parameter > 0 for the beta distribution (for a posterior is (total-passed) + prior_beta
1322/// \param[out] upper upper boundary is returned
1323/// \param[out] lower lower boundary is returned
1324///
1325/// The lower/upper boundary are then obtained by finding the shortest interval of the beta distribution
1326/// contained the desired probability level.
1327/// The length of all possible intervals is minimized in order to find the shortest one
1328
1330{
1331 if (a <= 0 || b <= 0) {
1332 lower = 0; upper = 1;
1333 gROOT->Error("TEfficiency::BayesianShortest","Invalid input parameters - return [0,1]");
1334 return kFALSE;
1335 }
1336
1337 // treat here special cases when mode == 0 or 1
1338 double mode = BetaMode(a,b);
1339 if (mode == 0.0) {
1340 lower = 0;
1341 upper = ROOT::Math::beta_quantile(level, a, b);
1342 return kTRUE;
1343 }
1344 if (mode == 1.0) {
1345 lower = ROOT::Math::beta_quantile_c(level, a, b);
1346 upper = 1.0;
1347 return kTRUE;
1348 }
1349 // special case when the shortest interval is undefined return the central interval
1350 // can happen for a posterior when passed=total=0
1351 //
1352 if ( a==b && a<=1.0) {
1353 lower = BetaCentralInterval(level,a,b,kFALSE);
1354 upper = BetaCentralInterval(level,a,b,kTRUE);
1355 return kTRUE;
1356 }
1357
1358 // for the other case perform a minimization
1359 // make a function of the length of the posterior interval as a function of lower bound
1360 Beta_interval_length intervalLength(level,a,b);
1361 // minimize the interval length
1364 minim.SetFunction(func, 0, intervalLength.LowerMax() );
1365 minim.SetNpx(2); // no need to bracket with many iterations. Just do few times to estimate some better points
1366 bool ret = minim.Minimize(100, 1.E-10,1.E-10);
1367 if (!ret) {
1368 gROOT->Error("TEfficiency::BayesianShortes","Error finding the shortest interval");
1369 return kFALSE;
1370 }
1371 lower = minim.XMinimum();
1372 upper = lower + minim.FValMinimum();
1373 return kTRUE;
1374}
1375
1376////////////////////////////////////////////////////////////////////////////////
1377/// Compute the mean (average) of the beta distribution
1378///
1379/// \param[in] a parameter > 0 for the beta distribution (for a posterior is passed + prior_alpha
1380/// \param[in] b parameter > 0 for the beta distribution (for a posterior is (total-passed) + prior_beta
1381///
1382
1384{
1385 if (a <= 0 || b <= 0 ) {
1386 gROOT->Error("TEfficiency::BayesianMean","Invalid input parameters - return 0");
1387 return 0;
1388 }
1389
1390 Double_t mean = a / (a + b);
1391 return mean;
1392}
1393
1394////////////////////////////////////////////////////////////////////////////////
1395/// Compute the mode of the beta distribution
1396///
1397/// \param[in] a parameter > 0 for the beta distribution (for a posterior is passed + prior_alpha
1398/// \param[in] b parameter > 0 for the beta distribution (for a posterior is (total-passed) + prior_beta
1399///
1400/// note the mode is defined for a Beta(a,b) only if (a,b)>1 (a = passed+alpha; b = total-passed+beta)
1401/// return then the following in case (a,b) < 1:
1402/// - if (a==b) return 0.5 (it is really undefined)
1403/// - if (a < b) return 0;
1404/// - if (a > b) return 1;
1405
1407{
1408 if (a <= 0 || b <= 0 ) {
1409 gROOT->Error("TEfficiency::BayesianMode","Invalid input parameters - return 0");
1410 return 0;
1411 }
1412 if ( a <= 1 || b <= 1) {
1413 if ( a < b) return 0;
1414 if ( a > b) return 1;
1415 if (a == b) return 0.5; // cannot do otherwise
1416 }
1417
1418 // since a and b are > 1 here denominator cannot be 0 or < 0
1419 Double_t mode = (a - 1.0) / (a + b -2.0);
1420 return mode;
1421}
1422////////////////////////////////////////////////////////////////////////////////
1423/// Building standard data structure of a TEfficiency object
1424///
1425/// Notes:
1426/// - calls: SetName(name), SetTitle(title)
1427/// - set the statistic option to the default (kFCP)
1428/// - appends this object to the current directory SetDirectory(gDirectory)
1429
1430void TEfficiency::Build(const char* name,const char* title)
1431{
1432 SetName(name);
1433 SetTitle(title);
1434
1437
1438 SetBit(kPosteriorMode,false);
1440 SetBit(kUseWeights,false);
1441
1442 //set normalisation factors to 0, otherwise the += may not work properly
1445}
1446
1447////////////////////////////////////////////////////////////////////////////////
1448/// Checks binning for each axis
1449///
1450/// It is assumed that the passed histograms have the same dimension.
1451
1453{
1454
1455 const TAxis* ax1 = 0;
1456 const TAxis* ax2 = 0;
1457
1458 //check binning along axis
1459 for(Int_t j = 0; j < pass.GetDimension(); ++j) {
1460 switch(j) {
1461 case 0:
1462 ax1 = pass.GetXaxis();
1463 ax2 = total.GetXaxis();
1464 break;
1465 case 1:
1466 ax1 = pass.GetYaxis();
1467 ax2 = total.GetYaxis();
1468 break;
1469 case 2:
1470 ax1 = pass.GetZaxis();
1471 ax2 = total.GetZaxis();
1472 break;
1473 }
1474
1475 if(ax1->GetNbins() != ax2->GetNbins()) {
1476 gROOT->Info("TEfficiency::CheckBinning","Histograms are not consistent: they have different number of bins");
1477 return false;
1478 }
1479
1480 for(Int_t i = 1; i <= ax1->GetNbins() + 1; ++i)
1481 if(!TMath::AreEqualRel(ax1->GetBinLowEdge(i), ax2->GetBinLowEdge(i), 1.E-15)) {
1482 gROOT->Info("TEfficiency::CheckBinning","Histograms are not consistent: they have different bin edges");
1483 return false;
1484 }
1485
1486
1487 }
1488
1489 return true;
1490}
1491
1492////////////////////////////////////////////////////////////////////////////////
1493/// Checks the consistence of the given histograms
1494///
1495/// The histograms are considered as consistent if:
1496/// - both have the same dimension
1497/// - both have the same binning
1498/// - pass.GetBinContent(i) <= total.GetBinContent(i) for each bin i
1499///
1500
1502{
1503 if(pass.GetDimension() != total.GetDimension()) {
1504 gROOT->Error("TEfficiency::CheckConsistency","passed TEfficiency objects have different dimensions");
1505 return false;
1506 }
1507
1508 if(!CheckBinning(pass,total)) {
1509 gROOT->Error("TEfficiency::CheckConsistency","passed TEfficiency objects have different binning");
1510 return false;
1511 }
1512
1513 if(!CheckEntries(pass,total)) {
1514 gROOT->Error("TEfficiency::CheckConsistency","passed TEfficiency objects do not have consistent bin contents");
1515 return false;
1516 }
1517
1518 return true;
1519}
1520
1521////////////////////////////////////////////////////////////////////////////////
1522/// Checks whether bin contents are compatible with binomial statistics
1523///
1524/// The following inequality has to be valid for each bin i:
1525/// total.GetBinContent(i) >= pass.GetBinContent(i)
1526///
1527///
1528///
1529/// Note:
1530///
1531/// - It is assumed that both histograms have the same dimension and binning.
1532
1534{
1535
1536 //check: pass <= total
1537 Int_t nbinsx, nbinsy, nbinsz, nbins;
1538
1539 nbinsx = pass.GetNbinsX();
1540 nbinsy = pass.GetNbinsY();
1541 nbinsz = pass.GetNbinsZ();
1542
1543 switch(pass.GetDimension()) {
1544 case 1: nbins = nbinsx + 2; break;
1545 case 2: nbins = (nbinsx + 2) * (nbinsy + 2); break;
1546 case 3: nbins = (nbinsx + 2) * (nbinsy + 2) * (nbinsz + 2); break;
1547 default: nbins = 0;
1548 }
1549
1550 for(Int_t i = 0; i < nbins; ++i) {
1551 if(pass.GetBinContent(i) > total.GetBinContent(i)) {
1552 gROOT->Info("TEfficiency::CheckEntries","Histograms are not consistent: passed bin content > total bin content");
1553 return false;
1554 }
1555 }
1556
1557 return true;
1558}
1559
1560////////////////////////////////////////////////////////////////////////////////
1561/// Check if both histogram are weighted. If they are weighted a true is returned
1562///
1564{
1565 if (pass.GetSumw2N() == 0 && total.GetSumw2N() == 0) return false;
1566
1567 // check also that the total sum of weight and weight squares are consistent
1568 Double_t statpass[TH1::kNstat];
1569 Double_t stattotal[TH1::kNstat];
1570
1571 pass.GetStats(statpass);
1572 total.GetStats(stattotal);
1573
1574 double tolerance = (total.IsA() == TH1F::Class() ) ? 1.E-5 : 1.E-12;
1575
1576 //require: sum of weights == sum of weights^2
1577 if(!TMath::AreEqualRel(statpass[0],statpass[1],tolerance) ||
1578 !TMath::AreEqualRel(stattotal[0],stattotal[1],tolerance) ) {
1579 return true;
1580 }
1581
1582 // histograms are not weighted
1583 return false;
1584
1585}
1586
1587
1588////////////////////////////////////////////////////////////////////////////////
1589/// Create the graph used be painted (for dim=1 TEfficiency)
1590/// The return object is managed by the caller
1591
1593{
1594 if (GetDimension() != 1) {
1595 Error("CreatePaintingGraph","Call this function only for dimension == 1");
1596 return 0;
1597 }
1598
1599
1600 Int_t npoints = fTotalHistogram->GetNbinsX();
1601 TGraphAsymmErrors * graph = new TGraphAsymmErrors(npoints);
1602 graph->SetName("eff_graph");
1603 FillGraph(graph,opt);
1604
1605 return graph;
1606}
1607
1608
1609////////////////////////////////////////////////////////////////////////////////
1610/// Fill the graph to be painted with information from TEfficiency
1611/// Internal method called by TEfficiency::Paint or TEfficiency::CreateGraph
1612
1614{
1615 TString option = opt;
1616 option.ToLower();
1617
1618 Bool_t plot0Bins = false;
1619 if (option.Contains("e0") ) plot0Bins = true;
1620
1621 Double_t x,y,xlow,xup,ylow,yup;
1622 //point i corresponds to bin i+1 in histogram
1623 // point j is point graph index
1624 // LM: cannot use TGraph::SetPoint because it deletes the underlying
1625 // histogram each time (see TGraph::SetPoint)
1626 // so use it only when extra points are added to the graph
1627 Int_t j = 0;
1628 double * px = graph->GetX();
1629 double * py = graph->GetY();
1630 double * exl = graph->GetEXlow();
1631 double * exh = graph->GetEXhigh();
1632 double * eyl = graph->GetEYlow();
1633 double * eyh = graph->GetEYhigh();
1634 Int_t npoints = fTotalHistogram->GetNbinsX();
1635 for (Int_t i = 0; i < npoints; ++i) {
1636 if (!plot0Bins && fTotalHistogram->GetBinContent(i+1) == 0 ) continue;
1638 y = GetEfficiency(i+1);
1640 xup = fTotalHistogram->GetBinWidth(i+1) - xlow;
1641 ylow = GetEfficiencyErrorLow(i+1);
1642 yup = GetEfficiencyErrorUp(i+1);
1643 // in the case the graph already existed and extra points have been added
1644 if (j >= graph->GetN() ) {
1645 graph->SetPoint(j,x,y);
1646 graph->SetPointError(j,xlow,xup,ylow,yup);
1647 }
1648 else {
1649 px[j] = x;
1650 py[j] = y;
1651 exl[j] = xlow;
1652 exh[j] = xup;
1653 eyl[j] = ylow;
1654 eyh[j] = yup;
1655 }
1656 j++;
1657 }
1658
1659 // tell the graph the effective number of points
1660 graph->Set(j);
1661 //refresh title before painting if changed
1662 TString oldTitle = graph->GetTitle();
1663 TString newTitle = GetTitle();
1664 if (oldTitle != newTitle ) {
1665 graph->SetTitle(newTitle);
1666 }
1667
1668 // set the axis labels
1671 if (xlabel) graph->GetXaxis()->SetTitle(xlabel);
1672 if (ylabel) graph->GetYaxis()->SetTitle(ylabel);
1673
1674 //copying style information
1678
1679 // this method forces the graph to compute correctly the axis
1680 // according to the given points
1681 graph->GetHistogram();
1682
1683}
1684
1685////////////////////////////////////////////////////////////////////////////////
1686/// Create the histogram used to be painted (for dim=2 TEfficiency)
1687/// The return object is managed by the caller
1688
1690{
1691 if (GetDimension() != 2) {
1692 Error("CreatePaintingistogram","Call this function only for dimension == 2");
1693 return 0;
1694 }
1695
1696 Int_t nbinsx = fTotalHistogram->GetNbinsX();
1697 Int_t nbinsy = fTotalHistogram->GetNbinsY();
1698 TAxis * xaxis = fTotalHistogram->GetXaxis();
1699 TAxis * yaxis = fTotalHistogram->GetYaxis();
1700 TH2 * hist = 0;
1701
1702 if (xaxis->IsVariableBinSize() && yaxis->IsVariableBinSize() )
1703 hist = new TH2F("eff_histo",GetTitle(),nbinsx,xaxis->GetXbins()->GetArray(),
1704 nbinsy,yaxis->GetXbins()->GetArray());
1705 else if (xaxis->IsVariableBinSize() && ! yaxis->IsVariableBinSize() )
1706 hist = new TH2F("eff_histo",GetTitle(),nbinsx,xaxis->GetXbins()->GetArray(),
1707 nbinsy,yaxis->GetXmin(), yaxis->GetXmax());
1708 else if (!xaxis->IsVariableBinSize() && yaxis->IsVariableBinSize() )
1709 hist = new TH2F("eff_histo",GetTitle(),nbinsx,xaxis->GetXmin(), xaxis->GetXmax(),
1710 nbinsy,yaxis->GetXbins()->GetArray());
1711 else
1712 hist = new TH2F("eff_histo",GetTitle(),nbinsx,xaxis->GetXmin(), xaxis->GetXmax(),
1713 nbinsy,yaxis->GetXmin(), yaxis->GetXmax());
1714
1715
1716 hist->SetDirectory(0);
1717
1718 FillHistogram(hist);
1719
1720 return hist;
1721}
1722
1723////////////////////////////////////////////////////////////////////////////////
1724/// Fill the 2d histogram to be painted with information from TEfficiency 2D
1725/// Internal method called by TEfficiency::Paint or TEfficiency::CreatePaintingGraph
1726
1728{
1729 //refresh title before each painting
1730 hist->SetTitle(GetTitle());
1731
1732 // set the axis labels
1735 if (xlabel) hist->GetXaxis()->SetTitle(xlabel);
1736 if (ylabel) hist->GetYaxis()->SetTitle(ylabel);
1737
1738 Int_t bin;
1739 Int_t nbinsx = hist->GetNbinsX();
1740 Int_t nbinsy = hist->GetNbinsY();
1741 for(Int_t i = 0; i < nbinsx + 2; ++i) {
1742 for(Int_t j = 0; j < nbinsy + 2; ++j) {
1743 bin = GetGlobalBin(i,j);
1744 hist->SetBinContent(bin,GetEfficiency(bin));
1745 }
1746 }
1747
1748 //copying style information
1749 TAttLine::Copy(*hist);
1750 TAttFill::Copy(*hist);
1751 TAttMarker::Copy(*hist);
1752 hist->SetStats(0);
1753
1754 return;
1755
1756}
1757////////////////////////////////////////////////////////////////////////////////
1758/**
1759Calculates the boundaries for the frequentist Clopper-Pearson interval
1760
1761This interval is recommended by the PDG.
