7#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
8#include <numpy/arrayobject.h>
88 DeclareOptionRef(
fTriesEarlyStopping,
"TriesEarlyStopping",
"Number of epochs with no improvement in validation loss after which training will be stopped. The default or a negative number deactivates this option.");
91 "Write a log during training to visualize and monitor the training performance with TensorBoard");
94 "Specify as 0.2 or 20% to use a fifth of the data set as validation set. "
95 "Specify as 100 to use exactly 100 events. (Default: 20%)");
97 "Optional python code provided by the user to be executed before loading the Keras model");
110 Int_t nValidationSamples = 0;
115 if (fNumValidationString.EndsWith(
"%")) {
120 Double_t valSizeAsDouble = fNumValidationString.Atof() / 100.0;
121 nValidationSamples = GetEventCollection(
Types::kTraining).size() * valSizeAsDouble;
123 Log() << kFATAL <<
"Cannot parse number \"" << fNumValidationString
124 <<
"\". Expected string like \"20%\" or \"20.0%\"." <<
Endl;
126 }
else if (fNumValidationString.IsFloat()) {
127 Double_t valSizeAsDouble = fNumValidationString.Atof();
129 if (valSizeAsDouble < 1.0) {
131 nValidationSamples = GetEventCollection(
Types::kTraining).size() * valSizeAsDouble;
134 nValidationSamples = valSizeAsDouble;
137 Log() << kFATAL <<
"Cannot parse number \"" << fNumValidationString <<
"\". Expected string like \"0.2\" or \"100\"."
143 if (nValidationSamples < 0) {
144 Log() << kFATAL <<
"Validation size \"" << fNumValidationString <<
"\" is negative." <<
Endl;
147 if (nValidationSamples == 0) {
148 Log() << kFATAL <<
"Validation size \"" << fNumValidationString <<
"\" is zero." <<
Endl;
151 if (nValidationSamples >= (
Int_t)trainingSetSize) {
152 Log() << kFATAL <<
"Validation size \"" << fNumValidationString
153 <<
"\" is larger than or equal in size to training set (size=\"" << trainingSetSize <<
"\")." <<
Endl;
156 return nValidationSamples;
183 Log() << kINFO <<
"Setting up tf.keras" <<
Endl;
185 Log() << kINFO <<
"Setting up keras with " <<
gSystem->
Getenv(
"KERAS_BACKEND") <<
" backend" <<
Endl;
187 bool useTFBackend =
kFALSE;
188 bool kerasIsCompatible =
kTRUE;
189 bool kerasIsPresent =
kFALSE;
196 kerasIsPresent =
kTRUE;
197 if (kerasIsPresent) {
200 useTFBackend =
kTRUE;
202 PyRunString(
"keras_major_version = int(keras.__version__.split('.')[0])");
203 PyRunString(
"keras_minor_version = int(keras.__version__.split('.')[1])");
204 PyObject *pyKerasMajorVersion = PyDict_GetItemString(
fLocalNS,
"keras_major_version");
205 PyObject *pyKerasMinorVersion = PyDict_GetItemString(
fLocalNS,
"keras_minor_version");
206 int kerasMajorVersion = PyLong_AsLong(pyKerasMajorVersion);
207 int kerasMinorVersion = PyLong_AsLong(pyKerasMinorVersion);
208 Log() << kINFO <<
"Using Keras version " << kerasMajorVersion <<
"." << kerasMinorVersion <<
Endl;
213 kerasIsCompatible = (kerasMajorVersion >= 2 && kerasMinorVersion == 3);
218 Log() << kINFO <<
"Keras is not found. Trying using tf.keras" <<
Endl;
227 if (ret ==
nullptr) {
228 Log() << kFATAL <<
"Importing TensorFlow failed" <<
Endl;
231 PyRunString(
"tf_major_version = int(tf.__version__.split('.')[0])");
233 int tfVersion = PyLong_AsLong(pyTfVersion);
234 Log() << kINFO <<
"Using TensorFlow version " << tfVersion <<
Endl;
238 Log() << kWARNING <<
"Using TensorFlow version 1.x which does not contain tf.keras - use then TensorFlow as Keras backend" <<
Endl;
241 if (!kerasIsPresent) {
242 Log() << kFATAL <<
"Keras is not present and not a suitable TensorFlow version is found " <<
Endl;
249 if (!kerasIsCompatible) {
250 Log() << kWARNING <<
"The Keras version is not compatible with TensorFlow 2. Use instead tf.keras" <<
Endl;
259 Log() << kINFO <<
"Use Keras version from TensorFlow : tf.keras" <<
Endl;
265 Log() << kINFO <<
"Use TensorFlow as Keras backend" <<
Endl;
267 PyRunString(
"from keras.backend import tensorflow_backend as K");