1762
1763\param[in] total number of total events
1764\param[in] passed 0 <= number of passed events <= total
1765\param[in] level confidence level
1766\param[in] bUpper true - upper boundary is returned
1767 ;false - lower boundary is returned
1768
1769Calculation:
1770
1771The lower boundary of the Clopper-Pearson interval is the "exact" inversion
1772of the test:
1773 \f{eqnarray*}{
1774 P(x \geq passed; total) &=& \frac{1 - level}{2}\\
1775 P(x \geq passed; total) &=& 1 - P(x \leq passed - 1; total)\\
1776 &=& 1 - \frac{1}{norm} * \int_{0}^{1 - \varepsilon} t^{total - passed} (1 - t)^{passed - 1} dt\\
1777 &=& 1 - \frac{1}{norm} * \int_{\varepsilon}^{1} t^{passed - 1} (1 - t)^{total - passed} dt\\
1778 &=& \frac{1}{norm} * \int_{0}^{\varepsilon} t^{passed - 1} (1 - t)^{total - passed} dt\\
1779 &=& I_{\varepsilon}(passed,total - passed + 1)
1780 \f}
1781The lower boundary is therefore given by the \f$ \frac{1 - level}{2}\f$ quantile
1782of the beta distribution.
1783
1784The upper boundary of the Clopper-Pearson interval is the "exact" inversion
1785of the test:
1786 \f{eqnarray*}{
1787 P(x \leq passed; total) &=& \frac{1 - level}{2}\\
1788 P(x \leq passed; total) &=& \frac{1}{norm} * \int_{0}^{1 - \varepsilon} t^{total - passed - 1} (1 - t)^{passed} dt\\
1789 &=& \frac{1}{norm} * \int_{\varepsilon}^{1} t^{passed} (1 - t)^{total - passed - 1} dt\\
1790 &=& 1 - \frac{1}{norm} * \int_{0}^{\varepsilon} t^{passed} (1 - t)^{total - passed - 1} dt\\
1791 \Rightarrow 1 - \frac{1 - level}{2} &=& \frac{1}{norm} * \int_{0}^{\varepsilon} t^{passed} (1 - t)^{total - passed -1} dt\\
1792 \frac{1 + level}{2} &=& I_{\varepsilon}(passed + 1,total - passed)
1793 \f}
1794The upper boundary is therefore given by the \f$\frac{1 + level}{2}\f$ quantile
1795of the beta distribution.
1796
1797Note: The connection between the binomial distribution and the regularized
1798 incomplete beta function \f$ I_{\varepsilon}(\alpha,\beta)\f$ has been used.
1799*/
1800
1802{
1803 Double_t alpha = (1.0 - level) / 2;
1804 if(bUpper)
1805 return ((passed == total) ? 1.0 : ROOT::Math::beta_quantile(1 - alpha,passed + 1,total-passed));
1806 else
1807 return ((passed == 0) ? 0.0 : ROOT::Math::beta_quantile(alpha,passed,total-passed+1.0));
1808}
1809////////////////////////////////////////////////////////////////////////////////
1810/**
1811 Calculates the combined efficiency and its uncertainties
1812
1813 This method does a bayesian combination of the given samples.
1814
1815 \param[in] up contains the upper limit of the confidence interval afterwards
1816 \param[in] low contains the lower limit of the confidence interval afterwards
1817 \param[in] n number of samples which are combined
1818 \param[in] pass array of length n containing the number of passed events
1819 \param[in] total array of length n containing the corresponding numbers of total events
1820 \param[in] alpha shape parameters for the beta distribution as prior
1821 \param[in] beta shape parameters for the beta distribution as prior
1822 \param[in] level desired confidence level
1823 \param[in] w weights for each sample; if not given, all samples get the weight 1
1824 The weights do not need to be normalized, since they are internally renormalized
1825 to the number of effective entries.
1826 \param[in] opt
1827 - mode : The mode is returned instead of the mean of the posterior as best value
1828 When using the mode the shortest interval is also computed instead of the central one
1829 - shortest: compute shortest interval (done by default if mode option is set)
1830 - central: compute central interval (done by default if mode option is NOT set)
1831
1832 Calculation:
1833
1834 The combined posterior distributions is calculated from the Bayes theorem assuming a common prior Beta distribution.
1835 It is easy to proof that the combined posterior is then:
1836 \f{eqnarray*}{
1837 P_{comb}(\epsilon |{w_{i}}; {k_{i}}; {N_{i}}) &=& B(\epsilon, \sum_{i}{ w_{i} k_{i}} + \alpha, \sum_{i}{ w_{i}(n_{i}-k_{i})}+\beta)\\
1838 w_{i} &=& weight\ for\ each\ sample\ renormalized\ to\ the\ effective\ entries\\
1839 w^{'}_{i} &=& w_{i} \frac{ \sum_{i} {w_{i} } } { \sum_{i} {w_{i}^{2} } }
1840 \f}
1841
1842 The estimated efficiency is the mode (or the mean) of the obtained posterior distribution
1843
1844 The boundaries of the confidence interval for a confidence level (1 - a)
1845 are given by the a/2 and 1-a/2 quantiles of the resulting cumulative
1846 distribution.
1847
1848 Example (uniform prior distribution):
1849
1850Begin_Macro(source)
1851{
1852 TCanvas* c1 = new TCanvas("c1","",600,800);
1853 c1->Divide(1,2);
1854 c1->SetFillStyle(1001);
1855 c1->SetFillColor(kWhite);
1856
1857 TF1* p1 = new TF1("p1","TMath::BetaDist(x,19,9)",0,1);
1858 TF1* p2 = new TF1("p2","TMath::BetaDist(x,4,8)",0,1);
1859 TF1* comb = new TF1("comb2","TMath::BetaDist(x,[0],[1])",0,1);
1860 double nrm = 1./(0.6*0.6+0.4*0.4); // weight normalization
1861 double a = 0.6*18.0 + 0.4*3.0 + 1.0; // new alpha parameter of combined beta dist.
1862 double b = 0.6*10+0.4*7+1.0; // new beta parameter of combined beta dist.
1863 comb->SetParameters(nrm*a ,nrm *b );
1864 TF1* const1 = new TF1("const1","0.05",0,1);
1865 TF1* const2 = new TF1("const2","0.95",0,1);
1866
1867 p1->SetLineColor(kRed);
1868 p1->SetTitle("combined posteriors;#epsilon;P(#epsilon|k,N)");
1869 p2->SetLineColor(kBlue);
1870 comb->SetLineColor(kGreen+2);
1871
1872 TLegend* leg1 = new TLegend(0.12,0.65,0.5,0.85);
1873 leg1->AddEntry(p1,"k1 = 18, N1 = 26","l");
1874 leg1->AddEntry(p2,"k2 = 3, N2 = 10","l");
1875 leg1->AddEntry(comb,"combined: p1 = 0.6, p2=0.4","l");
1876
1877 c1->cd(1);
1878 comb->Draw();
1879 p1->Draw("same");
1880 p2->Draw("same");
1881 leg1->Draw("same");
1882 c1->cd(2);
1883 const1->SetLineWidth(1);
1884 const2->SetLineWidth(1);
1885 TGraph* gr = (TGraph*)comb->DrawIntegral();
1886 gr->SetTitle("cumulative function of combined posterior with boundaries for cl = 95%;#epsilon;CDF");
1887 const1->Draw("same");
1888 const2->Draw("same");
1889
1890 c1->cd(0);
1891 return c1;
1892}
1893End_Macro
1894
1895**/
1896////////////////////////////////////////////////////////////////////
1898 const Int_t* pass,const Int_t* total,
1899 Double_t alpha, Double_t beta,
1900 Double_t level,const Double_t* w,Option_t* opt)
1901{
1902 TString option(opt);
1903 option.ToLower();
1904
1905 //LM: new formula for combination
1906 // works only if alpha beta are the same always
1907 // the weights are normalized to w(i) -> N_eff w(i)/ Sum w(i)
1908 // i.e. w(i) -> Sum (w(i) / Sum (w(i)^2) * w(i)
1909 // norm = Sum (w(i) / Sum (w(i)^2)
1910 double ntot = 0;
1911 double ktot = 0;
1912 double sumw = 0;
1913 double sumw2 = 0;
1914 for (int i = 0; i < n ; ++i) {
1915 if(pass[i] > total[i]) {
1916 ::Error("TEfficiency::Combine","total events = %i < passed events %i",total[i],pass[i]);
1917 ::Info("TEfficiency::Combine","stop combining");
1918 return -1;
1919 }
1920
1921 ntot += w[i] * total[i];
1922 ktot += w[i] * pass[i];
1923 sumw += w[i];
1924 sumw2 += w[i]*w[i];
1925 //mean += w[i] * (pass[i] + alpha[i])/(total[i] + alpha[i] + beta[i]);
1926 }
1927 double norm = sumw/sumw2;
1928 ntot *= norm;
1929 ktot *= norm;
1930 if(ktot > ntot) {
1931 ::Error("TEfficiency::Combine","total = %f < passed %f",ntot,ktot);
1932 ::Info("TEfficiency::Combine","stop combining");
1933 return -1;
1934 }
1935
1936 double a = ktot + alpha;
1937 double b = ntot - ktot + beta;
1938
1939 double mean = a/(a+b);
1940 double mode = BetaMode(a,b);
1941
1942
1943 Bool_t shortestInterval = option.Contains("sh") || ( option.Contains("mode") && !option.Contains("cent") );
1944
1945 if (shortestInterval)
1946 BetaShortestInterval(level, a, b, low, up);
1947 else {
1948 low = BetaCentralInterval(level, a, b, false);
1949 up = BetaCentralInterval(level, a, b, true);
1950 }
1951
1952 if (option.Contains("mode")) return mode;
1953 return mean;
1954
1955}
1956////////////////////////////////////////////////////////////////////////////////
1957/// Combines a list of 1-dimensional TEfficiency objects
1958///
1959/// A TGraphAsymmErrors object is returned which contains the estimated
1960/// efficiency and its uncertainty for each bin.
1961/// If the combination fails, a zero pointer is returned.
1962///
1963/// At the moment the combining is only implemented for bayesian statistics.
1964///
1965/// \param[in] pList list containing TEfficiency objects which should be combined
1966/// only one-dimensional efficiencies are taken into account
1967/// \param[in] option
1968/// - s : strict combining; only TEfficiency objects with the same beta
1969/// prior and the flag kIsBayesian == true are combined
1970/// If not specified the prior parameter of the first TEfficiency object is used
1971/// - v : verbose mode; print information about combining
1972/// - cl=x : set confidence level (0 < cl < 1). If not specified, the
1973/// confidence level of the first TEfficiency object is used.
1974/// - mode Use mode of combined posterior as estimated value for the efficiency
1975/// - shortest: compute shortest interval (done by default if mode option is set)
1976/// - central: compute central interval (done by default if mode option is NOT set)
1977/// \param[in] n number of weights (has to be the number of one-dimensional
1978/// TEfficiency objects in pList)
1979/// If no weights are passed, the internal weights GetWeight() of
1980/// the given TEfficiency objects are used.
1981/// \param[in] w array of length n with weights for each TEfficiency object in
1982/// pList (w[0] correspond to pList->First ... w[n-1] -> pList->Last)
1983/// The weights do not have to be normalised.
1984///
1985/// For each bin the calculation is done by the Combine(double&, double& ...) method.
1986
1988 Int_t n,const Double_t* w)
1989{
1990 TString opt = option;
1991 opt.ToLower();
1992
1993 //parameter of prior distribution, confidence level and normalisation factor
1994 Double_t alpha = -1;
1995 Double_t beta = -1;
1996 Double_t level = 0;
1997
1998 //flags for combining
1999 Bool_t bStrict = false;
2000 Bool_t bOutput = false;
2001 Bool_t bWeights = false;
2002 //list of all information needed to weight and combine efficiencies
2003 std::vector<TH1*> vTotal; vTotal.reserve(n);
2004 std::vector<TH1*> vPassed; vPassed.reserve(n);
2005 std::vector<Double_t> vWeights; vWeights.reserve(n);
2006 // std::vector<Double_t> vAlpha;
2007 // std::vector<Double_t> vBeta;
2008
2009 if(opt.Contains("s")) {
2010 opt.ReplaceAll("s","");
2011 bStrict = true;
2012 }
2013
2014 if(opt.Contains("v")) {
2015 opt.ReplaceAll("v","");
2016 bOutput = true;
2017 }
2018
2019 if(opt.Contains("cl=")) {
2020 Ssiz_t pos = opt.Index("cl=") + 3;
2021 level = atof( opt(pos,opt.Length() ).Data() );
2022 if((level <= 0) || (level >= 1))
2023 level = 0;
2024 opt.ReplaceAll("cl=","");
2025 }
2026
2027 //are weights explicitly given
2028 if(n && w) {
2029 bWeights = true;
2030 for(Int_t k = 0; k < n; ++k) {
2031 if(w[k] > 0)
2032 vWeights.push_back(w[k]);
2033 else {
2034 gROOT->Error("TEfficiency::Combine","invalid custom weight found w = %.2lf",w[k]);
2035 gROOT->Info("TEfficiency::Combine","stop combining");
2036 return 0;
2037 }
2038 }
2039 }
2040
2041 TIter next(pList);
2042 TObject* obj = 0;
2043 TEfficiency* pEff = 0;
2044 while((obj = next())) {
2045 pEff = dynamic_cast<TEfficiency*>(obj);
2046 //is object a TEfficiency object?
2047 if(pEff) {
2048 if(pEff->GetDimension() > 1)
2049 continue;
2050 if(!level) level = pEff->GetConfidenceLevel();
2051
2052 if(alpha<1) alpha = pEff->GetBetaAlpha();
2053 if(beta<1) beta = pEff->GetBetaBeta();
2054
2055 //if strict combining, check priors, confidence level and statistic
2056 if(bStrict) {
2057 if(alpha != pEff->GetBetaAlpha())
2058 continue;
2059 if(beta != pEff->GetBetaBeta())
2060 continue;
2061 if(!pEff->UsesBayesianStat())
2062 continue;
2063 }
2064
2065 vTotal.push_back(pEff->fTotalHistogram);
2066 vPassed.push_back(pEff->fPassedHistogram);
2067
2068 //no weights given -> use weights of TEfficiency objects
2069 if(!bWeights)
2070 vWeights.push_back(pEff->fWeight);
2071
2072 //strict combining -> using global prior
2073 // if(bStrict) {
2074 // vAlpha.push_back(alpha);
2075 // vBeta.push_back(beta);
2076 // }
2077 // else {
2078 // vAlpha.push_back(pEff->GetBetaAlpha());
2079 // vBeta.push_back(pEff->GetBetaBeta());
2080 // }
2081 }
2082 }
2083
2084 //no TEfficiency objects found
2085 if(vTotal.empty()) {
2086 gROOT->Error("TEfficiency::Combine","no TEfficiency objects in given list");
2087 gROOT->Info("TEfficiency::Combine","stop combining");
2088 return 0;
2089 }
2090
2091 //invalid number of custom weights
2092 if(bWeights && (n != (Int_t)vTotal.size())) {
2093 gROOT->Error("TEfficiency::Combine","number of weights n=%i differs from number of TEfficiency objects k=%i which should be combined",n,(Int_t)vTotal.size());
2094 gROOT->Info("TEfficiency::Combine","stop combining");
2095 return 0;
2096 }
2097
2098 Int_t nbins_max = vTotal.at(0)->GetNbinsX();
2099 //check binning of all histograms
2100 for(UInt_t i=0; i<vTotal.size(); ++i) {
2101 if (!TEfficiency::CheckBinning(*vTotal.at(0),*vTotal.at(i)) )
2102 gROOT->Warning("TEfficiency::Combine","histograms have not the same binning -> results may be useless");
2103 if(vTotal.at(i)->GetNbinsX() < nbins_max) nbins_max = vTotal.at(i)->GetNbinsX();
2104 }
2105
2106 //display information about combining
2107 if(bOutput) {
2108 gROOT->Info("TEfficiency::Combine","combining %i TEfficiency objects",(Int_t)vTotal.size());
2109 if(bWeights)
2110 gROOT->Info("TEfficiency::Combine","using custom weights");
2111 if(bStrict) {
2112 gROOT->Info("TEfficiency::Combine","using the following prior probability for the efficiency: P(e) ~ Beta(e,%.3lf,%.3lf)",alpha,beta);
2113 }
2114 else
2115 gROOT->Info("TEfficiency::Combine","using individual priors of each TEfficiency object");
2116 gROOT->Info("TEfficiency::Combine","confidence level = %.2lf",level);
2117 }
2118
2119 //create TGraphAsymmErrors with efficiency
2120 std::vector<Double_t> x(nbins_max);
2121 std::vector<Double_t> xlow(nbins_max);
2122 std::vector<Double_t> xhigh(nbins_max);
2123 std::vector<Double_t> eff(nbins_max);
2124 std::vector<Double_t> efflow(nbins_max);
2125 std::vector<Double_t> effhigh(nbins_max);
2126
2127 //parameters for combining:
2128 //number of objects
2129 Int_t num = vTotal.size();
2130 std::vector<Int_t> pass(num);
2131 std::vector<Int_t> total(num);
2132
2133 //loop over all bins
2134 Double_t low = 0;
2135 Double_t up = 0;
2136 for(Int_t i=1; i <= nbins_max; ++i) {
2137 //the binning of the x-axis is taken from the first total histogram
2138 x[i-1] = vTotal.at(0)->GetBinCenter(i);
2139 xlow[i-1] = x[i-1] - vTotal.at(0)->GetBinLowEdge(i);
2140 xhigh[i-1] = vTotal.at(0)->GetBinWidth(i) - xlow[i-1];
2141
2142 for(Int_t j = 0; j < num; ++j) {
2143 pass[j] = (Int_t)(vPassed.at(j)->GetBinContent(i) + 0.5);
2144 total[j] = (Int_t)(vTotal.at(j)->GetBinContent(i) + 0.5);
2145 }
2146
2147 //fill efficiency and errors
2148 eff[i-1] = Combine(up,low,num,&pass[0],&total[0],alpha,beta,level,&vWeights[0],opt.Data());
2149 //did an error occurred ?
2150 if(eff[i-1] == -1) {
2151 gROOT->Error("TEfficiency::Combine","error occurred during combining");
2152 gROOT->Info("TEfficiency::Combine","stop combining");
2153 return 0;
2154 }
2155 efflow[i-1]= eff[i-1] - low;
2156 effhigh[i-1]= up - eff[i-1];
2157 }//loop over all bins
2158
2159 TGraphAsymmErrors* gr = new TGraphAsymmErrors(nbins_max,&x[0],&eff[0],&xlow[0],&xhigh[0],&efflow[0],&effhigh[0]);
2160
2161 return gr;
2162}
2163
2164////////////////////////////////////////////////////////////////////////////////
2165/// Compute distance from point px,py to a graph.
2166///
2167/// Compute the closest distance of approach from point px,py to this line.
2168/// The distance is computed in pixels units.
2169///
2170/// Forward the call to the painted graph
2171
2173{
2174 if (fPaintGraph) return fPaintGraph->DistancetoPrimitive(px,py);
2175 if (fPaintHisto) return fPaintHisto->DistancetoPrimitive(px,py);
2176 return 0;
2177}
2178
2179
2180////////////////////////////////////////////////////////////////////////////////
2181/// Draws the current TEfficiency object
2182///
2183/// \param[in] opt
2184/// - 1-dimensional case: same options as TGraphAsymmErrors::Draw()
2185/// but as default "AP" is used
2186/// - 2-dimensional case: same options as TH2::Draw()
2187/// - 3-dimensional case: not yet supported
2188///
2189/// Specific TEfficiency drawing options:
2190/// - E0 - plot bins where the total number of passed events is zero
2191/// (the error interval will be [0,1] )
2192
2194{
2195 //check options
2196 TString option = opt;
2197 option.ToLower();
2198 // use by default "AP"
2199 if (option.IsNull() ) option = "ap";
2200
2201 if(gPad && !option.Contains("same"))
2202 gPad->Clear();
2203 else {
2204 // add always "a" if not present
2205 if (!option.Contains("a") ) option += "a";
2206 }
2207
2208 // add always p to the option
2209 if (!option.Contains("p") ) option += "p";
2210
2211
2212 AppendPad(option.Data());
2213}
2214
2215////////////////////////////////////////////////////////////////////////////////
2216/// Execute action corresponding to one event.
2217///
2218/// This member function is called when the drawn class is clicked with the locator
2219/// If Left button clicked on one of the line end points, this point
2220/// follows the cursor until button is released.
2221///
2222/// if Middle button clicked, the line is moved parallel to itself
2223/// until the button is released.
2224/// Forward the call to the underlying graph
2225
2227{
2228 if (fPaintGraph) fPaintGraph->ExecuteEvent(event,px,py);
2229 else if (fPaintHisto) fPaintHisto->ExecuteEvent(event,px,py);
2230}
2231
2232////////////////////////////////////////////////////////////////////////////////
2233/// This function is used for filling the two histograms.
2234///
2235/// \param[in] bPassed flag whether the current event passed the selection
2236/// - true: both histograms are filled
2237/// - false: only the total histogram is filled
2238/// \param[in] x x-value
2239/// \param[in] y y-value (use default=0 for 1-D efficiencies)
2240/// \param[in] z z-value (use default=0 for 2-D or 1-D efficiencies)
2241
2243{
2244 switch(GetDimension()) {
2245 case 1:
2247 if(bPassed)
2249 break;
2250 case 2:
2251 ((TH2*)(fTotalHistogram))->Fill(x,y);
2252 if(bPassed)
2253 ((TH2*)(fPassedHistogram))->Fill(x,y);
2254 break;
2255 case 3:
2256 ((TH3*)(fTotalHistogram))->Fill(x,y,z);
2257 if(bPassed)
2258 ((TH3*)(fPassedHistogram))->Fill(x,y,z);
2259 break;
2260 }
2261}
2262
2263////////////////////////////////////////////////////////////////////////////////
2264///This function is used for filling the two histograms with a weight.
2265///
2266/// \param[in] bPassed flag whether the current event passed the selection
2267/// - true: both histograms are filled
2268/// - false: only the total histogram is filled
2269/// \param[in] weight weight for the event
2270/// \param[in] x x-value
2271/// \param[in] y y-value (use default=0 for 1-D efficiencies)
2272/// \param[in] z z-value (use default=0 for 2-D or 1-D efficiencies)
2273///
2274/// Note: - this function will call SetUseWeightedEvents if it was not called by the user before
2275
2277{
2278 if(!TestBit(kUseWeights))
2279 {
2280 // Info("FillWeighted","call SetUseWeightedEvents() manually to ensure correct storage of sum of weights squared");
2282 }
2283
2284 switch(GetDimension()) {
2285 case 1:
2286 fTotalHistogram->Fill(x,weight);
2287 if(bPassed)
2288 fPassedHistogram->Fill(x,weight);
2289 break;
2290 case 2:
2291 ((TH2*)(fTotalHistogram))->Fill(x,y,weight);
2292 if(bPassed)
2293 ((TH2*)(fPassedHistogram))->Fill(x,y,weight);
2294 break;
2295 case 3:
2296 ((TH3*)(fTotalHistogram))->Fill(x,y,z,weight);
2297 if(bPassed)
2298 ((TH3*)(fPassedHistogram))->Fill(x,y,z,weight);
2299 break;
2300 }
2301}
2302
2303////////////////////////////////////////////////////////////////////////////////
2304/// Returns the global bin number containing the given values
2305///
2306/// Note:
2307///
2308/// - values which belong to dimensions higher than the current dimension
2309/// of the TEfficiency object are ignored (i.e. for 1-dimensional
2310/// efficiencies only the x-value is considered)
2311
2313{
2315 Int_t ny = 0;
2316 Int_t nz = 0;
2317
2318 switch(GetDimension()) {
2319 case 3: nz = fTotalHistogram->GetZaxis()->FindFixBin(z);
2320 case 2: ny = fTotalHistogram->GetYaxis()->FindFixBin(y);break;
2321 }
2322
2323 return GetGlobalBin(nx,ny,nz);
2324}
2325
2326////////////////////////////////////////////////////////////////////////////////
2327/// Fits the efficiency using the TBinomialEfficiencyFitter class
2328///
2329/// The resulting fit function is added to the list of associated functions.
2330///
2331/// Options:
2332/// - "+": previous fitted functions in the list are kept, by default
2333/// all functions in the list are deleted
2334/// - for more fitting options see TBinomialEfficiencyFitter::Fit
2335
2337{
2338 TString option = opt;
2339 option.ToLower();
2340
2341 //replace existing functions in list with same name
2342 Bool_t bDeleteOld = true;
2343 if(option.Contains("+")) {
2344 option.ReplaceAll("+","");
2345 bDeleteOld = false;
2346 }
2347
2349
2350 TFitResultPtr result = Fitter.Fit(f1,option.Data());
2351
2352 //create copy which is appended to the list
2353 TF1* pFunc = new TF1(*f1);
2354
2355 if(bDeleteOld) {
2356 TIter next(fFunctions);
2357 TObject* obj = 0;
2358 while((obj = next())) {
2359 if(obj->InheritsFrom(TF1::Class())) {
2360 fFunctions->Remove(obj);
2361 delete obj;
2362 }
2363 }
2364 }
2365
2366 // create list if necessary
2367 if(!fFunctions)
2368 fFunctions = new TList();
2369
2370 fFunctions->Add(pFunc);
2371
2372 return result;
2373}
2374
2375////////////////////////////////////////////////////////////////////////////////
2376/// Returns a cloned version of fPassedHistogram
2377///
2378/// Notes:
2379/// - The histogram is filled with unit weights. You might want to scale
2380/// it with the global weight GetWeight().