273 TString configProto = (tfVersion >= 2) ?
"tf.compat.v1.ConfigProto" :
"tf.ConfigProto";
274 TString session = (tfVersion >= 2) ?
"tf.compat.v1.Session" :
"tf.Session";
278 if (num_threads > 0) {
279 Log() << kINFO <<
"Setting the CPU number of threads = " << num_threads <<
Endl;
282 TString::Format(
"session_conf = %s(intra_op_parallelism_threads=%d,inter_op_parallelism_threads=%d)",
283 configProto.
Data(), num_threads, num_threads));
292 for (
int item = 0; item < optlist->
GetEntries(); ++item) {
293 Log() << kINFO <<
"Applying GPU option: gpu_options." << optlist->
At(item)->
GetName() <<
Endl;
302 PyRunString(
"tf.compat.v1.keras.backend.set_session(sess)");
309 Log() << kWARNING <<
"Cannot set the given " <<
fNumThreads <<
" threads when not using tensorflow as backend"
312 Log() << kWARNING <<
"Cannot set the given GPU option " <<
fGpuOptions
313 <<
" when not using tensorflow as backend" <<
Endl;
321 Log() << kINFO <<
" Loading Keras Model " <<
Endl;
333 TString errmsg =
"Error executing the provided user code";
336 PyRunString(
"print('custom objects for loading model : ',load_model_custom_objects)");
341 if (loadTrainedModel) {
349 "', custom_objects=load_model_custom_objects)",
"Failed to load Keras model from file: " + filenameLoadModel);
351 Log() << kINFO <<
"Loaded model from file: " << filenameLoadModel <<
Endl;
362 else Log() << kFATAL <<
"Selected analysis type is not implemented" <<
Endl;
366 npy_intp dimsVals[2] = {(npy_intp)1, (npy_intp)
fNVars};
367 PyArrayObject* pVals = (PyArrayObject*)PyArray_SimpleNewFromData(2, dimsVals, NPY_FLOAT, (
void*)
fVals);
371 npy_intp dimsOutput[2] = {(npy_intp)1, (npy_intp)
fNOutputs};
372 PyArrayObject* pOutput = (PyArrayObject*)PyArray_SimpleNewFromData(2, dimsOutput, NPY_FLOAT, (
void*)&
fOutput[0]);
387 Log() << kFATAL <<
"Python is not initialized" <<
Endl;
392 PyRunString(
"import sys; sys.argv = ['']",
"Set sys.argv failed");
408 UInt_t nTrainingEvents = nAllEvents - nValEvents;
410 Log() << kINFO <<
"Split TMVA training data in " << nTrainingEvents <<
" training events and "
411 << nValEvents <<
" validation events" <<
Endl;
413 float* trainDataX =
new float[nTrainingEvents*
fNVars];
414 float* trainDataY =
new float[nTrainingEvents*
fNOutputs];
415 float* trainDataWeights =
new float[nTrainingEvents];
416 for (
UInt_t i=0; i<nTrainingEvents; i++) {
420 trainDataX[j + i*
fNVars] =
e->GetValue(j);
433 trainDataY[j + i*
fNOutputs] =
e->GetTarget(j);
436 else Log() << kFATAL <<
"Can not fill target vector because analysis type is not known" <<
Endl;
439 trainDataWeights[i] =
e->GetWeight();
442 npy_intp dimsTrainX[2] = {(npy_intp)nTrainingEvents, (npy_intp)
fNVars};
443 npy_intp dimsTrainY[2] = {(npy_intp)nTrainingEvents, (npy_intp)
fNOutputs};
444 npy_intp dimsTrainWeights[1] = {(npy_intp)nTrainingEvents};
445 PyArrayObject* pTrainDataX = (PyArrayObject*)PyArray_SimpleNewFromData(2, dimsTrainX, NPY_FLOAT, (
void*)trainDataX);
446 PyArrayObject* pTrainDataY = (PyArrayObject*)PyArray_SimpleNewFromData(2, dimsTrainY, NPY_FLOAT, (
void*)trainDataY);
447 PyArrayObject* pTrainDataWeights = (PyArrayObject*)PyArray_SimpleNewFromData(1, dimsTrainWeights, NPY_FLOAT, (
void*)trainDataWeights);
450 PyDict_SetItemString(