2381/// - The returned object is owned by the user who has to care about the
2382/// deletion of the new TH1 object.
2383/// - This histogram is by default NOT attached to the current directory
2384/// to avoid duplication of data. If you want to store it automatically
2385/// during the next TFile::Write() command, you have to attach it to
2386/// the corresponding directory.
2387///
2388/// ~~~~~~~{.cpp}
2389/// TFile* pFile = new TFile("passed.root","update");
2390/// TEfficiency* pEff = (TEfficiency*)gDirectory->Get("my_eff");
2391/// TH1* copy = pEff->GetCopyPassedHisto();
2392/// copy->SetDirectory(gDirectory);
2393/// pFile->Write();
2394/// ~~~~~~~
2395
2397{
2398 Bool_t bStatus = TH1::AddDirectoryStatus();
2400 TH1* tmp = (TH1*)(fPassedHistogram->Clone());
2401 TH1::AddDirectory(bStatus);
2402
2403 return tmp;
2404}
2405
2406////////////////////////////////////////////////////////////////////////////////
2407/// Returns a cloned version of fTotalHistogram
2408///
2409/// Notes:
2410/// - The histogram is filled with unit weights. You might want to scale
2411/// it with the global weight GetWeight().
2412/// - The returned object is owned by the user who has to care about the
2413/// deletion of the new TH1 object.
2414/// - This histogram is by default NOT attached to the current directory
2415/// to avoid duplication of data. If you want to store it automatically
2416/// during the next TFile::Write() command, you have to attach it to
2417/// the corresponding directory.
2418///
2419/// ~~~~~~~{.cpp}
2420/// TFile* pFile = new TFile("total.root","update");
2421/// TEfficiency* pEff = (TEfficiency*)gDirectory->Get("my_eff");
2422/// TH1* copy = pEff->GetCopyTotalHisto();
2423/// copy->SetDirectory(gDirectory);
2424/// pFile->Write();
2425/// ~~~~~~~
2426
2428{
2429 Bool_t bStatus = TH1::AddDirectoryStatus();
2431 TH1* tmp = (TH1*)(fTotalHistogram->Clone());
2432 TH1::AddDirectory(bStatus);
2433
2434 return tmp;
2435}
2436
2437////////////////////////////////////////////////////////////////////////////////
2438///returns the dimension of the current TEfficiency object
2439
2441{
2442 return fTotalHistogram->GetDimension();
2443}
2444
2445////////////////////////////////////////////////////////////////////////////////
2446/// Returns the efficiency in the given global bin
2447///
2448/// Note:
2449/// - The estimated efficiency depends on the chosen statistic option:
2450/// for frequentist ones:
2451/// \f$ \hat{\varepsilon} = \frac{passed}{total} \f$
2452/// for bayesian ones the expectation value of the resulting posterior
2453/// distribution is returned:
2454/// \f$ \hat{\varepsilon} = \frac{passed + \alpha}{total + \alpha + \beta} \f$
2455/// If the bit kPosteriorMode is set (or the method TEfficiency::UsePosteriorMode() has been called ) the
2456/// mode (most probable value) of the posterior is returned:
2457/// \f$ \hat{\varepsilon} = \frac{passed + \alpha -1}{total + \alpha + \beta -2} \f$
2458/// - If the denominator is equal to 0, an efficiency of 0 is returned.
2459/// - When \f$ passed + \alpha < 1 \f$ or \f$ total - passed + \beta < 1 \f$ the above
2460/// formula for the mode is not valid. In these cases values the estimated efficiency is 0 or 1.
2461
2463{
2466
2467 if(TestBit(kIsBayesian)) {
2468
2469 // parameters for the beta prior distribution
2472
2473 Double_t aa,bb;
2474 if(TestBit(kUseWeights))
2475 {
2477 Double_t tw2 = fTotalHistogram->GetSumw2()->At(bin);
2479
2480 if (tw2 <= 0 ) return pw/tw;
2481
2482 // tw/tw2 renormalize the weights
2483 double norm = tw/tw2;
2484 aa = pw * norm + alpha;
2485 bb = (tw - pw) * norm + beta;
2486 }
2487 else
2488 {
2489 aa = passed + alpha;
2490 bb = total - passed + beta;
2491 }
2492
2493 if (!TestBit(kPosteriorMode) )
2494 return BetaMean(aa,bb);
2495 else
2496 return BetaMode(aa,bb);
2497
2498 }
2499 else
2500 return (total)? ((Double_t)passed)/total : 0;
2501}
2502
2503////////////////////////////////////////////////////////////////////////////////
2504/// Returns the lower error on the efficiency in the given global bin
2505///
2506/// The result depends on the current confidence level fConfLevel and the
2507/// chosen statistic option fStatisticOption. See SetStatisticOption(Int_t) for
2508/// more details.
2509///
2510/// Note: If the histograms are filled with weights, only bayesian methods and the
2511/// normal approximation are supported.
2512
2514{
2517
2518 Double_t eff = GetEfficiency(bin);
2519
2520 // check whether weights have been used
2521 if(TestBit(kUseWeights))
2522 {
2524 Double_t tw2 = fTotalHistogram->GetSumw2()->At(bin);
2526 Double_t pw2 = fPassedHistogram->GetSumw2()->At(bin);
2527
2528 if(TestBit(kIsBayesian))
2529 {
2532
2533 if (tw2 <= 0) return 0;
2534
2535 // tw/tw2 renormalize the weights
2536 Double_t norm = tw/tw2;
2537 Double_t aa = pw * norm + alpha;
2538 Double_t bb = (tw - pw) * norm + beta;
2539 Double_t low = 0;
2540 Double_t upper = 1;
2543 }
2544 else {
2546 }
2547
2548 return eff - low;
2549 }
2550 else
2551 {
2553 {
2554 Warning("GetEfficiencyErrorLow","frequentist confidence intervals for weights are only supported by the normal approximation");
2555 Info("GetEfficiencyErrorLow","setting statistic option to kFNormal");
2556 const_cast<TEfficiency*>(this)->SetStatisticOption(kFNormal);
2557 }
2558
2559 Double_t variance = ( pw2 * (1. - 2 * eff) + tw2 * eff *eff ) / ( tw * tw) ;
2560 Double_t sigma = sqrt(variance);
2561
2562 Double_t prob = 0.5 * (1.- fConfLevel);
2564
2565 // avoid to return errors which makes eff-err < 0
2566 return (eff - delta < 0) ? eff : delta;
2567 }
2568 }
2569 else
2570 {
2571 if(TestBit(kIsBayesian))
2572 {
2573 // parameters for the beta prior distribution
2576 return (eff - Bayesian(total,passed,fConfLevel,alpha,beta,false,TestBit(kShortestInterval)));
2577 }
2578 else
2579 return (eff - fBoundary(total,passed,fConfLevel,false));
2580 }
2581}
2582
2583////////////////////////////////////////////////////////////////////////////////
2584/// Returns the upper error on the efficiency in the given global bin
2585///
2586/// The result depends on the current confidence level fConfLevel and the
2587/// chosen statistic option fStatisticOption. See SetStatisticOption(Int_t) for
2588/// more details.
2589///
2590/// Note: If the histograms are filled with weights, only bayesian methods and the
2591/// normal approximation are supported.
2592
2594{
2597
2598 Double_t eff = GetEfficiency(bin);
2599
2600 // check whether weights have been used
2601 if(TestBit(kUseWeights))
2602 {
2604 Double_t tw2 = fTotalHistogram->GetSumw2()->At(bin);
2606 Double_t pw2 = fPassedHistogram->GetSumw2()->At(bin);
2607
2608 if(TestBit(kIsBayesian))
2609 {
2612
2613 if (tw2 <= 0) return 0;
2614
2615 // tw/tw2 renormalize the weights
2616 Double_t norm = tw/tw2;
2617 Double_t aa = pw * norm + alpha;
2618 Double_t bb = (tw - pw) * norm + beta;
2619 Double_t low = 0;
2620 Double_t upper = 1;
2623 }
2624 else {
2625 upper = TEfficiency::BetaCentralInterval(fConfLevel,aa,bb,true);
2626 }
2627
2628 return upper - eff;
2629 }
2630 else
2631 {
2633 {
2634 Warning("GetEfficiencyErrorUp","frequentist confidence intervals for weights are only supported by the normal approximation");
2635 Info("GetEfficiencyErrorUp","setting statistic option to kFNormal");
2636 const_cast<TEfficiency*>(this)->SetStatisticOption(kFNormal);
2637 }
2638
2639 Double_t variance = ( pw2 * (1. - 2 * eff) + tw2 * eff *eff ) / ( tw * tw) ;
2640 Double_t sigma = sqrt(variance);
2641
2642 Double_t prob = 0.5 * (1.- fConfLevel);
2644
2645 return (eff + delta > 1) ? 1.-eff : delta;
2646 }
2647 }
2648 else
2649 {
2650 if(TestBit(kIsBayesian))
2651 {
2652 // parameters for the beta prior distribution
2655 return (Bayesian(total,passed,fConfLevel,alpha,beta,true,TestBit(kShortestInterval)) - eff);
2656 }
2657 else
2658 return fBoundary(total,passed,fConfLevel,true) - eff;
2659 }
2660}
2661
2662////////////////////////////////////////////////////////////////////////////////
2663/// Returns the global bin number which can be used as argument for the
2664/// following functions:
2665///
2666/// - GetEfficiency(bin), GetEfficiencyErrorLow(bin), GetEfficiencyErrorUp(bin)
2667/// - SetPassedEvents(bin), SetTotalEvents(bin)
2668///
2669/// see TH1::GetBin() for conventions on numbering bins
2670
2672{
2673 return fTotalHistogram->GetBin(binx,biny,binz);
2674}
2675
2676////////////////////////////////////////////////////////////////////////////////
2677
2679{
2680 return (fFunctions) ? fFunctions : fFunctions = new TList();
2681}
2682
2683////////////////////////////////////////////////////////////////////////////////
2684/// Merges the TEfficiency objects in the given list to the given
2685/// TEfficiency object using the operator+=(TEfficiency&)
2686///
2687/// The merged result is stored in the current object. The statistic options and
2688/// the confidence level are taken from the current object.
2689///
2690/// This function should be used when all TEfficiency objects correspond to
2691/// the same process.
2692///
2693/// The new weight is set according to:
2694/// \f$ \frac{1}{w_{new}} = \sum_{i} \frac{1}{w_{i}} \f$
2695
2697{
2698 if(!pList->IsEmpty()) {
2699 TIter next(pList);
2700 TObject* obj = 0;
2701 TEfficiency* pEff = 0;
2702 while((obj = next())) {
2703 pEff = dynamic_cast<TEfficiency*>(obj);
2704 if(pEff) {
2705 *this += *pEff;
2706 }
2707 }
2708 }
2710}
2711
2712////////////////////////////////////////////////////////////////////////////////
2713/**
2714Returns the confidence limits for the efficiency supposing that the
2715efficiency follows a normal distribution with the rms below
2716
2717\param[in] total number of total events
2718\param[in] passed 0 <= number of passed events <= total
2719\param[in] level confidence level
2720\param[in] bUpper
2721 - true - upper boundary is returned
2722 - false - lower boundary is returned
2723
2724Calculation:
2725
2726\f{eqnarray*}{
2727 \hat{\varepsilon} &=& \frac{passed}{total}\\
2728 \sigma_{\varepsilon} &=& \sqrt{\frac{\hat{\varepsilon} (1 - \hat{\varepsilon})}{total}}\\
2729 \varepsilon_{low} &=& \hat{\varepsilon} \pm \Phi^{-1}(\frac{level}{2},\sigma_{\varepsilon})
2730\f}
2731*/
2732
2734{
2735 Double_t alpha = (1.0 - level)/2;
2736 if (total == 0) return (bUpper) ? 1 : 0;
2737 Double_t average = passed / total;
2738 Double_t sigma = std::sqrt(average * (1 - average) / total);
2739 Double_t delta = ROOT::Math::normal_quantile(1 - alpha,sigma);
2740
2741 if(bUpper)
2742 return ((average + delta) > 1) ? 1.0 : (average + delta);
2743 else
2744 return ((average - delta) < 0) ? 0.0 : (average - delta);
2745}
2746
2747////////////////////////////////////////////////////////////////////////////////
2748/// Adds the histograms of another TEfficiency object to current histograms
2749///
2750/// The statistic options and the confidence level remain unchanged.
2751///
2752/// fTotalHistogram += rhs.fTotalHistogram;
2753/// fPassedHistogram += rhs.fPassedHistogram;
2754///
2755/// calculates a new weight:
2756/// current weight of this TEfficiency object = \f$ w_{1} \f$
2757/// weight of rhs = \f$ w_{2} \f$
2758/// \f$ w_{new} = \frac{w_{1} \times w_{2}}{w_{1} + w_{2}} \f$
2759
2761{
2762
2763 if (fTotalHistogram == 0 && fPassedHistogram == 0) {
2764 // efficiency is empty just copy it over
2765 *this = rhs;
2766 return *this;
2767 }
2768 else if (fTotalHistogram == 0 || fPassedHistogram == 0) {
2769 Fatal("operator+=","Adding to a non consistent TEfficiency object which has not a total or a passed histogram ");
2770 return *this;
2771 }
2772
2773 if (rhs.fTotalHistogram == 0 && rhs.fPassedHistogram == 0 ) {
2774 Warning("operator+=","no operation: adding an empty object");
2775 return *this;
2776 }
2777 else if (rhs.fTotalHistogram == 0 || rhs.fPassedHistogram == 0 ) {
2778 Fatal("operator+=","Adding a non consistent TEfficiency object which has not a total or a passed histogram ");
2779 return *this;
2780 }
2781
2784
2787
2788 SetWeight((fWeight * rhs.GetWeight())/(fWeight + rhs.GetWeight()));
2789
2790 return *this;
2791}
2792
2793////////////////////////////////////////////////////////////////////////////////
2794/// Assignment operator
2795///
2796/// The histograms, statistic option, confidence level, weight and paint styles
2797/// of rhs are copied to the this TEfficiency object.
2798///
2799/// Note: - The list of associated functions is not copied. After this
2800/// operation the list of associated functions is empty.
2801
2803{
2804 if(this != &rhs)
2805 {
2806 //statistic options
2810 SetBetaBeta(rhs.GetBetaBeta());
2811 SetWeight(rhs.GetWeight());
2812
2813 //associated list of functions
2814 if(fFunctions)
2815 fFunctions->Delete();
2816
2817 //copy histograms
2818 delete fTotalHistogram;
2819 delete fPassedHistogram;
2820
2821 Bool_t bStatus = TH1::AddDirectoryStatus();
2825 TH1::AddDirectory(bStatus);
2826
2827 //delete temporary paint objects
2828 delete fPaintHisto;
2829 delete fPaintGraph;
2830 fPaintHisto = 0;
2831 fPaintGraph = 0;
2832
2833 //copy style
2834 rhs.TAttLine::Copy(*this);
2835 rhs.TAttFill::Copy(*this);
2836 rhs.TAttMarker::Copy(*this);
2837 }
2838
2839 return *this;
2840}
2841
2842////////////////////////////////////////////////////////////////////////////////
2843/// Paints this TEfficiency object
2844///
2845/// For details on the possible option see Draw(Option_t*)
2846///
2847/// Note for 1D classes
2848/// In 1D the TEfficiency uses a TGraphAsymmErrors for drawing
2849/// The TGraph is created only the first time Paint is used. The user can manipulate the
2850/// TGraph via the method TEfficiency::GetPaintedGraph()
2851/// The TGraph creates behing an histogram for the axis. The histogram is created also only the first time.
2852/// If the axis needs to be updated because in the meantime the class changed use this trick
2853/// which will trigger a re-calculation of the axis of the graph
2854/// TEfficiency::GetPaintedGraph()->Set(0)
2855///
2856/// Note that in order to access the painted graph via GetPaintedGraph() you need either to call Paint or better
2857/// gPad->Update();
2858///
2859
2861{
2862
2863
2864 if(!gPad)
2865 return;
2866
2867
2868 //use TGraphAsymmErrors for painting
2869 if(GetDimension() == 1) {
2870 if(!fPaintGraph) {
2871 fPaintGraph = CreateGraph(opt);
2872 }
2873 else
2874 // update existing graph already created
2875 FillGraph(fPaintGraph, opt);
2876
2877 //paint graph
2878
2879 fPaintGraph->Paint(opt);
2880
2881 //paint all associated functions
2882 if(fFunctions) {
2883 //paint box with fit parameters
2884 //the fit statistics will be painted if gStyle->SetOptFit(1) has been
2885 // called by the user
2886 TIter next(fFunctions);
2887 TObject* obj = 0;
2888 while((obj = next())) {
2889 if(obj->InheritsFrom(TF1::Class())) {
2890 fPaintGraph->PaintStats((TF1*)obj);
2891 ((TF1*)obj)->Paint("sameC");
2892 }
2893 }
2894 }
2895
2896 return;
2897 }
2898
2899 //use TH2 for painting
2900 if(GetDimension() == 2) {
2901 if(!fPaintHisto) {
2903 }
2904 else
2906
2907 //paint histogram
2908 fPaintHisto->Paint(opt);
2909 return;
2910 }
2911 Warning("Paint","Painting 3D efficiency is not implemented");
2912}
2913
2914////////////////////////////////////////////////////////////////////////////////
2915/// Have histograms fixed bins along each axis?
2916
2917void TEfficiency::SavePrimitive(std::ostream& out,Option_t* opt)
2918{
2919 Bool_t equi_bins = true;
2920
2921 //indentation
2922 TString indent = " ";
2923 //names for arrays containing the bin edges
2924 //static counter needed if more objects are saved
2925 static Int_t naxis = 0;
2926 TString sxaxis="xAxis",syaxis="yAxis",szaxis="zAxis";
2927
2928 //note the missing break statements!
2929 switch(GetDimension()) {
2930 case 3:
2931 equi_bins = equi_bins && !fTotalHistogram->GetZaxis()->GetXbins()->fArray
2933 case 2:
2934 equi_bins = equi_bins && !fTotalHistogram->GetYaxis()->GetXbins()->fArray
2936 case 1:
2937 equi_bins = equi_bins && !fTotalHistogram->GetXaxis()->GetXbins()->fArray
2939 }
2940
2941 //create arrays containing the variable binning
2942 if(!equi_bins) {
2943 Int_t i;
2944 ++naxis;
2945 sxaxis += naxis;
2946 syaxis += naxis;
2947 szaxis += naxis;
2948 //x axis
2949 out << indent << "Double_t " << sxaxis << "["
2950 << fTotalHistogram->GetXaxis()->GetXbins()->fN << "] = {";
2951 for (i = 0; i < fTotalHistogram->GetXaxis()->GetXbins()->fN; ++i) {
2952 if (i != 0) out << ", ";
2953 out << fTotalHistogram->GetXaxis()->GetXbins()->fArray[i];
2954 }
2955 out << "}; " << std::endl;
2956 //y axis
2957 if(GetDimension() > 1) {
2958 out << indent << "Double_t " << syaxis << "["
2959 << fTotalHistogram->GetYaxis()->GetXbins()->fN << "] = {";
2960 for (i = 0; i < fTotalHistogram->GetYaxis()->GetXbins()->fN; ++i) {
2961 if (i != 0) out << ", ";
2962 out << fTotalHistogram->GetYaxis()->GetXbins()->fArray[i];
2963 }
2964 out << "}; " << std::endl;
2965 }
2966 //z axis
2967 if(GetDimension() > 2) {
2968 out << indent << "Double_t " << szaxis << "["
2969 << fTotalHistogram->GetZaxis()->GetXbins()->fN << "] = {";
2970 for (i = 0; i < fTotalHistogram->GetZaxis()->GetXbins()->fN; ++i) {
2971 if (i != 0) out << ", ";
2972 out << fTotalHistogram->GetZaxis()->GetXbins()->fArray[i];
2973 }
2974 out << "}; " << std::endl;
2975 }
2976 }//creating variable binning
2977
2978 //TEfficiency pointer has efficiency name + counter
2979 static Int_t eff_count = 0;
2980 ++eff_count;
2981 TString eff_name = GetName();
2982 eff_name += eff_count;
2983
2984 const char* name = eff_name.Data();
2985
2986 //construct TEfficiency object
2987 const char quote = '"';
2988 out << indent << std::endl;
2989 out << indent << ClassName() << " * " << name << " = new " << ClassName()
2990 << "(" << quote << GetName() << quote << "," << quote
2991 << GetTitle() << quote <<",";
2992 //fixed bin size -> use n,min,max constructor
2993 if(equi_bins) {
2994 out << fTotalHistogram->GetXaxis()->GetNbins() << ","
2995 << fTotalHistogram->GetXaxis()->GetXmin() << ","
2997 if(GetDimension() > 1) {
2998 out << "," << fTotalHistogram->GetYaxis()->GetNbins() << ","
2999 << fTotalHistogram->GetYaxis()->GetXmin() << ","
3001 }
3002 if(GetDimension() > 2) {
3003 out << "," << fTotalHistogram->GetZaxis()->GetNbins() << ","
3004 << fTotalHistogram->GetZaxis()->GetXmin() << ","
3006 }
3007 }
3008 //variable bin size -> use n,*bins constructor
3009 else {
3010 out << fTotalHistogram->GetXaxis()->GetNbins() << "," << sxaxis;
3011 if(GetDimension() > 1)
3012 out << "," << fTotalHistogram->GetYaxis()->GetNbins() << ","
3013 << syaxis;
3014 if(GetDimension() > 2)
3015 out << "," << fTotalHistogram->GetZaxis()->GetNbins() << ","
3016 << szaxis;
3017 }
3018 out << ");" << std::endl;
3019 out << indent << std::endl;
3020
3021 //set statistic options
3022 out << indent << name << "->SetConfidenceLevel(" << fConfLevel << ");"
3023 << std::endl;
3024 out << indent << name << "->SetBetaAlpha(" << fBeta_alpha << ");"
3025 << std::endl;
3026 out << indent << name << "->SetBetaBeta(" << fBeta_beta << ");" << std::endl;
3027 out << indent << name << "->SetWeight(" << fWeight << ");" << std::endl;
3028 out << indent << name << "->SetStatisticOption(" << fStatisticOption << ");"
3029 << std::endl;
3030 out << indent << name << "->SetPosteriorMode(" << TestBit(kPosteriorMode) << ");" << std::endl;
3031 out << indent << name << "->SetShortestInterval(" << TestBit(kShortestInterval) << ");" << std::endl;
3032 if(TestBit(kUseWeights))
3033 out << indent << name << "->SetUseWeightedEvents();" << std::endl;
3034
3035 // save bin-by-bin prior parameters
3036 for(unsigned int i = 0; i < fBeta_bin_params.size(); ++i)
3037 {
3038 out << indent << name << "->SetBetaBinParameters(" << i << "," << fBeta_bin_params.at(i).first
3039 << "," << fBeta_bin_params.at(i).second << ");" << std::endl;
3040 }
3041
3042 //set bin contents
3043 Int_t nbins = fTotalHistogram->GetNbinsX() + 2;
3044 if(GetDimension() > 1)
3045 nbins *= fTotalHistogram->GetNbinsY() + 2;
3046 if(GetDimension() > 2)
3047 nbins *= fTotalHistogram->GetNbinsZ() + 2;
3048
3049 //important: set first total number than passed number
3050 for(Int_t i = 0; i < nbins; ++i) {
3051 out << indent << name <<"->SetTotalEvents(" << i << "," <<
3052 fTotalHistogram->GetBinContent(i) << ");" << std::endl;
3053 out << indent << name <<"->SetPassedEvents(" << i << "," <<
3054 fPassedHistogram->GetBinContent(i) << ");" << std::endl;
3055 }
3056
3057 //save list of functions
3058 TIter next(fFunctions);
3059 TObject* obj = 0;
3060 while((obj = next())) {
3061 obj->SavePrimitive(out,"nodraw");
3062 if(obj->InheritsFrom(TF1::Class())) {
3063 out << indent << name << "->GetListOfFunctions()->Add("
3064 << obj->GetName() << ");" << std::endl;
3065 }
3066 }
3067
3068 //set style
3072
3073 //draw TEfficiency object
3074 TString option = opt;
3075 option.ToLower();
3076 if (!option.Contains("nodraw"))
3077 out<< indent << name<< "->Draw(" << quote << opt << quote << ");"
3078 << std::endl;
3079}
3080
3081////////////////////////////////////////////////////////////////////////////////
3082/// Sets the shape parameter &alpha;
3083///
3084/// The prior probability of the efficiency is given by the beta distribution:
3085/// \f[
3086/// f(\varepsilon;\alpha;\beta) = \frac{1}{B(\alpha,\beta)} \varepsilon^{\alpha-1} (1 - \varepsilon)^{\beta-1}
3087/// \f]
3088///
3089/// Note: - both shape parameters have to be positive (i.e. > 0)
3090
3092{
3093 if(alpha > 0)
3094 fBeta_alpha = alpha;
3095 else
3096 Warning("SetBetaAlpha(Double_t)","invalid shape parameter %.2lf",alpha);
3097}
3098
3099////////////////////////////////////////////////////////////////////////////////
3100/// Sets the shape parameter &beta;
3101///
3102/// The prior probability of the efficiency is given by the beta distribution:
3103/// \f[
3104/// f(\varepsilon;\alpha,\beta) = \frac{1}{B(\alpha,\beta)} \varepsilon^{\alpha-1} (1 - \varepsilon)^{\beta-1}
3105/// \f]
3106///
3107/// Note: - both shape parameters have to be positive (i.e. > 0)
3108
3110{
3111 if(beta > 0)
3112 fBeta_beta = beta;
3113 else
3114 Warning("SetBetaBeta(Double_t)","invalid shape parameter %.2lf",beta);
3115}
3116
3117////////////////////////////////////////////////////////////////////////////////
3118/// Sets different shape parameter &alpha; and &beta;
3119/// for the prior distribution for each bin. By default the global parameter are used if they are not set
3120/// for the specific bin
3121/// The prior probability of the efficiency is given by the beta distribution:
3122/// \f[
3123/// f(\varepsilon;\alpha;\beta) = \frac{1}{B(\alpha,\beta)} \varepsilon^{\alpha-1} (1 - \varepsilon)^{\beta-1}
3124/// \f]
3125///
3126/// Note:
3127/// - both shape parameters have to be positive (i.e. > 0)
3128/// - bin gives the global bin number (cf. GetGlobalBin)
3129
3131{
3132 if (!fPassedHistogram || !fTotalHistogram) return;
3134 // doing this I get h1->fN which is available only for a TH1D
3135 UInt_t n = h1->GetBin(h1->GetNbinsX()+1, h1->GetNbinsY()+1, h1->GetNbinsZ()+1 ) + 1;
3136
3137 // in case vector is not created do with default alpha, beta params
3138 if (fBeta_bin_params.size() != n )
3139 fBeta_bin_params = std::vector<std::pair<Double_t, Double_t> >(n, std::make_pair(fBeta_alpha, fBeta_beta) );
3140
3141 // vector contains also values for under/overflows
3142 fBeta_bin_params[bin] = std::make_pair(alpha,beta);
3143 SetBit(kUseBinPrior,true);
3144
3145}
3146
3147////////////////////////////////////////////////////////////////////////////////
3148/// Set the bins for the underlined passed and total histograms
3149/// If the class have been already filled the previous contents will be lost
3150
3152{
3153 if (GetDimension() != 1) {
3154 Error("SetBins","Using wrong SetBins function for a %d-d histogram",GetDimension());
3155 return kFALSE;
3156 }
3157 if (fTotalHistogram->GetEntries() != 0 ) {
3158 Warning("SetBins","Histogram entries will be lost after SetBins");
3161 }
3164 return kTRUE;
3165}
3166
3167////////////////////////////////////////////////////////////////////////////////
3168/// Set the bins for the underlined passed and total histograms
3169/// If the class have been already filled the previous contents will be lost
3170
3172{
3173 if (GetDimension() != 1) {
3174 Error("SetBins","Using wrong SetBins function for a %d-d histogram",GetDimension());
3175 return kFALSE;
3176 }
3177 if (fTotalHistogram->GetEntries() != 0 ) {
3178 Warning("SetBins","Histogram entries will be lost after SetBins");
3181 }
3182 fPassedHistogram->SetBins(nx,xBins);