fLocalNS,
"trainWeights", (
PyObject*)pTrainDataWeights);
460 float* valDataX =
new float[nValEvents*
fNVars];
461 float* valDataY =
new float[nValEvents*
fNOutputs];
462 float* valDataWeights =
new float[nValEvents];
464 for (
UInt_t i=0; i< nValEvents ; i++) {
465 UInt_t ievt = nTrainingEvents + i;
469 valDataX[j + i*
fNVars] =
e->GetValue(j);
483 else Log() << kFATAL <<
"Can not fill target vector because analysis type is not known" <<
Endl;
485 valDataWeights[i] =
e->GetWeight();
488 npy_intp dimsValX[2] = {(npy_intp)nValEvents, (npy_intp)
fNVars};
489 npy_intp dimsValY[2] = {(npy_intp)nValEvents, (npy_intp)
fNOutputs};
490 npy_intp dimsValWeights[1] = {(npy_intp)nValEvents};
491 PyArrayObject* pValDataX = (PyArrayObject*)PyArray_SimpleNewFromData(2, dimsValX, NPY_FLOAT, (
void*)valDataX);
492 PyArrayObject* pValDataY = (PyArrayObject*)PyArray_SimpleNewFromData(2, dimsValY, NPY_FLOAT, (
void*)valDataY);
493 PyArrayObject* pValDataWeights = (PyArrayObject*)PyArray_SimpleNewFromData(1, dimsValWeights, NPY_FLOAT, (
void*)valDataWeights);
501 Log() << kINFO <<
"Training Model Summary" <<
Endl;
509 PyDict_SetItemString(
fLocalNS,
"batchSize", pBatchSize);
510 PyDict_SetItemString(
fLocalNS,
"numEpochs", pNumEpochs);
511 PyDict_SetItemString(
fLocalNS,
"verbose", pVerbose);
518 PyRunString(
"callbacks.append(" +
fKerasString +
".callbacks.ModelCheckpoint('"+
fFilenameTrainedModel+
"', monitor='val_loss', verbose=verbose, save_best_only=True, mode='auto'))",
"Failed to setup training callback: SaveBestOnly");
519 Log() << kINFO <<
"Option SaveBestOnly: Only model weights with smallest validation loss will be stored" <<
Endl;
526 PyRunString(
"callbacks.append(" +
fKerasString +
".callbacks.EarlyStopping(monitor='val_loss', patience="+tries+
", verbose=verbose, mode='auto'))",
"Failed to setup training callback: TriesEarlyStopping");
527 Log() << kINFO <<
"Option TriesEarlyStopping: Training will stop after " << tries <<
" number of epochs with no improvement of validation loss" <<
Endl;
534 "schedulerSteps = {}\n"
535 "for c in strScheduleSteps.split(';'):\n"
536 " x = c.split(',')\n"
537 " schedulerSteps[int(x[0])] = float(x[1])\n",
541 PyRunString(
"def schedule(epoch, model=model, schedulerSteps=schedulerSteps):\n"
542 " if epoch in schedulerSteps: return float(schedulerSteps[epoch])\n"
543 " else: return float(model.optimizer.lr.get_value())\n",
548 "Failed to setup training callback: LearningRateSchedule");
556 "callbacks.append(" +
fKerasString +
".callbacks.TensorBoard(log_dir=" + logdir +
557 ", histogram_freq=0, batch_size=batchSize, write_graph=True, write_grads=False, write_images=False))",
558 "Failed to setup training callback: TensorBoard");
559 Log() << kINFO <<
"Option TensorBoard: Log files for training monitoring are stored in: " << logdir <<
Endl;
563 PyRunString(
"history = model.fit(trainX, trainY, sample_weight=trainWeights, batch_size=batchSize, epochs=numEpochs, verbose=verbose, validation_data=(valX, valY, valWeights), callbacks=callbacks)",
564 "Failed to train model");
567 std::vector<float> fHistory;
569 npy_intp dimsHistory[1] = { (npy_intp)
fNumEpochs};
570 PyArrayObject* pHistory = (PyArrayObject*)PyArray_SimpleNewFromData(1, dimsHistory, NPY_FLOAT, (
void*)&fHistory[0]);
575 PyRunString(
"number_of_keys=len(history.history.keys())");
577 int nkeys=PyLong_AsLong(PyNkeys);
578 for (iHis=0; iHis<nkeys; iHis++) {
583#if PY_MAJOR_VERSION < 3
589 PyObject* repr = PyObject_Repr(stra);
590 PyObject* str = PyUnicode_AsEncodedString(repr,
"utf-8",
"~E~");
594 Log() << kINFO <<
"Getting training history for item:" << iHis <<
" name = " <<
name <<
Endl;
597 for (
size_t i=0; i<fHistory.size(); i++)
620 delete[] trainDataWeights;
623 delete[] valDataWeights;
644 PyRunString(
"for i,p in enumerate(model.predict(vals)): output[i]=p\n",
645 "Failed to get predictions");
660 if (firstEvt > lastEvt || lastEvt > nEvents) lastEvt = nEvents;
661 if (firstEvt < 0) firstEvt = 0;
662 nEvents = lastEvt-firstEvt;
671 <<
" sample (" << nEvents <<
" events)" <<
Endl;
673 float* data =
new float[nEvents*
fNVars];
674 for (
UInt_t i=0; i<nEvents; i++) {
678 data[j + i*
fNVars] =
e->GetValue(j);
682 npy_intp dimsData[2] = {(npy_intp)nEvents, (npy_intp)
fNVars};
683 PyArrayObject* pDataMvaValues = (PyArrayObject*)PyArray_SimpleNewFromData(2, dimsData, NPY_FLOAT, (
void*)data);
684 if (pDataMvaValues==0)
Log() <<
"Failed to load data to Python array" <<
Endl;
688 if (pModel==0)
Log() << kFATAL <<
"Failed to get model Python object" <<
Endl;
689 PyArrayObject* pPredictions = (PyArrayObject*) PyObject_CallMethod(pModel, (
char*)
"predict", (
char*)
"O", pDataMvaValues);
690 if (pPredictions==0)
Log() << kFATAL <<
"Failed to get predictions" <<
Endl;
695 std::vector<double> mvaValues(nEvents);
696 float* predictionsData = (
float*) PyArray_DATA(pPredictions);
697 for (
UInt_t i=0; i<nEvents; i++) {
703 <<
"Elapsed time for evaluation of " << nEvents <<
" events: "
722 PyRunString(
"for i,p in enumerate(model.predict(vals)): output[i]=p\n",
723 "Failed to get predictions");
750 PyRunString(
"for i,p in enumerate(model.predict(vals)): output[i]=p\n",
751 "Failed to get predictions");
763 Log() <<
"Keras is a high-level API for the Theano and Tensorflow packages." <<
Endl;
764 Log() <<
"This method wraps the training and predictions steps of the Keras" <<
Endl;
765 Log() <<
"Python package for TMVA, so that dataloading, preprocessing and" <<
Endl;
766 Log() <<
"evaluation can be done within the TMVA system. To use this Keras" <<
Endl;
767 Log() <<
"interface, you have to generate a model with Keras first. Then," <<
Endl;
768 Log() <<
"this model can be loaded and trained in TMVA." <<
Endl;
779 PyRunString(
"keras_backend_is_set = keras.backend.backend() == \"tensorflow\"");
780 PyObject * keras_backend = PyDict_GetItemString(
fLocalNS,
"keras_backend_is_set");
781 if (keras_backend !=
nullptr && keras_backend == Py_True)
784 PyRunString(
"keras_backend_is_set = keras.backend.backend() == \"theano\"");
785 keras_backend = PyDict_GetItemString(
fLocalNS,
"keras_backend_is_set");
786 if (keras_backend !=
nullptr && keras_backend == Py_True)
789 PyRunString(
"keras_backend_is_set = keras.backend.backend() == \"cntk\"");
790 keras_backend = PyDict_GetItemString(
fLocalNS,
"keras_backend_is_set");
791 if (keras_backend !=
nullptr && keras_backend == Py_True)
#define REGISTER_METHOD(CLASS)
for example
char * Form(const char *fmt,...)