3183 fTotalHistogram->SetBins(nx,xBins);
3184 return kTRUE;
3185}
3186
3187////////////////////////////////////////////////////////////////////////////////
3188/// Set the bins for the underlined passed and total histograms
3189/// If the class have been already filled the previous contents will be lost
3190
3192{
3193 if (GetDimension() != 2) {
3194 Error("SetBins","Using wrong SetBins function for a %d-d histogram",GetDimension());
3195 return kFALSE;
3196 }
3197 if (fTotalHistogram->GetEntries() != 0 ) {
3198 Warning("SetBins","Histogram entries will be lost after SetBins");
3201 }
3204 return kTRUE;
3205}
3206
3207////////////////////////////////////////////////////////////////////////////////
3208/// Set the bins for the underlined passed and total histograms
3209/// If the class have been already filled the previous contents will be lost
3210
3211Bool_t TEfficiency::SetBins(Int_t nx, const Double_t *xBins, Int_t ny, const Double_t *yBins)
3212{
3213 if (GetDimension() != 2) {
3214 Error("SetBins","Using wrong SetBins function for a %d-d histogram",GetDimension());
3215 return kFALSE;
3216 }
3217 if (fTotalHistogram->GetEntries() != 0 ) {
3218 Warning("SetBins","Histogram entries will be lost after SetBins");
3221 }
3222 fPassedHistogram->SetBins(nx,xBins,ny,yBins);
3223 fTotalHistogram->SetBins(nx,xBins,ny,yBins);
3224 return kTRUE;
3225}
3226
3227////////////////////////////////////////////////////////////////////////////////
3228/// Set the bins for the underlined passed and total histograms
3229/// If the class have been already filled the previous contents will be lost
3230
3232 Int_t nz, Double_t zmin, Double_t zmax)
3233{
3234 if (GetDimension() != 3) {
3235 Error("SetBins","Using wrong SetBins function for a %d-d histogram",GetDimension());
3236 return kFALSE;
3237 }
3238 if (fTotalHistogram->GetEntries() != 0 ) {
3239 Warning("SetBins","Histogram entries will be lost after SetBins");
3242 }
3243 fPassedHistogram->SetBins(nx,xmin,xmax,ny,ymin,ymax,nz,zmin,zmax);
3244 fTotalHistogram->SetBins (nx,xmin,xmax,ny,ymin,ymax,nz,zmin,zmax);
3245 return kTRUE;
3246}
3247
3248////////////////////////////////////////////////////////////////////////////////
3249/// Set the bins for the underlined passed and total histograms
3250/// If the class have been already filled the previous contents will be lost
3251
3252Bool_t TEfficiency::SetBins(Int_t nx, const Double_t *xBins, Int_t ny, const Double_t *yBins, Int_t nz,
3253 const Double_t *zBins )
3254{
3255 if (GetDimension() != 3) {
3256 Error("SetBins","Using wrong SetBins function for a %d-d histogram",GetDimension());
3257 return kFALSE;
3258 }
3259 if (fTotalHistogram->GetEntries() != 0 ) {
3260 Warning("SetBins","Histogram entries will be lost after SetBins");
3263 }
3264 fPassedHistogram->SetBins(nx,xBins,ny,yBins,nz,zBins);
3265 fTotalHistogram->SetBins(nx,xBins,ny,yBins,nz,zBins);
3266 return kTRUE;
3267}
3268
3269////////////////////////////////////////////////////////////////////////////////
3270/// Sets the confidence level (0 < level < 1)
3271/// The default value is 1-sigma :~ 0.683
3272
3274{
3275 if((level > 0) && (level < 1))
3276 fConfLevel = level;
3277 else
3278 Warning("SetConfidenceLevel(Double_t)","invalid confidence level %.2lf",level);
3279}
3280
3281////////////////////////////////////////////////////////////////////////////////
3282/// Sets the directory holding this TEfficiency object
3283///
3284/// A reference to this TEfficiency object is removed from the current
3285/// directory (if it exists) and a new reference to this TEfficiency object is
3286/// added to the given directory.
3287///
3288/// Notes: - If the given directory is 0, the TEfficiency object does not
3289/// belong to any directory and will not be written to file during the
3290/// next TFile::Write() command.
3291
3293{
3294 if(fDirectory == dir)
3295 return;
3296 if(fDirectory)
3297 fDirectory->Remove(this);
3298 fDirectory = dir;
3299 if(fDirectory)
3300 fDirectory->Append(this);
3301}
3302
3303////////////////////////////////////////////////////////////////////////////////
3304/// Sets the name
3305///
3306/// Note: The names of the internal histograms are set to "name + _total" and
3307/// "name + _passed" respectively.
3308
3310{
3312
3313 //setting the names (appending the correct ending)
3314 TString name_total = name + TString("_total");
3315 TString name_passed = name + TString("_passed");
3316 fTotalHistogram->SetName(name_total);
3317 fPassedHistogram->SetName(name_passed);
3318}
3319
3320////////////////////////////////////////////////////////////////////////////////
3321/// Sets the number of passed events in the given global bin
3322///
3323/// returns "true" if the number of passed events has been updated
3324/// otherwise "false" ist returned
3325///
3326/// Note: - requires: 0 <= events <= fTotalHistogram->GetBinContent(bin)
3327
3329{
3330 if(events <= fTotalHistogram->GetBinContent(bin)) {
3331 fPassedHistogram->SetBinContent(bin,events);
3332 return true;
3333 }
3334 else {
3335 Error("SetPassedEvents(Int_t,Int_t)","total number of events (%.1lf) in bin %i is less than given number of passed events %i",fTotalHistogram->GetBinContent(bin),bin,events);
3336 return false;
3337 }
3338}
3339
3340////////////////////////////////////////////////////////////////////////////////
3341/// Sets the histogram containing the passed events
3342///
3343/// The given histogram is cloned and stored internally as histogram containing
3344/// the passed events. The given histogram has to be consistent with the current
3345/// fTotalHistogram (see CheckConsistency(const TH1&,const TH1&)).
3346/// The method returns whether the fPassedHistogram has been replaced (true) or
3347/// not (false).
3348///
3349/// Note: The list of associated functions fFunctions is cleared.
3350///
3351/// Option:
3352/// - "f": force the replacement without checking the consistency
3353/// This can lead to inconsistent histograms and useless results
3354/// or unexpected behaviour. But sometimes it might be the only
3355/// way to change the histograms. If you use this option, you
3356/// should ensure that the fTotalHistogram is replaced by a
3357/// consistent one (with respect to rPassed) as well.
3358
3360{
3361 TString option = opt;
3362 option.ToLower();
3363
3364 Bool_t bReplace = option.Contains("f");
3365
3366 if(!bReplace)
3367 bReplace = CheckConsistency(rPassed,*fTotalHistogram);
3368
3369 if(bReplace) {
3370 delete fPassedHistogram;
3371 Bool_t bStatus = TH1::AddDirectoryStatus();
3373 fPassedHistogram = (TH1*)(rPassed.Clone());
3375 TH1::AddDirectory(bStatus);
3376
3377 if(fFunctions)
3378 fFunctions->Delete();
3379
3380 //check whether both histograms are filled with weights
3381 bool useWeights = CheckWeights(rPassed,*fTotalHistogram);
3382
3383 SetUseWeightedEvents(useWeights);
3384
3385 return true;
3386 }
3387 else
3388 return false;
3389}
3390
3391////////////////////////////////////////////////////////////////////////////////
3392/// Sets the statistic option which affects the calculation of the confidence interval
3393///
3394/// Options:
3395/// - kFCP (=0)(default): using the Clopper-Pearson interval (recommended by PDG)
3396/// sets kIsBayesian = false
3397/// see also ClopperPearson
3398/// - kFNormal (=1) : using the normal approximation
3399/// sets kIsBayesian = false
3400/// see also Normal
3401/// - kFWilson (=2) : using the Wilson interval
3402/// sets kIsBayesian = false
3403/// see also Wilson
3404/// - kFAC (=3) : using the Agresti-Coull interval
3405/// sets kIsBayesian = false
3406/// see also AgrestiCoull
3407/// - kFFC (=4) : using the Feldman-Cousins frequentist method
3408/// sets kIsBayesian = false
3409/// see also FeldmanCousins
3410/// - kBJeffrey (=5) : using the Jeffrey interval
3411/// sets kIsBayesian = true, fBeta_alpha = 0.5 and fBeta_beta = 0.5
3412/// see also Bayesian
3413/// - kBUniform (=6) : using a uniform prior
3414/// sets kIsBayesian = true, fBeta_alpha = 1 and fBeta_beta = 1
3415/// see also Bayesian
3416/// - kBBayesian (=7) : using a custom prior defined by fBeta_alpha and fBeta_beta
3417/// sets kIsBayesian = true
3418/// see also Bayesian
3419/// - kMidP (=8) : using the Lancaster Mid-P method
3420/// sets kIsBayesian = false
3421
3422
3424{
3425 fStatisticOption = option;
3426
3427 switch(option)
3428 {
3429 case kFCP:
3431 SetBit(kIsBayesian,false);
3432 break;
3433 case kFNormal:
3434 fBoundary = &Normal;
3435 SetBit(kIsBayesian,false);
3436 break;
3437 case kFWilson:
3438 fBoundary = &Wilson;
3439 SetBit(kIsBayesian,false);
3440 break;
3441 case kFAC:
3443 SetBit(kIsBayesian,false);
3444 break;
3445 case kFFC:
3447 SetBit(kIsBayesian,false);
3448 break;
3449 case kMidP:
3451 SetBit(kIsBayesian,false);
3452 break;
3453 case kBJeffrey:
3454 fBeta_alpha = 0.5;
3455 fBeta_beta = 0.5;
3456 SetBit(kIsBayesian,true);
3457 SetBit(kUseBinPrior,false);
3458 break;
3459 case kBUniform:
3460 fBeta_alpha = 1;
3461 fBeta_beta = 1;
3462 SetBit(kIsBayesian,true);
3463 SetBit(kUseBinPrior,false);
3464 break;
3465 case kBBayesian:
3466 SetBit(kIsBayesian,true);
3467 break;
3468 default:
3471 SetBit(kIsBayesian,false);
3472 }
3473}
3474
3475////////////////////////////////////////////////////////////////////////////////
3476/// Sets the title
3477///
3478/// Notes:
3479/// - The titles of the internal histograms are set to "title + (total)"
3480/// or "title + (passed)" respectively.
3481/// - It is possible to label the axis of the histograms as usual (see
3482/// TH1::SetTitle).
3483///
3484/// Example: Setting the title to "My Efficiency" and label the axis
3485/// pEff->SetTitle("My Efficiency;x label;eff");
3486
3487void TEfficiency::SetTitle(const char* title)
3488{
3489
3490 //setting the titles (looking for the first semicolon and insert the tokens there)
3491 TString title_passed = title;
3492 TString title_total = title;
3493 Ssiz_t pos = title_passed.First(";");
3494 if (pos != kNPOS) {
3495 title_passed.Insert(pos," (passed)");
3496 title_total.Insert(pos," (total)");
3497 }
3498 else {
3499 title_passed.Append(" (passed)");
3500 title_total.Append(" (total)");
3501 }
3502 fPassedHistogram->SetTitle(title_passed);
3503 fTotalHistogram->SetTitle(title_total);
3504
3505 // strip (total) for the TEfficiency title
3506 // HIstogram SetTitle has already stripped the axis
3507 TString teffTitle = fTotalHistogram->GetTitle();
3508 teffTitle.ReplaceAll(" (total)","");
3509 TNamed::SetTitle(teffTitle);
3510
3511}
3512
3513////////////////////////////////////////////////////////////////////////////////
3514/// Sets the number of total events in the given global bin
3515///
3516/// returns "true" if the number of total events has been updated
3517/// otherwise "false" ist returned
3518///
3519/// Note: - requires: fPassedHistogram->GetBinContent(bin) <= events
3520
3522{
3523 if(events >= fPassedHistogram->GetBinContent(bin)) {
3524 fTotalHistogram->SetBinContent(bin,events);
3525 return true;
3526 }
3527 else {
3528 Error("SetTotalEvents(Int_t,Int_t)","passed number of events (%.1lf) in bin %i is bigger than given number of total events %i",fPassedHistogram->GetBinContent(bin),bin,events);
3529 return false;
3530 }
3531}
3532
3533////////////////////////////////////////////////////////////////////////////////
3534/// Sets the histogram containing all events
3535///
3536/// The given histogram is cloned and stored internally as histogram containing
3537/// all events. The given histogram has to be consistent with the current
3538/// fPassedHistogram (see CheckConsistency(const TH1&,const TH1&)).
3539/// The method returns whether the fTotalHistogram has been replaced (true) or
3540/// not (false).
3541///
3542/// Note: The list of associated functions fFunctions is cleared.
3543///
3544/// Option:
3545/// - "f": force the replacement without checking the consistency
3546/// This can lead to inconsistent histograms and useless results
3547/// or unexpected behaviour. But sometimes it might be the only
3548/// way to change the histograms. If you use this option, you
3549/// should ensure that the fPassedHistogram is replaced by a
3550/// consistent one (with respect to rTotal) as well.
3551
3553{
3554 TString option = opt;
3555 option.ToLower();
3556
3557 Bool_t bReplace = option.Contains("f");
3558
3559 if(!bReplace)
3560 bReplace = CheckConsistency(*fPassedHistogram,rTotal);
3561
3562 if(bReplace) {
3563 delete fTotalHistogram;
3564 Bool_t bStatus = TH1::AddDirectoryStatus();
3566 fTotalHistogram = (TH1*)(rTotal.Clone());
3568 TH1::AddDirectory(bStatus);
3569
3570 if(fFunctions)
3571 fFunctions->Delete();
3572
3573 //check whether both histograms are filled with weights
3574 bool useWeights = CheckWeights(*fPassedHistogram,rTotal);
3575 SetUseWeightedEvents(useWeights);
3576
3577 return true;
3578 }
3579 else
3580 return false;
3581}
3582
3583////////////////////////////////////////////////////////////////////////////////
3584
3586{
3587 if (on && !TestBit(kUseWeights) )
3588 gROOT->Info("TEfficiency::SetUseWeightedEvents","Handle weighted events for computing efficiency");
3589
3590 SetBit(kUseWeights,on);
3591
3596}
3597
3598////////////////////////////////////////////////////////////////////////////////
3599/// Sets the global weight for this TEfficiency object
3600///
3601/// Note: - weight has to be positive ( > 0)
3602
3604{
3605 if(weight > 0)
3606 fWeight = weight;
3607 else
3608 Warning("SetWeight","invalid weight %.2lf",weight);
3609}
3610
3611////////////////////////////////////////////////////////////////////////////////
3612/**
3613Calculates the boundaries for the frequentist Wilson interval
3614
3615\param[in] total number of total events
3616\param[in] passed 0 <= number of passed events <= total
3617\param[in] level confidence level
3618\param[in] bUpper
3619 - true - upper boundary is returned
3620 - false - lower boundary is returned
3621
3622Calculation:
3623\f{eqnarray*}{
3624 \alpha &=& 1 - \frac{level}{2}\\
3625 \kappa &=& \Phi^{-1}(1 - \alpha,1) ...\ normal\ quantile\ function\\
3626 mode &=& \frac{passed + \frac{\kappa^{2}}{2}}{total + \kappa^{2}}\\
3627 \Delta &=& \frac{\kappa}{total + \kappa^{2}} * \sqrt{passed (1 - \frac{passed}{total}) + \frac{\kappa^{2}}{4}}\\
3628 return &=& max(0,mode - \Delta)\ or\ min(1,mode + \Delta)
3629\f}
3630
3631*/
3632
3634{
3635 Double_t alpha = (1.0 - level)/2;
3636 if (total == 0) return (bUpper) ? 1 : 0;
3637 Double_t average = ((Double_t)passed) / total;
3638 Double_t kappa = ROOT::Math::normal_quantile(1 - alpha,1);
3639
3640 Double_t mode = (passed + 0.5 * kappa * kappa) / (total + kappa * kappa);
3641 Double_t delta = kappa / (total + kappa*kappa) * std::sqrt(total * average
3642 * (1 - average) + kappa * kappa / 4);
3643 if(bUpper)
3644 return ((mode + delta) > 1) ? 1.0 : (mode + delta);
3645 else
3646 return ((mode - delta) < 0) ? 0.0 : (mode - delta);
3647}
3648
3649////////////////////////////////////////////////////////////////////////////////
3650/// Addition operator
3651///
3652/// adds the corresponding histograms:
3653/// ~~~ {.cpp}
3654/// lhs.GetTotalHistogram() + rhs.GetTotalHistogram()
3655/// lhs.GetPassedHistogram() + rhs.GetPassedHistogram()
3656/// ~~~
3657/// the statistic option and the confidence level are taken from lhs
3658
3659const TEfficiency operator+(const TEfficiency& lhs,const TEfficiency& rhs)
3660{
3661 TEfficiency tmp(lhs);
3662 tmp += rhs;
3663 return tmp;
3664}
3665
3666#endif
void Class()
Definition: Class.C:29
SVector< double, 2 > v
Definition: Dict.h:5
#define b(i)
Definition: RSha256.hxx:100
#define e(i)
Definition: RSha256.hxx:103
static double p1(double t, double a, double b)
const Ssiz_t kNPOS
Definition: RtypesCore.h:111
int Int_t
Definition: RtypesCore.h:41
int Ssiz_t
Definition: RtypesCore.h:63
unsigned int UInt_t
Definition: RtypesCore.h:42
const Bool_t kFALSE
Definition: RtypesCore.h:88
bool Bool_t
Definition: RtypesCore.h:59
double Double_t
Definition: RtypesCore.h:55
long long Long64_t
Definition: RtypesCore.h:69
const Bool_t kTRUE
Definition: RtypesCore.h:87
const char Option_t
Definition: RtypesCore.h:62
#define ClassImp(name)
Definition: Rtypes.h:363
#define gDirectory
Definition: TDirectory.h:213
const TEfficiency operator+(const TEfficiency &lhs, const TEfficiency &rhs)
Addition operator.
const Double_t kDefBetaAlpha
Definition: TEfficiency.cxx:36
const Double_t kDefWeight
Definition: TEfficiency.cxx:40
const Double_t kDefBetaBeta
Definition: TEfficiency.cxx:37
const TEfficiency::EStatOption kDefStatOpt
Definition: TEfficiency.cxx:39
const Double_t kDefConfLevel
Definition: TEfficiency.cxx:38
static unsigned int total
float xmin
Definition: THbookFile.cxx:93
float ymin
Definition: THbookFile.cxx:93
float xmax
Definition: THbookFile.cxx:93
float ymax
Definition: THbookFile.cxx:93
double sqrt(double)
TRObject operator()(const T1 &t1) const
#define gROOT
Definition: TROOT.h:410
#define gPad
Definition: TVirtualPad.h:286
static struct mg_connection * fc(struct mg_context *ctx)
Definition: civetweb.c:3728
User class for performing function minimization.
virtual bool Minimize(int maxIter, double absTol=1.E-8, double relTol=1.E-10)
Find minimum position iterating until convergence specified by the absolute and relative tolerance or...
virtual double XMinimum() const
Return current estimate of the position of the minimum.
void SetFunction(const ROOT::Math::IGenFunction &f, double xlow, double xup)
Sets function to be minimized.
void SetNpx(int npx)
Set the number of point used to bracket root using a grid.
virtual double FValMinimum() const
Return function value at current estimate of the minimum.
Template class to wrap any C++ callable object which takes one argument i.e.
Double_t At(Int_t i) const
Definition: TArrayD.h:79
Double_t * fArray
Definition: TArrayD.h:30
const Double_t * GetArray() const
Definition: TArrayD.h:43
Int_t fN
Definition: TArray.h:38
Fill Area Attributes class.
Definition: TAttFill.h:19
void Copy(TAttFill &attfill) const
Copy this fill attributes to a new TAttFill.
Definition: TAttFill.cxx:201
virtual void SaveFillAttributes(std::ostream &out, const char *name, Int_t coldef=1, Int_t stydef=1001)
Save fill attributes as C++ statement(s) on output stream out.
Definition: TAttFill.cxx:233
Line Attributes class.
Definition: TAttLine.h:18
void Copy(TAttLine &attline) const
Copy this line attributes to a new TAttLine.
Definition: TAttLine.cxx:164
virtual void SaveLineAttributes(std::ostream &out, const char *name, Int_t coldef=1, Int_t stydef=1, Int_t widdef=1)
Save line attributes as C++ statement(s) on output stream out.
Definition: TAttLine.cxx:262
Marker Attributes class.
Definition: TAttMarker.h:19
virtual void SaveMarkerAttributes(std::ostream &out, const char *name, Int_t coldef=1, Int_t stydef=1, Int_t sizdef=1)
Save line attributes as C++ statement(s) on output stream out.
Definition: TAttMarker.cxx:245
void Copy(TAttMarker &attmarker) const
Copy this marker attributes to a new TAttMarker.
Definition: TAttMarker.cxx:210
Class to manage histogram axis.
Definition: TAxis.h:30
Bool_t IsVariableBinSize() const
Definition: TAxis.h:136
const TArrayD * GetXbins() const
Definition: TAxis.h:130
Double_t GetXmax() const
Definition: TAxis.h:134
virtual Double_t GetBinLowEdge(Int_t bin) const
Return low edge of bin.
Definition: TAxis.cxx:504
virtual Int_t FindFixBin(Double_t x) const
Find bin number corresponding to abscissa x.
Definition: TAxis.cxx:405
Double_t GetXmin() const
Definition: TAxis.h:133
Int_t GetNbins() const
Definition: TAxis.h:121
const char * GetTitle() const
Returns title of object.
Definition: TAxis.h:129
Binomial fitter for the division of two histograms.
TFitResultPtr Fit(TF1 *f1, Option_t *option="")
Carry out the fit of the given function to the given histograms.
Collection abstract base class.
Definition: TCollection.h:63
virtual Bool_t IsEmpty() const
Definition: TCollection.h:186
Describe directory structure in memory.
Definition: TDirectory.h:34
virtual void Append(TObject *obj, Bool_t replace=kFALSE)
Append object to this directory.
Definition: TDirectory.cxx:190
virtual TObject * Remove(TObject *)
Remove an object from the in-memory list.
Class to handle efficiency histograms.
Definition: TEfficiency.h:28
static Bool_t FeldmanCousinsInterval(Double_t total, Double_t passed, Double_t level, Double_t &lower, Double_t &upper)
Calculates the interval boundaries using the frequentist methods of Feldman-Cousins.
static Double_t BetaMode(Double_t alpha, Double_t beta)
Compute the mode of the beta distribution.
Bool_t SetPassedEvents(Int_t bin, Int_t events)
Sets the number of passed events in the given global bin.
TH2 * CreateHistogram(Option_t *opt="") const
Create the histogram used to be painted (for dim=2 TEfficiency) The return object is managed by the c...
static Bool_t BetaShortestInterval(Double_t level, Double_t alpha, Double_t beta, Double_t &lower, Double_t &upper)
Calculates the boundaries for a shortest confidence interval for a Beta distribution.
static Bool_t CheckWeights(const TH1 &pass, const TH1 &total)
Check if both histogram are weighted.
static Double_t BetaMean(Double_t alpha, Double_t beta)
Compute the mean (average) of the beta distribution.
TEfficiency()
default constructor
Double_t GetBetaAlpha(Int_t bin=-1) const
Definition: TEfficiency.h:106
void FillWeighted(Bool_t bPassed, Double_t weight, Double_t x, Double_t y=0, Double_t z=0)
This function is used for filling the two histograms with a weight.
~TEfficiency()
default destructor
TList * GetListOfFunctions()
static Double_t Bayesian(Double_t total, Double_t passed, Double_t level, Double_t alpha, Double_t beta, Bool_t bUpper, Bool_t bShortest=false)
Calculates the boundaries for a Bayesian confidence interval (shortest or central interval depending ...
static Double_t AgrestiCoull(Double_t total, Double_t passed, Double_t level, Bool_t bUpper)
Calculates the boundaries for the frequentist Agresti-Coull interval.
Long64_t Merge(TCollection *list)
Merges the TEfficiency objects in the given list to the given TEfficiency object using the operator+=...
std::vector< std::pair< Double_t, Double_t > > fBeta_bin_params
Definition: TEfficiency.h:48
static Double_t FeldmanCousins(Double_t total, Double_t passed, Double_t level, Bool_t bUpper)
Calculates the boundaries for the frequentist Feldman-Cousins interval.
EStatOption fStatisticOption
Definition: TEfficiency.h:57
void SetStatisticOption(EStatOption option)
Sets the statistic option which affects the calculation of the confidence interval.
void SetWeight(Double_t weight)
Sets the global weight for this TEfficiency object.
TH1 * fTotalHistogram
Definition: TEfficiency.h:58
Int_t GetDimension() const
returns the dimension of the current TEfficiency object
TEfficiency & operator+=(const TEfficiency &rhs)
Adds the histograms of another TEfficiency object to current histograms.
Bool_t SetBins(Int_t nx, Double_t xmin, Double_t xmax)
Set the bins for the underlined passed and total histograms If the class have been already filled the...
void Build(const char *name, const char *title)
Building standard data structure of a TEfficiency object.
TH1 * GetCopyPassedHisto() const
Returns a cloned version of fPassedHistogram.
Double_t GetEfficiencyErrorUp(Int_t bin) const
Returns the upper error on the efficiency in the given global bin.
void Draw(Option_t *opt="")
Draws the current TEfficiency object.
virtual Int_t DistancetoPrimitive(Int_t px, Int_t py)
Compute distance from point px,py to a graph.
Double_t fBeta_alpha
Definition: TEfficiency.h:46
Bool_t UsesBayesianStat() const
Definition: TEfficiency.h:156
void SetBetaBeta(Double_t beta)
Sets the shape parameter β.
Double_t GetConfidenceLevel() const
Definition: TEfficiency.h:108
static Bool_t CheckBinning(const TH1 &pass, const TH1 &total)
Checks binning for each axis.
static Double_t BetaCentralInterval(Double_t level, Double_t alpha, Double_t beta, Bool_t bUpper)
Calculates the boundaries for a central confidence interval for a Beta distribution.
Int_t GetGlobalBin(Int_t binx, Int_t biny=0, Int_t binz=0) const
Returns the global bin number which can be used as argument for the following functions:
TH1 * fPassedHistogram
temporary histogram for painting
Definition: TEfficiency.h:56
static Double_t MidPInterval(Double_t total, Double_t passed, Double_t level, Bool_t bUpper)
Calculates the boundaries using the mid-P binomial interval (Lancaster method) from B.
void SetBetaAlpha(Double_t alpha)
Sets the shape parameter α.
@ kShortestInterval
Definition: TEfficiency.h:64
static Bool_t CheckEntries(const TH1 &pass, const TH1 &total, Option_t *opt="")
Checks whether bin contents are compatible with binomial statistics.
static Double_t Normal(Double_t total, Double_t passed, Double_t level, Bool_t bUpper)
Returns the confidence limits for the efficiency supposing that the efficiency follows a normal distr...
Double_t fWeight
Definition: TEfficiency.h:59
Bool_t SetPassedHistogram(const TH1 &rPassed, Option_t *opt)
Sets the histogram containing the passed events.