R__EXTERN TSystem * gSystem
OptionBase * DeclareOptionRef(T &ref, const TString &name, const TString &desc="")
Class that contains all the data information.
UInt_t GetNClasses() const
UInt_t GetNTargets() const
Types::ETreeType GetCurrentType() const
Long64_t GetNEvents(Types::ETreeType type=Types::kMaxTreeType) const
Long64_t GetNTrainingEvents() const
void SetCurrentEvent(Long64_t ievt) const
void SetTarget(UInt_t itgt, Float_t value)
set the target value (dimension itgt) to value
Float_t GetTarget(UInt_t itgt) const
PyGILState_STATE m_GILState
const char * GetName() const
Types::EAnalysisType GetAnalysisType() const
const TString & GetWeightFileDir() const
const TString & GetMethodName() const
const Event * GetEvent() const
DataSetInfo & DataInfo() const
virtual void TestClassification()
initialization
UInt_t GetNVariables() const
TransformationHandler & GetTransformationHandler(Bool_t takeReroutedIfAvailable=true)
void NoErrorCalc(Double_t *const err, Double_t *const errUpper)
TrainingHistory fTrainHistory
const Event * GetTrainingEvent(Long64_t ievt) const
void GetHelpMessage() const
void Init()
Initialization function called from MethodBase::SetupMethod() Note that option string are not yet fil...
std::vector< float > fOutput
virtual void TestClassification()
initialization
void ProcessOptions()
Function processing the options This is called only when creating the method before training not when...
Bool_t UseTFKeras() const
Int_t fTriesEarlyStopping
EBackendType
enumeration defining the used Keras backend
void SetupKerasModel(Bool_t loadTrainedModel)
std::vector< Float_t > & GetMulticlassValues()
UInt_t GetNumValidationSamples()
Validation of the ValidationSize option.
Double_t GetMvaValue(Double_t *errLower, Double_t *errUpper)
std::vector< Float_t > & GetRegressionValues()
TString fNumValidationString
Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t)
TString GetKerasBackendName()
MethodPyKeras(const TString &jobName, const TString &methodTitle, DataSetInfo &dsi, const TString &theOption="")
TString fLearningRateSchedule
EBackendType GetKerasBackend()
Get the Keras backend (can be: TensorFlow, Theano or CNTK)
TString fFilenameTrainedModel
std::vector< Double_t > GetMvaValues(Long64_t firstEvt, Long64_t lastEvt, Bool_t logProgress)
get all the MVA values for the events of the current Data type
static int PyIsInitialized()
Check Python interpreter initialization status.
static PyObject * fGlobalNS
void PyRunString(TString code, TString errorMessage="Failed to run python code", int start=Py_single_input)
Execute Python code from string.
Timing information for training and evaluation of MVA methods.
TString GetElapsedTime(Bool_t Scientific=kTRUE)
returns pretty string with elapsed time
void AddValue(TString Property, Int_t stage, Double_t value)
Singleton class for Global types used by TMVA.
Int_t GetEntries() const
Return the number of objects in array (i.e.
TObject * At(Int_t idx) const
virtual const char * GetName() const
Returns name of object.
Bool_t IsFloat() const
Returns kTRUE if string contains a floating point or integer number.
const char * Data() const
TObjArray * Tokenize(const TString &delim) const
This function is used to isolate sequential tokens in a TString.
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString.
void Form(const char *fmt,...)
Formats a string using a printf style format descriptor.
virtual const char * Getenv(const char *env)
Get environment variable.
create variable transformations
MsgLogger & Endl(MsgLogger &ml)