Bool_t SetTotalEvents(Int_t bin, Int_t events)
Sets the number of total events in the given global bin.
Double_t GetBetaBeta(Int_t bin=-1) const
Definition: TEfficiency.h:107
Double_t(* fBoundary)(Double_t, Double_t, Double_t, Bool_t)
Definition: TEfficiency.h:50
void FillGraph(TGraphAsymmErrors *graph, Option_t *opt) const
Fill the graph to be painted with information from TEfficiency Internal method called by TEfficiency:...
void SetName(const char *name)
Sets the name.
void FillHistogram(TH2 *h2) const
Fill the 2d histogram to be painted with information from TEfficiency 2D Internal method called by TE...
Int_t FindFixBin(Double_t x, Double_t y=0, Double_t z=0) const
Returns the global bin number containing the given values.
TDirectory * fDirectory
Definition: TEfficiency.h:52
static Double_t Combine(Double_t &up, Double_t &low, Int_t n, const Int_t *pass, const Int_t *total, Double_t alpha, Double_t beta, Double_t level=0.683, const Double_t *w=0, Option_t *opt="")
void SetUseWeightedEvents(Bool_t on=kTRUE)
static Double_t Wilson(Double_t total, Double_t passed, Double_t level, Bool_t bUpper)
Calculates the boundaries for the frequentist Wilson interval.
TEfficiency & operator=(const TEfficiency &rhs)
Assignment operator.
Double_t fConfLevel
pointer to a method calculating the boundaries of confidence intervals
Definition: TEfficiency.h:51
Double_t fBeta_beta
Definition: TEfficiency.h:47
void SavePrimitive(std::ostream &out, Option_t *opt="")
Have histograms fixed bins along each axis?
Double_t GetEfficiency(Int_t bin) const
Returns the efficiency in the given global bin.
Bool_t SetTotalHistogram(const TH1 &rTotal, Option_t *opt)
Sets the histogram containing all events.
void Fill(Bool_t bPassed, Double_t x, Double_t y=0, Double_t z=0)
This function is used for filling the two histograms.
void SetDirectory(TDirectory *dir)
Sets the directory holding this TEfficiency object.
TGraphAsymmErrors * fPaintGraph
Definition: TEfficiency.h:54
TGraphAsymmErrors * CreateGraph(Option_t *opt="") const
Create the graph used be painted (for dim=1 TEfficiency) The return object is managed by the caller.
EStatOption GetStatisticOption() const
Definition: TEfficiency.h:121
TList * fFunctions
pointer to directory holding this TEfficiency object
Definition: TEfficiency.h:53
void Paint(Option_t *opt)
Paints this TEfficiency object.
void SetBetaBinParameters(Int_t bin, Double_t alpha, Double_t beta)
Sets different shape parameter α and β for the prior distribution for each bin.
static Bool_t CheckConsistency(const TH1 &pass, const TH1 &total, Option_t *opt="")
Checks the consistence of the given histograms.
Double_t GetWeight() const
Definition: TEfficiency.h:123
TH1 * GetCopyTotalHisto() const
Returns a cloned version of fTotalHistogram.
virtual void ExecuteEvent(Int_t event, Int_t px, Int_t py)
Execute action corresponding to one event.
static Double_t ClopperPearson(Double_t total, Double_t passed, Double_t level, Bool_t bUpper)
Calculates the boundaries for the frequentist Clopper-Pearson interval.
void SetConfidenceLevel(Double_t level)
Sets the confidence level (0 < level < 1) The default value is 1-sigma :~ 0.683.
Double_t GetEfficiencyErrorLow(Int_t bin) const
Returns the lower error on the efficiency in the given global bin.
void SetTitle(const char *title)
Sets the title.
TFitResultPtr Fit(TF1 *f1, Option_t *opt="")
Fits the efficiency using the TBinomialEfficiencyFitter class.
TH2 * fPaintHisto
temporary graph for painting
Definition: TEfficiency.h:55
1-Dim function class
Definition: TF1.h:211
Provides an indirection to the TFitResult class and with a semantics identical to a TFitResult pointe...
Definition: TFitResultPtr.h:31
TGraph with asymmetric error bars.
virtual void Paint(Option_t *chopt="")
Draw this graph with its current attributes.
Definition: TGraph.cxx:1961
virtual void PaintStats(TF1 *fit)
Draw the stats.
Definition: TGraph.cxx:1988
virtual Int_t DistancetoPrimitive(Int_t px, Int_t py)
Compute distance from point px,py to a graph.
Definition: TGraph.cxx:791
virtual void ExecuteEvent(Int_t event, Int_t px, Int_t py)
Execute action corresponding to one event.
Definition: TGraph.cxx:968
1-D histogram with a double per channel (see TH1 documentation)}
Definition: TH1.h:614
1-D histogram with a float per channel (see TH1 documentation)}
Definition: TH1.h:571
The TH1 histogram class.
Definition: TH1.h:56
virtual void SetDirectory(TDirectory *dir)
By default when an histogram is created, it is added to the list of histogram objects in the current ...
Definition: TH1.cxx:8259
virtual void SetTitle(const char *title)
See GetStatOverflows for more information.
Definition: TH1.cxx:6217
virtual void SetNormFactor(Double_t factor=1)
Definition: TH1.h:400
virtual Double_t GetBinCenter(Int_t bin) const
Return bin center for 1D histogram.
Definition: TH1.cxx:8462
TAxis * GetZaxis()
Definition: TH1.h:318
virtual void GetStats(Double_t *stats) const
fill the array stats from the contents of this histogram The array stats must be correctly dimensione...
Definition: TH1.cxx:7216
virtual Int_t GetNbinsY() const
Definition: TH1.h:293
virtual Int_t GetNbinsZ() const
Definition: TH1.h:294
virtual Int_t GetDimension() const
Definition: TH1.h:278
static void AddDirectory(Bool_t add=kTRUE)
Sets the flag controlling the automatic add of histograms in memory.
Definition: TH1.cxx:1225
@ kIsAverage
Bin contents are average (used by Add)
Definition: TH1.h:166
virtual void Reset(Option_t *option="")
Reset this histogram: contents, errors, etc.
Definition: TH1.cxx:6608
TAxis * GetXaxis()
Get the behaviour adopted by the object about the statoverflows. See EStatOverflows for more informat...
Definition: TH1.h:316
virtual Int_t GetNcells() const
Definition: TH1.h:295
TObject * Clone(const char *newname=0) const
Make a complete copy of the underlying object.
Definition: TH1.cxx:2657
virtual Int_t GetBin(Int_t binx, Int_t biny=0, Int_t binz=0) const
Return Global bin number corresponding to binx,y,z.
Definition: TH1.cxx:4692
virtual Int_t GetNbinsX() const
Definition: TH1.h:292
virtual Bool_t Add(TF1 *h1, Double_t c1=1, Option_t *option="")
Performs the operation: this = this + c1*f1 if errors are defined (see TH1::Sumw2),...
Definition: TH1.cxx:777
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
Definition: TH1.cxx:3251
TAxis * GetYaxis()
Definition: TH1.h:317
virtual void SetBinContent(Int_t bin, Double_t content)
Set bin content see convention for numbering bins in TH1::GetBin In case the bin number is greater th...
Definition: TH1.cxx:8542
virtual Double_t GetBinLowEdge(Int_t bin) const
Return bin lower edge for 1D histogram.
Definition: TH1.cxx:8473
virtual Double_t GetEntries() const
Return the current number of entries.
Definition: TH1.cxx:4185
virtual void SetName(const char *name)
Change the name of this histogram.
Definition: TH1.cxx:8282
virtual Double_t GetBinContent(Int_t bin) const
Return content of bin number bin.
Definition: TH1.cxx:4790
virtual TArrayD * GetSumw2()
Definition: TH1.h:308
virtual void ExecuteEvent(Int_t event, Int_t px, Int_t py)
Execute action corresponding to one event.
Definition: TH1.cxx:3147
virtual Double_t GetBinWidth(Int_t bin) const
Return bin width for 1D histogram.
Definition: TH1.cxx:8484
virtual void Paint(Option_t *option="")
Control routine to paint any kind of histograms.
Definition: TH1.cxx:5717
virtual Int_t GetSumw2N() const
Definition: TH1.h:310
virtual void SetBins(Int_t nx, Double_t xmin, Double_t xmax)
Redefine x axis parameters.
Definition: TH1.cxx:8089
virtual void Sumw2(Bool_t flag=kTRUE)
Create structure to store sum of squares of weights.
Definition: TH1.cxx:8341
static Bool_t AddDirectoryStatus()
Static function: cannot be inlined on Windows/NT.
Definition: TH1.cxx:705
virtual Int_t DistancetoPrimitive(Int_t px, Int_t py)
Compute distance from point px,py to a line.
Definition: TH1.cxx:2712
@ kNstat
Definition: TH1.h:179
virtual void SetStats(Bool_t stats=kTRUE)
Set statistics option on/off.
Definition: TH1.cxx:8312
2-D histogram with a double per channel (see TH1 documentation)}
Definition: TH2.h:291
2-D histogram with a float per channel (see TH1 documentation)}
Definition: TH2.h:250
Service class for 2-Dim histogram classes.
Definition: TH2.h:30
virtual void SetBinContent(Int_t bin, Double_t content)
Set bin content.
Definition: TH2.cxx:2500
3-D histogram with a double per channel (see TH1 documentation)}
Definition: TH3.h:304
The 3-D histogram classes derived from the 1-D histogram classes.
Definition: TH3.h:31
A doubly linked list.
Definition: TList.h:44
virtual void Add(TObject *obj)
Definition: TList.h:87
virtual TObject * Remove(TObject *obj)
Remove object from the list.
Definition: TList.cxx:818
virtual void Delete(Option_t *option="")
Remove all objects from the list AND delete all heap based objects.
Definition: TList.cxx:467
virtual TObject * First() const
Return the first object in the list. Returns 0 when list is empty.
Definition: TList.cxx:655
The TNamed class is the base class for all named ROOT classes.
Definition: TNamed.h:29
virtual void SetTitle(const char *title="")
Set the title of the TNamed.
Definition: TNamed.cxx:164
virtual void SetName(const char *name)
Set the name of the TNamed.
Definition: TNamed.cxx:140
virtual const char * GetTitle() const
Returns title of object.
Definition: TNamed.h:48
virtual const char * GetName() const
Returns name of object.
Definition: TNamed.h:47
Mother of all ROOT objects.
Definition: TObject.h:37
@ kNotDeleted
object has not been deleted
Definition: TObject.h:78
virtual const char * GetName() const
Returns name of object.
Definition: TObject.cxx:357
R__ALWAYS_INLINE Bool_t TestBit(UInt_t f) const
Definition: TObject.h:172
virtual const char * ClassName() const
Returns name of class to which the object belongs.
Definition: TObject.cxx:128
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.
Definition: TObject.cxx:866
virtual void AppendPad(Option_t *option="")
Append graphics object to current pad.
Definition: TObject.cxx:105
virtual void SavePrimitive(std::ostream &out, Option_t *option="")
Save a primitive as a C++ statement(s) on output stream "out".
Definition: TObject.cxx:664
void SetBit(UInt_t f, Bool_t set)
Set or unset the user status bits as specified in f.
Definition: TObject.cxx:694
virtual Bool_t InheritsFrom(const char *classname) const
Returns kTRUE if object inherits from class "classname".
Definition: TObject.cxx:443
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
Definition: TObject.cxx:880
virtual void Fatal(const char *method, const char *msgfmt,...) const
Issue fatal error message.
Definition: TObject.cxx:908
void ResetBit(UInt_t f)
Definition: TObject.h:171
@ kInvalidObject
if object ctor succeeded but object should not be used
Definition: TObject.h:68
virtual void Info(const char *method, const char *msgfmt,...) const
Issue info message.
Definition: TObject.cxx:854
Basic string class.
Definition: TString.h:131
Ssiz_t Length() const
Definition: TString.h:405
void ToLower()
Change string to lower-case.
Definition: TString.cxx:1100
TString & Insert(Ssiz_t pos, const char *s)
Definition: TString.h:644
Ssiz_t First(char c) const
Find first occurrence of a character c.
Definition: TString.cxx:487
const char * Data() const
Definition: TString.h:364
TString & ReplaceAll(const TString &s1, const TString &s2)
Definition: TString.h:687
Bool_t IsNull() const
Definition: TString.h:402
TString & Append(const char *cs)
Definition: TString.h:559
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
Definition: TString.h:619
Ssiz_t Index(const char *pat, Ssiz_t i=0, ECaseCompare cmp=kExact) const
Definition: TString.h:634
double beta_pdf(double x, double a, double b)
Probability density function of the beta distribution.
double beta_cdf(double x, double a, double b)
Cumulative distribution function of the beta distribution Upper tail of the integral of the beta_pdf.
double beta_cdf_c(double x, double a, double b)
Complement of the cumulative distribution function of the beta distribution.
double normal_quantile(double z, double sigma)
Inverse ( ) of the cumulative distribution function of the lower tail of the normal (Gaussian) distri...
double normal_quantile_c(double z, double sigma)
Inverse ( ) of the cumulative distribution function of the upper tail of the normal (Gaussian) distri...
double beta_quantile_c(double x, double a, double b)
Inverse ( ) of the cumulative distribution function of the lower tail of the beta distribution (beta_...
double beta_quantile(double x, double a, double b)
Inverse ( ) of the cumulative distribution function of the upper tail of the beta distribution (beta_...
double beta(double x, double y)
Calculates the beta function.
const Double_t sigma
Double_t y[n]
Definition: legend1.C:17
Double_t x[n]
Definition: legend1.C:17
const Int_t n
Definition: legend1.C:16
TGraphErrors * gr
Definition: legend1.C:25
TH1F * h1
Definition: legend1.C:5
TF1 * f1
Definition: legend1.C:11
Bool_t AreEqualRel(Double_t af, Double_t bf, Double_t relPrec)
Definition: TMath.h:416
Definition: graph.py:1
auto * a
Definition: textangle.C:12